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ABsTRACT. We apply our previous result [14] to the classical groups, and construct
quantum analogues of the coordinate algebras of certain prehomogeneous vector spaces
as non-commutative algebras equipped with actions of the quantized enveloping
algebras. We also give explicit descriptions of the non-commutative counterparts for
the generators of the defining ideals of the closures of orbits including basic relative
invariants. In particular, quantum analogues of a quadratic form and the determinant
of a symmetric matrix are naturally obtained.

0. Introduction

Let L be a connected reductive algebraic group over the complex number
field C, and let [ be the Lie algebra of L. We denote by U,(I) the quantum
deformation of the enveloping algebra U(I) of I constructed by Drinfel’d [1]
and Jimbo [5]. It is a Hopf algebra over the rational function field C(q).
By Lusztig [6] any finite dimensional [-module V has a quantum deformation
V, as a Uy(l)-module. In order to investigate quantum analogues of results
concerning geometric structure of ¥ such as L-orbits, we need also a quantum
deformation of the coordinate algebra 4(V). In this paper we shall construct
a quantum deformation A,(V) of the coordinate algebra A(V) for certain
prehomogeneous vector spaces V, and give counterparts for the defining ideals
of the closures of L-orbits on V' and their canonical generator systems.

More generally, let X be an affine variety endowed with an action of L.
Then A(X) is a right 4(L)-comodule whose coaction

T A(X) — A(X) ® A(L)

is an algebra homomorphism. Thus we obtain a locally finite left U(l)-module
structure on A(X) satisfying
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for ue U(l), myne A(X) and A(u) = iu,(l) ®u,(.2), where 4 is the comulti-
plication of U(I).

Hence it is natural to define a quantum deformation A4,(V) of the co-
ordinate algebra A(V) of an L-module V to be a C(g)-algebra satisfying the
following conditions:

(i) A4(V) is generated by the quantum deformation V; of V* satisfying
quadratic homogeneous fundamental relations.

(ii) A(V) is the limit of A4,(V) when ¢ tends to 1.

(i) The action of U,(I) on V; is uniquely extended to a U,(I)-module
structure on A,(V) satisfying

u-(mn) = (" -m)w? -n)

i

for ue Uy(l), myne Ay,(V) and 4(u) = l.u,(.l) ® u,(.z).

In our previous paper [14], we gave a method to construct quantum
deformations of 4,(V) for prehomogeneous vector spaces ¥ of parabolic types.
We have also shown there that there exist counterparts for the defining ideals
of the closures of L-orbits on V" and their canonical generator systems inside
Agy(V). When V is a regular prehomogeneous vector space, the generator of
the defining ideal of the closure of the one-codimensional orbit is the basic
relative invariant, and we obtain a quantum deformation of the basic relative
invariant in this case..

Our aim is to give the explicit descriptions of A,(V) for prehomogeneous
vector spaces V' of classical parabolic types by using the method of our previous
paper. (For exceptional types, see Morita [15].)

In the case of a prehomogeneous vector space of parabolic type associated
to the simple Lie algebra of type 4 where L = GL,,(C) X GL,(C), V = M, (C)
(the action is defined by (l1,h) -v=hv'h for (I;,h) € L, ve V), the quantum
deformation A4,(¥) obtained by our method coincides with the object inves-
tigated by Hashimoto-Hayashi [2], Noumi-Yamada-Mimachi [8] and Taft-
Towber [11]. If m = n, then V is regular and f(v) = det(v) (ve V) is a basic
relative invariant. Its quantum deformation obtained by our method also
coincides with the g-analogue of the determinant treated in (2], [8] and [11].

In the case of a prehomogeneous vector space of parabolic type associated
to the simple Lie algebra of type D where L = GL,(C), V = {ve M,(C)|
'v = —v} (the action is defined by /-v= 1MWl for leL, veV), we obtain
quantum deformations of 4A(V) and a basic relative invariant Pfaffian which
again coincide with the objects treated in Strickland [10].
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There are two other cases.
(I) The regular prehomogeneous vector space of parabolic type associated
to the simple Lie algebra of type B and D:
L=S0,(C)xC*, V=M, (C)=C" and the action of L is defined by

(l,z) - v=zl ((l,z)eL,ve V).
Under the realization
S0O,,(C) ={l e SL,(C)|'IKl = K},

where K is a symmetric non-singular matrix, the basic relative invariant
is given by f(v) = ‘vKv.

(II) The regular prehomogeneous vector space of parabolic type associated to
the simple Lie algebra of type C:
L =GL,(C), V ={ve M,(C)|'v =}, and the action of L is defined by

l-v="Wn'l  (leLveV).

f(v) = det(v) is a basic relative invariant.
In these two cases we obtain the following results.

THEOREM 0.1. For the regular prehomogeneous vector space V of type (1),
a quantum deformation Ay(V) of A(V) is given by the following.
(i) Case of type B, (2n—1=m).
(@) Ay4(V) is an algebra over C(q) generated by Y; (1 <i < m) satisfying
the fundamental relations

(g2 Y:Y; (i<j,i+] # 2n)
g2-1 2 . .
Y,-Yj-i—m_—l Y, (i=n-1, j=n+1)
) —2_
VY= vy (g IZ+q“1 ;
j—n—1
+Hg =) Y (=) T Y Yo (> ntl i+ j=2n).

\ =1

(b) Let K*'\E,F; (1 <r<n,2<s<n) be the canonical generators of
the quantized enveloping algebra U,(1). The action of U,(I) on Ay(V)
is given as follows.

q*Y;, (r=i+lorn+1<i=2n—-r<2n-1)
7Y 2<r=ign—-lorl=r<i<2n-1

K Y = ! orn+1<i=2n+1-r)
Y (r=i=1)
Y; (otherwise),
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Yi_i (1< —1 or n+l1 <i=2n+1-s)
E; Yi={(q+q“)Yi_1 (i= )

0 (otherwzse)

Yii (1<i=s-1<n-1or nt+l <i=2n-ys)
Fo-Yi={ (g+q )Y (i=n=ys)

0 (otherwise).

(c) The quantum deformation of the basic relative invariant of V is given
by

Yrtz—'(q+q 1+q Z llYntYn+t

(i) Case of type D, (2n—2=m).
(@) Aq(V) is an algebra over C(q) generated by Y; (1 <i < m) satisfying
the fundamental relations

7'y, (J>ii+j#2n-1)
Y;Y; (j=ni=n-1)

J
YiYJ"*’(q_l*‘I)Z(—‘I)t_I YiiYjey (> ni+j=2n-1).

(b) Let KX, E,, F;, (1 <r<n,2<s<n) be the canonical generators of
the quantized enveloping algebra U,(1). The action of Uy(l) on A4(V)
is given as follows.

qY; (r=i+l or r=n=i42 or r=2n—-i—-1>1)

r=i>1orr=2n—i<m
q7'Y; (

K Y= orr=n=i-1orl=r<i<2n-2)

Y, (r=i=1)

\ Y (otherwise),

Yiipi (I1<i=s<n-1orn+l<i=2n—-s<m)
E. Y — Yoo1 (i-l=n=y)

Yoo (i=n=ys)

[ 0 (otherwise),

(Y (1< —1<n-2o0rn<i=2n-s—1<m)
F Y= Y, (i+2 s)

Yo (+1—n—s)

0 (otherwise).
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(c) The quantum deformation of the basic relative invariant of V is given
by

n—1

Z(_q_l)l_l Yoi Yn+i—l .
i=1
THEOREM 0.2. For the regular prehomogeneous vector space V of type
(II), a quantum deformation A,(V) of A(V) is given by the following.
(i) Ag(V) is an algebra over C(q) generated by Y; (1 <i < j < n) satisfying
the fundamental relations

(I<i<m=j

or l=i<m<j)
(I<i=m=j

or l=i=m<j)
I<i<j<m)

qYmYj

qZ Ylm Ylj

Yim Yy (
Yy Yim = Yle,-,~+(q—q-‘)Yz,-Y,»m (
qYmYj+qlq—q )Y, Y (
YinYi +(? —q2) Yy Yy (l=m<i<j
YimYj+(qd—¢ 1)(leYm/+qYlJYm1) (
YmYy+q7 ' (q> —q72) Y} (
leme'i'(q —q 2)Yll mi (

(ii) Let K¥', E;, F;, (1 <r<n,1 <s<n—1) be the canonical generators of
the quantized enveloping algebra U,(l). The action of Uy(l) on A,(V) is
given as follows.

Y (r=i-1<j—-lori<j—1=r)
qr
'Yy  (r=i<j-lori<j=r<n)
K.Y = a°Y; r=i-1=j-1)
r y q"zY,‘j (r:i:j<nori<j:r:n)
Y (otherwise),
Yiii,) (s= l<J)
Yi'+l (1 S)
E - Y;= J
Y (@+q7")Yijm (z: =)
0 (otherwise),
REY (s+1=i<))
F..Y:= (g+q7 )Y, (s+1=i=))
U] Y (i<j=s+1)
0 (otherwise).
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(i) The quantum deformation of the basic relative invariant of V is given by

Z (—g~H!@ Yio)Y2,002) " Yo 0(n)

oESy
where () = #{(i, /)|l <i < j<n,o(i)>0o(j)}, and Y; =q2Yy for i< j.

I would like to express my gratitude to Toshiyuki Tanisaki and Yoshiyuki
Morita.

1 Generalities

Let g be a simple Lie algebra over the complex number filed C with
Cartan subalgebra ). Let 4 = h* and W < GL(h) be the root system and the
Weyl group respectively. We denote the set of positive roots by 47 and the
set of simple roots by {a;},.,, where I is an index set. For each a € 4 let g,
be the corresponding root space. We set nt =P, _ . 6.,

For ie ly we denote the simple reflection corresponding to i by s; € W.
Let (,): g x g — C be the invariant symmetric bilinear form such that («, o) =

iy Xi . 2 iy &j ..
2 for short roots a. Set d; :M (ielh),a; = (3, %) (i, j € I).
2 (aia ai)

For a subset I of Iy we set 4; =AN >, ;Za;, Wy ={(siliel), [ =hP
(D, 4,9), and ni =@, 4\ o Let L; be the algebraic group corre-
sponding to ;.

The quantized enveloping algebra U,(g) (Drinfel’d [1], Jimbo [5]) is an
associative algebra over the rational function field C(gq) generated by the
elements {E;, F;, K*'},_, satisfying the following relations:

iely
KiK; = KiK;,
KK ' =K'K =1,
KEK ' = ¢/"E;,
KEK" = g;"F,
K — K
EiF; — FE; = 0j——1,
=4
s k 1 - ajj 1—a;—k k
> (-1 [ B f] E,“TEEfF=0  (i#)),
k=0 qi

1

1-a;
4 1 —a; —ai—
(—1)"[ aj] F YRR =0 (i#)),
qi
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where ¢; = g%, and

I _T m) __ [m!
[m]t_T___lTa [m]t'—,!;[l[k]t, [n]t—m (manO)

The Hopf algebra structure on U,(g) is defined as follows. The
comultiplication 4 : Uy(g) — U,(g) ® U,(g) is the algebra homomorphism
satisfying

AK)=K®K, AE)=EQK'+1®E, A4F)=F®1+KQF,.
The counit ¢: Uy(g) — C(q) is the algebra homomorphism satisfying
eKy) =1, e(E) =¢(F;) =0.
The antipode S : Uy(g) — U,(g) is the algebra antiautomorphism satisfying
S(k)=K', S(E)=-EK, S(F)=-K'F.

The adjoint action of U,(g) on U,(g) is defined as follows. For x,ye
U,(g) write 4(x) =3, x}cl) ®x§(2) and set ad(x)(y) = ka,(:)yS(xf)). Then
ad : U,(g) — Endc(,)(U,(g)) is an algebra homomorphism.

We define subalgebras U,(n*), U,(h) and U,(l;) for I = Iy by

Uq(n+) = <Et|l € 10>a Uq(n_) = <E|l € 10>a
U,() =<KxrYiel), Uyl) =<K= E,Flick,jel).

For i € Iy we define an algebra automorphism 7; of U,(g) (see Lusztig [6])

by
Ti(K)) = KK,

( —FiK; (i=J)
Ti(Ej) = § & -~

)= > () ETVEER (i),
{ k=0
( —K'E; (i=))
T(F) = { &

k -—a,"—k . o
S (~a) FORFTR (i ),
\ k=0

where

(k) _ k k 1
E —Ei’ F}()szik‘
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Then T7; satisfy the braid relations. In other words, if s;5; € W has order m,
then

TT;-- =TT -
SN—— N—\—

We often use the following formulas (see [6]):
TTi(F)=F  (a;=a;=-1), (1.1)
T.T;T(F) =F, TLT(F)=F (a=-la=-2). (12

For we W we choose a reduced expression w=s; ---s;, and set T, =
T; ---T;. Itis known that T, dose not depend on the choice of the reduced
expression.

For I c Iy let w; be the longest element of W; and set

Us(ny) = Upy(n7)N T;,l Uy(n7).

Let wy be the longest element of W and take a reduced expression wywy =
si -8, of wiwy. We set

ﬁk =Sip Si (aik)’ Yﬁk =Ty T, (Flk)

for k=1,...,r. Then it is known that {f,|1 <k <r} =4*\4;, and that
{Yﬂ‘f‘ Yéf’|d1, ...,dr € Lo} is a basis of Uy(n;). This basis depends on the
choice of the reduced expression of wywg in general. The subalgebra U,(n})
is stable under the adjoint action of U,(I;). For pue >, _,Zoa we set

Ug(np), = {y e Uy(ny) |ad(Ky)y = g®*)y for all i€ Iy}

Assume that nj # {0} and [nj,nf]={0}. Then (L;n}) is a pre-
homogeneous vector space. Moreover, nj consists of finitely many L;-orbits
Co, Cy, ..., C, satisfying the closure relation

{0}=C<cCc - cC=nj.

Set #(C,) ={f € C[nf]| f(C,) =0}. We denote by .#™(C,) the subspace of
#(C,) consisting of homogeneous elements with degree m. For p=0,1,...,
t — 1, we have the following:

(i) #™(C,)=0 for m< p,

(ii) #PT1(C,) is an irreducible [;-module,

(ili) #(C,) is generated by #7%!(C,) as an ideal of C[nj].

In this case we can regard U,(n;) as a quantum deformation of the coordinate
algebra C[nf] of nf. By [nf,nf] =0 we have the following (see [14]).
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PROPOSITION 1.1.  The generators Yy for f e A™\4; do not depend on the
choice of the reduced expression of wywy, and they satisfy quadratic fundamental
relations.

Since C[nj] is a multiplicity free [;-module, there exist unique U,(I;)-
submodules %, (C,) and 7" (C,) of Uy(ny) satisfying £,(C,)|,-; = #(Cp)
and qu7+1(Cp)|q=1 = fp“(cp)-

TrEoREM 1.2. (see [14]) 7 (G,) = Uy(n) ISP (C,) = ISP (G Uy(y).

In the remainder of this paper we shall give explicit descriptions of U,(n;)
and #7*'(C,) for a classical simple Lie algebra g.

2. Quantum determinants of quantum square matrices

In this section we apply the method in [14] to the case where g = sl,.(C)
and I; ~ {(g1,92) € glk(C) x glps1-%(C) |trg; + trg, = 0}. Since the quantum
deformation we obtain by our method is not new, we shall only state the results
and omit the proofs.

We label the vertices of the Dynkin diagram of g as follows.

1 2 k=l k kil n-l o
Hence we have Iy = {1,2,...,n}. Set I =1IL\{k}, where k—1<n—k.
Then we have nj # {0} and [nf,nf]={0}. There exist k+1 L;-orbits
Co, C1,...,Cx on nj, where C, = {xenj |rank(x) = p}. Then we have the

closure relation {0} = Cy <= Cy < --- = Cx =nj.
We fix a reduced expression

Wiwo = (SkSk+1 -+~ Sn) (Sk—18k = Sn—1) =+ (5152 * * Sp—ket1).-

For i=1,2,...,k and j=1,2,...,n+ 1~k we define ;€ 47\4; by
Bij = Ok—is1 + Ce—i2 + -+ 0 + Qg1 + - Okt

and set

Yy=T®TED  TEEIT o Teciin - Thminjot (Fiming),

where we set T = T, T,,1--- Thrss. Note that Yje Uq(nl‘)_ﬁij.
By Yamane [13], we have

qYm Yy (i=lhj<mori<l j=m)
YiYim = { Yim Yy (i<l j>m) (2.1)
Yleij+(q—q—l)Y1jYim (l<1af<m)
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Fix p=0,1,...,k—1. For two sequences {ii,i2,...,ip+1}, {J1)J2)-»
Jp+1} =N satisfying

l<ii<ih<: - <ipp <k, 1<ji<jp<--<jpy<n+l-k (22)
we set

ih Bl
Ji J2r s

— (o)
= (=9)""Y, Jah) Yizvja(z) T Yip+l»ja(p+l)’
UESP+1

where (o) = §{(i, j)li < j,a(i) > o (/)}-
We can prove the following result. Details are omitted.

LEMMA 2.1. We have

Iy B e Ipy
ad(F)| !
J1 J2 Jp+1
P . .
i o L+l - i
o ' _ 'p+ if there exists te {1,2,...,p+1}
Jr J2 o Ji o Jpt such that i, =k—r<iy1—1,
—s il i2 A i tee i+1
o ' ' | ’ if there exists te{1,2,...,p+1}
Ju 2o et such that j,=r—k<j, -1,
0 otherwise,
131 1 i+1
ad(E, . .p
J1 )2 Jp+1
(] - . . .
il iy -0 -1 ... ipt1
o ! ' _p if there exists te {1,2,...,p+1}
Jv J2 Ji -]p+1 such that i(—1+1<it:k"‘r+la
= 9 ip iy - i i+l
o _ ! | f’ if there exists te {1,2,...,p+1}
Jv 2 o L= b such that j,_;+1<j,=r—k+1,
L0 otherwise

B oy
J1 Jaoc jp+1

SR > I S

1ok = g L B
Ji 72 e
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We set
v, = k—-p k—-p+1 -+ &k
P 1 2 oo p1)
b B o by
J,o=)» C .. C
i Z @) Ji J2 o Jpa
where the summation runs through the sequences {i1,i2,...,ip+1}, {J1, /2, -»

Jps1} satisfying (2.2).

COROLLARY 2.2. For p=0,1,....,k—1, J,, is an irreducible highest
weight U,(1r)-module with highest weight vector y,.

Proor. From Lemma 2.1, it is clear that J,,=ad(.,(I1)Y, a
ad(E,)y, =0 for any re . Since a finite dimensional highest weight module
is irreducible, the statement holds. O

The highest weight of J,, coincides with that of #7*!(C,). Therefore
Jop is a quantum deformation of #7*'(C,). By Theorem 1.2 we have
Uy(n;)qp = JqpUg(ny), and this two sided ideal of U,(n;) is a quantum
deformation of the defining ideal .#(C,) of the closure of C,.

Ifk—1=n-—k, the prehomogeneous vector space (L,,n,) is regular, and
the generator t/tk_liz,,esk(*q)l(“) Y1600 Y2,00) " Yk,or) Of the quantum
deformation of #(Ci_;) is the quantum deformation of the basic relative
invariant.

Hence we obtain the following known result by our method.

TueoreM 2.3. (Hashimoto-Hayashi [2], Noumi-Yamada-Mimachi [8], Taft- .

Towber [11])

(i) A quantum deformation A44(n}) of the coordinate algebra A(nj) of nj is
generated by Yj; (1 <i<k,1 <j<n+1-k) satisfying the fundamental
relations (2.1).

(ii) The action of Uy(l;) on Ag(nf) is given as follows. For rely and sel,

K, - Yy"q O(’ﬂ”)Yz/a

Yi,j—l (S—-k+]-l)
E - Yj=¢ Y1 (s=k—-i+1)
(

otherwise),

Yijn (S—k-l'J)
F-Yi=14 Y, (s=k—1i)
(

otherwme)
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(iii) When k—1=n—-k, > . Sk(—q) /() Y1,60)Y2,602) " Yk,o() 18 @ quantum
deformation of the basic relative invariant.

3. Quantum Pfaffians of quantum alternating matrices

In this section we apply the method in [14] to the case where g = 02,(C)
and I; ~ gl,(C). Since the quantum deformation obtained by our method is
not new, we shall only state the results and omit the proofs.

We label the vertices of the Dynkin diagram of g as follows.

Hence we have Iy = {1,2,...,n}. Set I =1IL)\{n}. Then we have nj # {0}
and [nf,nf] ={0}. Then there exist [g] +1 L;-orbits Co, Cy, ..., Cjyzy on
nf, where Gy={xe nf |rank(x) =2p}. We have the closure relation
{O}ZC()CCI [ CC[,,/Z]:TIT.

We fix a reduced expression

wiwo = (S5(1)Sn—2 -+ - 51)(S52)Sn—2 - - = 82) = * (85(n—2)Sn—2)S5(n—1)»

where

5(t)={n ¥ftfs odd,
n-—1 if ¢ is even.

Let 1<i<j<n we define ;€ 47\4; by

%+ iyl + o+ % (j<n-1)
Bij = +2dj+2aj+1 442009 + 0y + 0y
o+ oy + 0y + 0y (j=n)’

and set
Yy =TOT o TN Ty i) Toa - Tujrist (Faji)
where T = T5 T, 2T,-3-+ T for s=1,2,...,n—=2. If j—i=1, we set
Tstn-jutyTn-2 " Tn_jris1(Fu—jsi) = Fsn—js1)-

Note that Y e Uy(ny)_4

l'j'
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LemMmA 3.1. We have

( I<i<m=j

qYm Y orl<i=m<j

or l=i<m<j)
Y Yin=1{ YmY; (I<i<j<m)
Y Y+ (@ —=9")YYim (I<i<m<))

Yim Ylj . .
_ _ (I <m<i<j).
( + (@@= ) (YaY — ¢ YY)
(3.1)
. n—2
Fix p—-O,l,...,[ 5 }
For the sequence {ii,,...,ip+2} = N satisfying
1<ii <ih <+ <igpa i, (3.2)
we set
. . . —1:\/
Ill o 12p+2| = Z (_q 1) @ }’ia(l))ia(z) },ia(f{)via(tt) T ),iu(2p+!)1i0'(2p+2)’

oSy
where $y,42 = {0 € Sppi2|0(2k — 1) < 6(2k + 1),0(2k — 1) < o(2k) for all k}.

ProrosITION 3.2. We have

ad(F,)lil iz s i2p+2l
i iy e i—1 - if there exists te{1,2,...,2p+2}
b2 ! 2p+2 such that i,y <r=1i,—1,
0 otherwise,
ad(Er)!il i - i2p+2|
i i . sl if there exists te{1,2,...,2p+2}
P2 ! 242 such that r =i, < iy —1,
0 otherwise
for rel, and
P+l
ad(K)lip i - i2p+2| =q Lu=t (ﬂiz,_,,iz,»“r)lll B o igpyd

for rel.
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We set
Yp=In—-2p—1n-2p - nl,
Jop = ZC(‘])UI B e iy
where the summation runs through the sequence {ii, i, ...,ip+2} = N satisfying

(3.2).
By Proposition 3.2 we have the following.

ProrosiTION 3.3. For p=0,1,..., [%2], Jg,p is an irreducible highest
weight Uy(I;)-module with highest weight vector .

The highest weight of J, , coincides with that of #7!(C,), hence J, , is
a quantum deformation of .#7*!(C,). By Theorem 1.2, the two sided ideal
U,(n7 )y, p = Jo,pUy(np) is a quantum deformation of the defining ideal .#(C,)
of the closure of C,.

If n is even, the prehomogeneous vector space (L;,n}) is regular, and the
generator Y, ,, of the quantum deformation of #(C(,_3),2) is the quantum
deformation of the basic relative invariant.

Therefore we have the following known result by our method.

THEOREM 3.4. (Strickland [10])

(i) A quantum deformation 4,(nf) of the coordinate algebra A(nj) of nj
is generated by Yj; (1 <i< j<n) satisfying the fundamental relations
(3.1).

(ii) The action of U,(I;) on A4,4(nj) is given as follows. For rely and sel,
K Y= q—(ar,ﬂ,-;) Y,
Yo, (s=ij>i+1)
(s
(

Il

Es : Yij = Yi,j+1 ])

0 otherwise),
Yio) (s=i-1)

Fo-Y;=4 Y (s=j—-1>1)
0 (otherwise).

(iii) When n is even, Y(,_5)/, is the quantum deformation of the basic relative
invariant.

4. Quantum quadratic forms on quantum vector spaces

In this section we apply the method in [14] to the case where g = 0,,,42(C)
and ; ~ 0,,(C) x C.
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Assume m = 2n — 1. We label the vertices of the Dynkin diagram of g as

follows. ‘
1 2 n-2 n-1 n

Hence we have Iy = {1,2,...,n}. Set I =I\{l}. Then nf # {0} and
[nf,nj] = {0}. There exist three L;-orbits Co,Cj,C; on nj satisfying the
closure relation {0} = Co = C; = C; = nj.

Fix the reduced expression wywp = §182- - SySu—18n—2 - 81, and for i=1,
2,...,m we define B; € 4*\4; and ¥; = Y3 € Uq(n,‘)_ﬁi as in Section 1. Note
that

ﬂ_{a1+cx2+~--+a,~ (I1<i<n)
T Lo o g+ 2000ig e 20ty n+l<i<g<2n-1).

LeEMMA 4.1. For rel we have

(I<igsn-Lr=i+1

Yin orn+1<i<2n—1,r=2n-i
ad(F,)Y; = { y 0

(@+q )Y (i=n=7)

(0 (otherwise),

rY (I<isn-1r=i

i-1 _ '

ad(E,)Y; = ¢ y ‘orn+lsl£2n—1,r_2n—t+1)

(q+q )Yn—-l (l=n_—_r)

(0 (otherwise).

Proor. Since @P),;C(q)Y; is a U,(l;)-module (see [14]), we have ad(F,)Y;
=0if B, +a, ¢ 4"\4; and ad(E,)Y; =0 if B, — o, ¢ 47\ 4;. Therefore we have
only to deal with the cases r =i+ 1 or2n—ifor F,and r =i or 2n — i+ 1 for
E..

Letr=i+1el. Wehave ad(Fy)Y; = F.1 Y, — ¢*YF;y,. Since Fiyp =
TWTy---Ti-1(Fi41), we obtain

ad(Fip1)Yi = Th T -+ - Tioo(Fi 1 F; — ¢*FiFip1) = T' Tz - - Tioy Ty(Figy) = Yig1.

Let r=2n—iel and r#n. We have F,=T\T5- - T,Tp_1 - Top_iy1-
(Fan—i-1) by (1.1). By using this formula we obtain

ad(F,)Y; = F,Y; — ¢*YiF,
=TTy TuTut Tonitt (Fan-i-1Fon-i — §*Fon-iFon—i-1)
=TTy TpyThot - Tonivt Ton-i(Fan-i-1)

= Lit1.
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If r=2n—i=nwe have ad(F,)Y,=[F, Y] =TT Typ-
([T \(F,),F)]). Since T;\\(F,) = F,_1F, — ¢*F,F,_ (see [4]), we have
[Tr;-ll (Fn)’Fn] = (q + q_l)(Fn——legz) - anFn—an + qursz)Fn—l)
= (q + q—l)Tn(Fn—l)-

Therefore we obtain ad(F,)Y, = (¢ + ¢ ) Yoy
Let r=iel or r=2n—i+1<n. Since ad(E,)Y;-; =0 and Y, =
ad(F,)Y;—;, we have

ad(E,) Y, = ad(E,) (ad(F,) ¥,-1)
= (qr — Qr—l)_lad(Kr - Kr—l) Yi 1 +ad(F,)(ad(E,)Yi 1)

=(g ¢ ") (¢~ g7 Yi1.

Since g, = ¢ if r =n and g, = ¢* if r < n, the statement holds.
Let r=2n—i+1=nWe have ad(E,)Y,=(q+¢q )Y,y and Y;=
Yui1 = (g+¢ ') 'ad(F,)Y,. Therefore we obtain

ad(Ey) Yo = (g + ") 'ad(E,) (ad(F) Y)
=(q+q) g~ q,") tad(K, - K Y,
+(g+q7") " ad(F)(ad(En) Y)
= (4>~ q3) 7 (Y = Yo) +2d(F,) Yuy
=Y, |

PROPOSITION 4.2. We have

(q—ZYin (i< j,i+j#2n)
Y;Y, q_z“le (i=n—1,j=n+1)
ARl e
Y;Y: = n-147> 1
Y+ (—¢%) Y,
i+ (=q%) =g
Jj—n—1 _ . .
e =) X (4 VeV (<n-2,i4j=2n).
L t=1

(4.1)

Proor. Letl<i<n-—l,i<j<2n—iorn<i<j<2n-1. We show
Y;Y; = q7%Y;Y; by induction on t=j—i If t=1, we have

YinYi — ¢ 2Y Y1 = T(Te(Fi)Fe — ¢ 2 Fc Te(Fr))
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where T=T,---Ti_y, k=k'—-1=i if i<n—-1, and T=T,-- - Tp_1Ty---
Ton—iz1, k=k'+1=2n—1i if i >n. Since we have

l—akkl 1 — Qi _ _
TF R~ BT ¢ 3 (0| T B R
5=0 3

for some c € C(q), we obtain Y;1Y; — ¢ 2Y;Y;;1 =0. Assume that ¢ > 1 and
the statement is proved up to t—1. We have

Y, = (q+q—1)—6j,n+1ad(1;~l) Y = (q_l_q—l)—é/,m (F, Y1 — q—(ﬂj_l,au) Yj—lFl)
where [ =jif j<n and /=2n—j+11if j>n. Since t > 1, we have [F}, Y}
=ad(F;)Y; =0 by Lemma 4.1. By the inductive hypothesis on 7, we obtain

YYi=(q+q ) (B Y - g P Y R Y,
= q~2(q+ q—l)—él,n“ Yi(Fl Yj—] _ q—(ﬂj_hdl) Yj—lFl)

=q VY,
-2

1
Next we prove Y,i1Y,—1 = Yuo1Yun +Z+‘I~1 Ynz. From Lemma 4.1

we have Y, =(q+ q‘l)_l[F,,, Y, and Y,=F,Y, 1 —q*Y,\F,. By the
preceding paragraph we have Y, Y, = ¢ 2Y,_1Y,. Hence

[Ys1, Yoot] = (g+g7 1) [y, Yal, Yorr]
= (Q+q_1)_l (q—z(Fn Yo _qz Yn—an) Y,— Yn(Fn Y “‘]2 Yn—an))

— q—z—l YZ
g+qt "

Let i+ j=2ni<n-2. From Lemma 4.1 we have
Y,=FY1-¢YaF,  Yu=FY-¢VF.
Since Y;_1Y;=gq%Y;Y;_;, we have
[Yj’ Yil = [Fiy}—l - ‘]2 Y; .\ F, Y,]

=g 2FYi— ¢*YiF) Y. — ¢* Y, (F Y — ¢*YiF)

=q Yy Y1~ ¢ Yi 1Y 4.2)
-2 1
By using (4.2) and [Y,41, Yu-1] :Z‘H]_] Y?, we obtain inductively
2142 =1 TN 1
1Y}, Yi] = (-4’ Y2+ -4 D (=) Vi Y

g+q ' "

s=1
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Finally we prove Y;Y; =¢q2Y;Y;for 1<i<n-12n—-i<j<2n—1by
induction on t=j— (2n—1i). Let t=1. Since F;Y;—q2Y;F;=ad(F))Y; =
0, Y; = ad(F;)Yon—i = FiYau_; — ¢* Y2u—iF; and (4.2), we have

Y;Yi— q2Y:Y; = (FiYonoi — ¢* You1 F}) Yi — ¢ 2 Yi(F; Yani — q* YoniF3)
= [F}, [Yon-i, Yil|
= [F,q 2 Yis1 Yonic1 — ¢* Yonoio1 Yis1)-

From Lemma 4.1 [F;, Y3,_;-1] = 0 = [F;, Yi11], hence we obtain Y;Y; — ¢72Y;Y;
=0 for t=1. Assume that > 1 and the statement is proved up to ¢—1.
Since Y; = Foyj+1Yj-1 — ¢*Yj-1Fon_j41 and [Fa,_j41, Yi] =0, we obtain

Y;Yi = (Fanjs1 Yio1 — ¢*Yj1 Fanj1) Y
= ¢ 2Y{(Fon-js1 Yjo1 — @ Yjo1 Fanj1) = 42V, Y;. O
We set

n—1
‘// = Yn Yn - (‘I+ q_l)(l + q—2) Z(_q—Z)z—l Yn—iYn+i-
i=1

Since B,_; + Buii = 2B, for any i, we have Y € Uy(ny)_y -
ProposITION 4.3. For rel we have
ad(F,)y =0, ad(E,)y = 0.
Proor. We shall prove ad(F,)yy =0. Letr=n-—k. If k=0, we obtain
ad(F,)y = (ad(F,) Yn) Yy + K YaK, ' (ad(F,) Y2)
~(@+¢ (1 +g7?)(@d(F) Yu1) Yo
=(@+q )Yt (g+q )Y —(g+g (1 +4) VYo
=0.
If kK >0, we obtain
ad(Fo i)Y = —(g+ 47 )1+ 47)((—47)* @d(Fyic) Ya—k 1) Yasiss
+ (=47 Kok Yo iKY (ad(Fok) Vi)
= (g +4 A+ a (a7 Yok Yurien

+ (_q—Z)k—lq—z Yn—k Yn+k+1)
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Similarly we can prove ad(E,)y = 0. O
By Lemma 4.1 and Proposition 4.3, we have the following:

ProposITION 4.4. >, ... C(q)Y; and C(q)y are irreducible highest
weight U,(I;)-modules.

The highest weight of C(q)y coincides with that of #2(C;). Hence,
C(g)y is a quantum deformation of #2(C;). By Theorem 1.2 the two sided
ideal Uy(n;)y =y U,(n;) is a quantum deformation of the defining ideal
#(C1) of the closure of Cj. Similarly, Y, _; 5, ;C(¢q)Y; is the quantum
deformation of #!(C,). Moreover, the generator  of the quantum defor-
mation of #(C)) is the quantum deformation of the basic relative invariant.

Therefore we have the following.

THEOREM 4.5. (i) A quantum deformation Ay(n}) of the coordinate algebra
A(nj) of nf is generated by Y; (1 <i<2n—1) satisfying the fundamental
relations (4.1).

(i) The action of Uy(l;) on Ag(vf) is given as follows. For rely and
sel,

K Y =q =Py,

Yio (I<i=s<n—lorn+1<i=2n+1-y3)
Es~Y,-={(q+q“)Yi_x (i=n=y)

0 (otherwzse)

Yin (1< —-l1<n—-1lorn+1<i=2n-ys)
F- Y, {(q+q“‘)Yi+1 (l—n—S)

0 (otherwise).

(iti) Y is the quantum deformation of the basic relative invariant.

Next we deal with the case m =2n—2. We label the vertices of the
Dynkin diagram of g as follows.

Hence we have Iy ={1,2,...,n}. Set I=1I5L\{l}. Then nj # {0} and
[nf,nf] ={0}. There exist three L;-orbits Cy, C;,C, on nj satisfying the
closure relation {0} = Cy = C; = G, = nj.

We fix a reduced expression wywg = 5157 * - * Sy_1SuSn_25n_3 - - - $28). For i =
1,2,...,2n—2 we define f; € 47\4; and Y; = Yy € Uy(nj)_, as in Section 1.
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Note that

o+t tay (I<i<n-1)
o tay+ -+ a2+ Ay (i=n)
o+ oyt g

4+ 200pi + 0+ 200 3 + 01 + oy

Bi=
(n+1<i<2n-2).

Since the arguments are simpler than and similar to the case m =2n — 1,
we omit the proofs.

LEmMMA 4.6. For rel we have

(Y1 (1<i<n—-2r=i+lorn<i<2n-2,r=2n—i-1)
Y, (i=n—-2,r=n)

dFr Y= .

a( ) Yur1 (l:n*lﬂl:n)
L 0 (otherwise),

( l<i<n-lLr=iorn+1<i<2n—-2,r=2n-1i

i-1 (

Yn-—l (

Yoo (i=n,r=n)
(

0

ad(E,)Y; =

{ otherwise).

ProPoOSITION 4.7. We have

q'Y.Y; (J>iitj#2n-1)
Y;Y;, (j=ni=n-1)
vy,={ "’ .
-1 t—1 . : .
ViYi+ (g -9 (-9 YV (i<n—2,i+j=2n-1).
t=1
(4.3)
We set

n—1

U= (¢ )Y Yuyicr.

i

1l
—_

Since f,_; + By.i—1 dose not depend on i, we have Y € Uy(ny)_5 15

ProproSITION 4.8. For rel we have
ad(F,)y =0, ad(E,)y = 0.

ProposITION 4.9. Y, _,_,. ,C(q)Y: and C(q)y are irreducible highest
weight U,(1;)-modules.
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The U,(I;)-module >, _;_5,,C(q)Y; (resp. C(q)y) is a quantum defor-
mation of #(Cy) (resp. F2(C))).

THEOREM 4.10. (i) A quantum deformation A4(nj) of the coordinate
algebra A(nf) of nyf is generated by Y; (1 <i<2n—2) satisfying the fun-
damental relations (4.3).

(i) The action of Uy(l;) on Ay(nf) is given as follows. For re Iy and
sel,

K. Yi=q *MY,

¢

i1 (I<i=s<n—-lorn+1<i=2n—-s<m)
) Y (i-l=n=ys)
E- 1= Y2 (i=n=ys)
L 0 (otherwise),
( Yii1 (l<i=s—-1<n-2o0rn<i=2n—s—1<m)
Y, (i+2=n=y)
Fy Y=
: Yut1 (i+l=n=y)
L 0 (otherwise).

(i)  is the quantum deformation of the basic relative invariant.

5. Quantum determinants of quantum symmetric matrices

In this section we apply the method in [14] to the case where g = sp,,(C)
and I; ~ gl,(C).
We label the vertices of the Dynkin diagram of g as follows.

1 2 . n-2  n-1 n
Hence we have Iy = {1,2,...,n}. Set I =1I\{n}. Then nf # {0} and
[nf,nf]={0}. There exist n+ 1 L;-orbits Cp, Cy,...,C, on 1] satisfying the

closure relation {0} = Co= C; < --- = C, = nj.
We fix a reduced expression

Wiwo = (SpSn—1 -+ 51)(SnSn=1"""52) = * (SnSn—1)Sn-
Let 1 <i<j<n We define f; € 47\4; by
ﬂ,-j.:ai+oc;+1 + ooy 20 4 2040 4 - 4 201 + o,
and set

Yy = e TOTE - TONTT - Tjiir (Fayid),
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where T®) = T,T,_,--- T, for s=1,2,...,n—1 and

c..={‘1'1"‘1_1 (l<i=j<n)
W= (I<i<j<n).
Note that Yj e Uq(“l-)—/f;,-'

LemMma S5.1. For rel, we have

¢jYiry,  (r+1=i<))

ad(F)Yy={ Yo, (i<j=r+1)
{ 0 (otherwise),
Yir1 (r=i<))
ad(E) Yy =4 ;Y1 (<j=r)
0 (otherwise).

PrOOF. Similarly to the proof of Lemma 4.1, we have only to deal with
the cases r+1 =i or r+1=j for F, and r=i or r=j for E,.
Let r+1=i<j. By using (1.1) we have

Fioy=TOT® . TONT T,y Ty iy (Fajict)-
Hence, we obtain
ad(Fi1)Yy = Fi1 Yy — guj+i YiFi
- cl.va(l)T(Z) .o Tn=)) T Ty Toojyin
X (Fn—jri-1Fnjti = qn-jsiFn—jsiFn—ji-1)
= ¢y TOT® . TODT, Ty o Tjriit Tucjri( Fucjiict)
=c¢j Y1,
Let i+1 < j=r+1. By using (1.1) and (1.2) we have
Fi = T(l)(P}) =710 ... TC=)(F,_)
=71 ... 7N Ty Ty Tn(Fu1)
=TW .. TONTT o Tyt TnTno -+ Tocjsira(Facjsin).
Since
Yy=TW. TN, Ty Tosjyiit TnToet -+ - Tojviva(Fucjni)s

we have
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ad(Fj_1) Yy =Fi.1 Y — qYyF;,
=7V ... TODT, Ty - Tojritl
X TyTnoi - Tuejriv2(Fnjriv1 Fucjri — qFu—jriFu_jyiv1)
=TW ... TONT, Ty Tojyii1 TuTuet -+ - Trjgii2 Tnojri(Frojibin1)-
On the other hand, by the braid relations we have
Y 1= y LOR sl ARl oy (IR Tojriv2(Fuojris1)
=TW. . TODNT, T Tojpiii Tn Tt -+ Tajin
X Tn—jri Tnjri=1 +* Tujrt (Fujvivn)
=TW . TN, Ty Tojrint TaTuct - Tacjris2 Tnoji(Facjiinn).

Therefore we obtain ad(Fj_,)Y; = Y; ;j_1.

Assume i+1=j=r+1. Since F_ =T ... T"=)N(F,_;), we have
ad(F_1) Yy = [Fji_1, Y] = TW ... T0IT, [T, (Fey), Faey). On the  other
hand,

Yii1=(q+ g HrOT@ ... Tt=DTH=+D(F)
=(q+ q‘l)T(l)T(Z) ... Tn=)) T, Ty (Fy)
= (@ +g )TOT® .. TEDT(FF2, - gF, \FoF, 1 + *FO\Fy)
=772, .. T("_j)T,,([F,,F,,_l _ q2Fn_1Fan_1]).

Since T, !(F,-1) = F,F,_1 — ¢*F,_1F, (see [4]), the statement holds.
Let r=i<j We have ad(E)Yi; =0 and Y;=cy) ad(F)Yi,
hence

ad(E)) Yy = cij)y jad(Ei) (ad(F}) Yin )
= e (ar — ¢7") Tad(K; — K7V Yigry + ¢y jad(F)(ad () Yien )
=g - g (qnejmic1 — G joic1) Yivi
= Yi,j.
Let i< j=r. We have
ad(E)) Yy = ad(E;)(ad(F)) Yj j+1)

= (g —q;") 'ad(K; — K;") Y41 + ad(Fy) (ad(E)) Y 1)
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If i < j, ad(E;)Y; ;41 =0. Hence we obtain
ad(E)Y;=(g—q") ' (g—q")Yij = Yijn1.
If i=j, we have
ad(Fi)(ad(E) Y; 111) = ad(F) Yipr,i01 = (g + ¢7) Yi i1,
ad(K; — K1) Y01 = Yiip1 — Yiie1 = 0.
Hence we obtain ad(E;)Y; = (g +¢7") Y1 O

PRrOPOSITION 5.2. We have

n—j+i Yim Y (I<ism=))
Gn-m+1 Yim Y (l=i<m<))
Y Yy (I<i<j<m)
YimYy+ (4= q") Yy Yim (I<i<m<j)

Yy Yim=q q¥mY;+q(a—q )Y, Vs (I<i=m<j) (51
Yim Y+ (¢* — ¢ ) YuYy (l=m<i<})
YinYi+(q—q ) (YuYm+qY;Ym) (I<m<i<))

Y Yy +q7'(¢* —q7 )Y} (l=m<i=j)
(Y Yy + (4 = 4 Yi Yo (l<m<i=})

Proor. We shall prove YjjYi, = qu_jsiYmYy; for I <i<m=j by in-
duction on ¢=i—[ For ¢t=1 we have Y, = c;}ad(ﬂ_l))’,j =
c;}! (Fi-1 Yy — qn-j+1Y3Fi-1). Since Fi_j = TOT® . . TO=NT, T\ o Tejyivt -
(Fu—jti-1), we obtain

YiYi—qn i Y; Yy
=~} qnojuil Y Fiot = (@ it Gnejit) YiFiot Y+ Fioy Y7)
= —Ci,jqn—j+iT(l)T(2) .. T=h) TuTn-i - Tyojiiv)
X (Fnz—j+iFn—j+i—l - (qn—j+i+q;_lj+i)Fn—j+iFn—j+i—lFn—j+i+Fn—j+i—1Fnz_j+,')
=0.

Assume that ¢ > 1 and the statement is proved up to r — 1. From Lemma 5.1,
we have [Fj, Y] =ad(F;)Y; =0. By the inductive hypothesis on f, we have
YiYii1; = quj+iY141,;Y;. Therefore we obtain

Y; Yy = Y(ad(Fy) Yig1j) = Yi(Fi Y, — q Y F)

= qnj+i(F1Y141,; — qY111,F1) Yy = Gnj1i Y} Yy
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Let I=i<m<j. We show Y, Yy, = gum+1YimY; by induction on 7=
j—m. For t=1, from the proof of Lemma 5.1 we have

F, = T(l) A T(”_m_l)(Fn_l) = T(Fn—m+1)a

where T=TW ...T=mOT T, 1o TonmiiTnTnet - Tpempris1. If 1 =m, we
have Ymm = ad(Fm) Ym,m+l - [Fm> Ym,m+1] and Ym,m+1 = T(U e T(n—m—l) :
T,(F,-1). Hence we obtain

Yo Youm — Gn Youm Yoy = — Y i1t Fin + (@ + 1) Yo mit Fon Yo mst — @2 Fn Y i)
=70 ... 70T (—FL T, (Fa1)
+ (4 + VFur T, (Foet) Foet — T, (Fac1)Fy)
=TV ... T DT (F)  F — (¢ + 1 + ¢ ) F. FoFy
+(?+ 1+ g )F,\F,F: | — F,F> )
=0.

If I <m, we have Yy, = ad(Fpn) Y. mi1 = FnYim41 — Y1 m1Fy and Y) i1 =
T(Fy—m+i—1). Hence we obtain

Ylj Yim — dn—m+l Y Y[j = _q( Y[?m.HFm - (q + qﬂl) Yl,m+1Fm Yl,m+1 + F,, Y]?m+l)
= _qT(Frzz—m+1—1Fn—m+1 - (q + q_l)Fn—m+1—an—m+l
X Fn-—m+1—l + Fn—m+1Fn2_m+1_1)
=0.

Assume that ¢ > 1 and the statement is proved up to t — 1. If /[ = m, we have
= ad(Fy)Ywj = FnYmj — ¢ ' YijFr. Therefore by the inductive hypothesis
on ¢t we obtain Y, Yy, = m,[Fm, Yo,m+1) = G2 [Fmy Yo ms1) Yomj = Gn Youm Y-
If /<m, we have 0= ad( m) Ymj = [Fm, Ymj]. Hence we obtain YY), =
YI](Fm Yime1 — qYl,m—HFm) = q(Fn Yl‘m+l - qYl,m+1Fm) Yy =qn-mi1¥m Ylj“
Let I<i<j<m. We show Y;Y}, = Y;Y; by induction on t =m — j.
For t =1, we have

(Y, Yim] = ¢ijT([Taeji=1 -+ TnejTn - Tnojivt (Fuejpi), Fazjri-1]),
where T =TW ... T(=/=DT,... T, ;,;. By the braid relations, we have
Toejriot TnejTn - Tnojyivt (Fujii) = T+ Tuojyit Tnojii1 -+ - Tnj(Fuejti)

=Ty Tn—j+i+1 (Fn—j+i)-
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Since Fy_jri—1 = Ty Tnejyivi (Fu—jsi—1) and [F_jii, Fuojpi—1] = 0, we obtain
[Yy, Yim) =0 for 1=1. Assume that > 1 and the statement is proved up to
t—1. Since Yj; = ad(F)Y; ;.1 and [F}, Y},) = ad(Fj) Ysm = 0, by the inductive
hypothesis on ¢ we obtain Y;; Yy, = Y, ¥y

Let/<i<m<j. Weprove [Yy, Yi] = (¢ — g ')Y;Yum by the induction
on t=i—1. When t=1, we have Y, =ad(Fi_1)Y; = F_1 Y — qYiF;- for
s=m,j. Since Y;jYi, =qYimY; and Y Y = Y} Y;,, we obtain

Yy, Yim) = [ Yy, Fic1 Yim — qYimFio1]
= qYim(Fio1 Yy — qYyFim1) — ¢ (Fie1 Yy — qY3Fim1) Yim
= (q - q_l) Ylj Yim-

Assume that 7 > 1 and the statement is proved up to t—1. By Lemma 5.1
we have [Fj, Y;] =0 for s =m,j. Hence we have

(Y, Yim| =Yy, ad(F)) Yis1,m) = [ Yy, F1 Y141,m = q Y141, mFl]
=F[Yy, Yie1,ml—al Yy, Yier,mlFr=(q—q" ") (F Y1, Yin—qYii1,; YimF))
=(q=4")(FYir1,,—qYi01,,F) Yin=(g—q ") (2d(F)) Yi11,)) Yim
=(q=97") Yy Yim.

Similarly, we can prove Y Y}, = qY,, Y 4+ q(q — q‘l)Ylj Yy forl<i=m<j.

Let I<m<i<j. We prove the statement by induction on t=1i—m.
We have [YI] Ylm] = [)’lj7ad(Fm) Yl,m+l] = [Yzj, Fy Yl,m+1 - qYI,m+1Fm]~ If 1=
1, Y =FnYj—qYjF, and Y;Y;=qY;Y;+q(q—q")Y;Ys Therefore
[Yy, Yim) is equal to

qYi(FnYy — qYiFn) — 4 (Fn Y5 — qY5Fn) Vi
+ g Fu(Yy Yy — qYi Yy) — q(Yy Vi — qYi Yy) Fo
= qYi Y — g Yo Yi+ (g — ¢ ) (Fn Yy Yi — ¢ Yy YiF).
Since [Fp, Y| = ad(F,)Y; =0, we have
(Y5, Yin] = 4YiYoms — 4 Yo Yi+ (g = ¢*) Yy (Fn Yis — 4* YiFy)
=qYiYmi—q 'Y Yi+ (q—q " )g+q )Y Yo
=(q— 4 ") (Y Ym + qY; Yomi).

We have used [V, Y] = (g —q7") Y)Y, for the last step. Assume that ¢ > 1
and the statement is proved up to t—1. By [F,, Y;] =0 = [F,, Y] for s=
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i, j, we obtain

(Y, Yim] = Fun[ Yy, Yyms1] — q[Yy, Yimi1]Fm
= (= ¢ ") Fn(YiYmrrj + qYy Yme1,i) — 4(Yi Yms1,j + 4 Y5 Yoni1, 1) Fn)
=(q = ¢ Y (Yi(Fn Ymr1,j — 4Yms1,;Fm) + QY5 (Fon Yomr1,i — 9 Yms1,iFm))
=(q—q ") (YuYm + qY; V).

Here we have used the inductive hypothesis for the second equality.

Let I=m<i<j. We have [Yy, Yy] = Yy, [F1, Y1, 141]]. Assume i— /=
1. Then we have Y;=F,Y; —qY;F; and Y;Y; =qY;Y;+4(q—q ") Y; Y.
Hence we have

(Yg, Yim) = 4" Fi( Y5 Yi — Y5 Yy) — (Y3 Y — q Y5 Yy) Fy
—q ' (FYy — qYyF)Yi + Yu(Fi Yy — qYFy)
=(q— ¢ ) FY;Yi— qY;YiF) — g Y Y5+ Yy Yy
=(q— g "\FY;Yi— qY; YaF).
By Lemma 5.1 we have F;Y; — ¢~ 'Y;F; = ad(F;)Y; =0. Hence we obtain
(Y5, Yiu) = (a— ¢ g Y(FiYi — ¢* YaFy) = (g — ¢~ ")q ' Y(ad(F)) Yy)
=(q-q g (g+q ") YyYs

Assume i—/>1, then we have [Fj,Y;]=0. By the preceding paragraph,
Yy, Yii1] = (9 — g (Y Y41+ qY;iYi11,). Therefore we obtain

(Y, Yim) = [F1, [ Yy, Yi51)) = (g — ¢ F, Y Yiry + q Yy Yien, )
= (q—q7 ") (g Yu(ad(F) Yi1;) + Yy(ad(F) Yiia,4))
=(q—-qg Vg " YuYy+ YY) = (¢* — ¢ H) Y Yy

Let I<m<i=j. We show the statement by induction on t=1i— m.
Assume ¢t =1. We have Y;Y; = q?Y;Y;, hence [Yy, Y| is equal to

(Yit, Fn Yii — qYiF) = qYi(Fn Yii — ¢* YiF) — ¢ 2 (Fn Yii — ¢* YiFy) Y
= qYu(ad(Fn) Ya) — ¢ *(ad(Fy) Yi) Y
=(q+ g )qYuYmi — 42 Yo Vi)

= (¢’ -4 Y Y.
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Assume that 7 > 1 and the statement is proved up to t — 1. By Lemma 5.1 we
have (F,, Y4] =0 for s=1,i. Therefore we obtain

(Yii, Yim) = [Yit, Fn Y1 = 4Y1,m1Fm] = Fnl Y, Yo, mi1] — [ Yiis Yi,me1]Fm
= (4" ~ ¢ ) (En YiYms1,i = q¥i Your, iFon)
=(¢* = ¢ ) Yi(FnYmi1,i — 9 Ymi1,iFm)
= (4" = ¢72) Yu(ad(F) Yns1,)) = (¢* = ¢7%) Yii Yomi-

Here we have used the inductive hypothesis on ¢ for the third equality.

Let/=m<i=j. Since Yy =ad(F)Y; 41 = [FI, Y1141], we have [Yj;, Yyl
=Y, [Fi, Y1), Ifi—1=1, then Y;Y; 11 = ¢?Y; 1Yy Hence, [Yy, Yy is
equal to

Yi(Fi Y — ¢*YuFy) — q 2(F1 Yy — ¢* YuF1) Y1 141
= Yi(ad(F) ;) — ¢ 2(ad(F)) Yi) Yy
=(@q+q )1 -g)Yi=q"*-q)Y}

If i—/>1, we have [F}, Y;] =ad(F;)Y; =0. From the preceding paragraph
we have [Y, ¥;141) = (¢* — ¢72) Y4 Y1y, hence

(Yi, Yu) = [F1, (Y, Yiia]] = (¢ — ¢ 2 [Fp, YiYign, ]
=(* - ¢ (F Yy~ q " YuiF) Yier,i + ¢ Yu(F Y, — qYie1,iF))
= (¢* = ¢ 2)((ad(F) Y3) Yii1,i + ¢~ Yi(ad(F) Yig1,1))
= (¢ -9 'Y O
For j>i we define Y; by Y; =¢%Y;. For p=0,1,...,n—1 we set

- —1\/ —
Uo = (=4 )Y o) Va0 Yortio(pr) € Up(y) e

5E€Smm —1 ﬂu
+ 2 l(o) Y -
lﬁp - (_q ) )’l] la(l) Kz’lﬂ(Z) I,l!’*'h’l’(l’-*-l) € Uq(nI )_ __oﬁn—m—l
o€ Sy =

where ii=n—p—1+s.
ProposITION 5.3. Let rel. For p=0,1,...,n—1, we have

ad(Fr)'//; =0, ad(Er)‘//;- =

In order to prove Proposition 5.3 we need the following lemma.
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Lemma 54. Let t=1,2,...,p and a;2,a43,...,a4p41 €{1,2,...,p+1}.
We set A= {o€Sy1|o(t)<t—1,0(t+1)>t0(s)=a(s>t+1)}. Forl<
i1 <ip<--- <ipy1 <n, we have

—1y/
Z(_q 1) @ Yilyia(l e Yi, (-1) ),iv(l)viv(t+l) =0. (5.2)

oceA

ProOr. We prove the statement by induction on z. Set
A(t;aiy2, ... ap41) = {0 €Sps1|a(t) <t —1,0(t+1) > t,0(s) = as(s > t+ 1)},

—14/
f(t, ‘7) = (—q ) (@) Yil,ia(l) T Yiz-l,ia(,—l) Yia(l)viﬂ(Hl)’

and for a subset B of Spi

B) = Zf(t,O’).

oceB

For t =1 we have A(l;as,...,ap4+1) = &, hence the statement holds.
For 1 =2 we have f(2,4(2;as,...,ap11)) = f(2,41) + f(2,42), where

A ={oeAQ2;a4,...,a,11) |1 <a(l) <a(3)},

A, ={o€ A(2;as,...,a541)|1 < 0(3) < a(1)}.
For o€ A, set 7 =0(1,3), then 7€ 4;, I(r) =I(6) — 1 and

Yi iy Yir iy = Y100 Yirioyy = 9 Y0 iy Yt iz -

Hence we obtain f(2,4;) = —f(2,4:), and the statement holds.
Assume that ¢ > 2 and the statement is proved up to t— 1. We have

;
f(t,A(t;aua, .. aps1)) = > (1, B))
=1
where B; is the subset of A(; a,+2,...,ap+1) given by

B = {ola(t

<og(t+1)<a(t—1)},
<o(t-1)<o(t+1)},
yot—1)<t—1},

B; = {ola(z

B; = {o|a(t

Bs ={olo(t) <t—1,t<o(t—1)<a(t+1)},

={olo(t) <o(t—1)<t-1},

(0
()
(1)
By={olo(t) <t—1,t<o(t+1)<a(t—1)},
(1)
(1)
(

B; ={olo(t—1) <o(t) <t—1}.
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For o€ By, set t=0(t—1,¢+1). Then we have 7€ By, /() =I/(o)+ 1 and

_lY

be=1, g(1-1)

_IY

Io(r)s bo(e+1)

Y:

I-1,Ig(—1)

Y:

Iy Be(et1) *

Y,

Io(t)s la(:+|)

Y:

b1, ia(r—l)

Hence we obtain f(t,By) =, p, f(t,0) = =3 5 f(t,7) = —f(8, B1).
Let 0 e B;. We set s =0(t+ 1), then o€ A(t —1;5,a:42,...,a541) and

-2 -2
f( ) Yll,la(n) o Yil—Zyia(t—Z) Yia(z-miz-l Yi.y(,),is =49 f(t - 17‘7) Yl}-l,is'

Hence we obtain

p+1

f(t,B3) =q72) " f(t=1,C1(5) Yi i

s=t

where Ci(s) = {o € A(t — 1;5,a142,...,ap11) |0(t) =t — 1}

For o€ By we set t=0(t—1,¢) and p=1(t,t+1). Then we have e
A(t—158,a142,...,ap11), and pe A(t — 1;r,a142,...,0ap11), Where s =a(t+ 1)
and r=o0(t—1). Since /(7)) =1(o) — 1, I(p) =I(0) — 2 and

A A -Y . . —g Yy . .
YlH,la(z-l) Y'a(:)»la(m) - Yla(r),la(m) lel—lv‘y(1~1) + (q q )Yla(r)»’a(l—l) Yl:—l,la(m)

= )/ip(t—l)»ip(t) YiH,ir + (q - qFl) Yl}(:-l),l}(;) )’it—l»is’
we have
f(t) J) = q_zf(t - lap) Yl}-],ir + (q-Z - l)f(t - 17‘[) }’ir—lyis'

Hence we have

p+l p+l1
f(t,Bs) =72 f(t—1,B{(5)Yi_,; + Zf (t=1,B}(s)) Yi_,.i,
s=t

where  Bj(s) = {o € A(t = 1;5,a42,...,ap11)[t < 0(t) <s} and  Bj(s) =
{oed(t—1;s,a12,...,ap41)|s < o(f)}. Similarly, for ce Bs we have pe
Bi(s) and f(t,0) = f(t—1,p)Y;_, i, where s =o(t—1). Therefore we have

p+1

t BS Zf -1 B2 ’r 1yds*

Hence we obtain

p+1

f(t,Bs) + f(t,Bs) = g2 Y f(1=1,Co(9) Yip i

s=t

where Cy(s) = {0 € A(t — 1;5,a142, ... ,ap41) |t < (1)} = Bj(s) U Bj(s) (disjoint).
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LetoeBs. Wesett=o(t,t+1),p=1(t—1,t+1),s=0(t—1) and r =
o(f). Then we have pe A(t — 155,a142,...,ap41), T€ A(t — I;r a1, .. ., Gpy1),
lp) =l(o)+2, I(z)=1l(a)+1, and f(t,0)=¢*f(t—1L,p) Y+ (¢*—1)f-
(t—1,7)Y;_, ;. Hence we obtain

-2 =2
f(t,Bﬁ) = qZZf(t_ l’Bg(s))},iI—lyis + (q2 - I)Zf(t_ l,Bi(S))Yi,_his,
s=1 r=1

where Bi(s) = {o € A(t — 1;5,a112,...,ap41) | s < 0(t — 1), < a(t)} and By(s) =
{o€eA(t—1;s,ai42,...,ap41)|0(t — 1) < s,t < 0o(t)}. Similarly, for o€ B; we
have p e By(s) and f(t,0) = f(t—1,p)Y;_, i, where s=o0(t—1). Hence we
have

t—1
f(t’B7) = Zf(t_ l’BA,l(s))Yi:-l,is'
s=1

We set C3(s) = {o€ A(t — 1;8,a142,...,ap41) |t < 0()}. Since Cs(s) = Bi(s)U
B;(s) (disjoint) and Bj(t—1) = A(t—1;¢t —1,a142,...,8p41), We oObtain

=2
f(ta B6) +f(tv B7) = qZZf(t -1, C3(S))Yfr—his +f(t—' l’Btlt(t- 1)) },ir—lyirvl

s=1

=2
=¢*) f(t—1,G(9)) Y, s
s=1
We have used the inductive hypothesis on ¢ for the last step.
Therefore we obtain

p+1

(A, .. ap) =72 Y (ft=1,C1(5)) + f(t = 1,Ca(s)) Vi i,

s=t
-2
F@SF-1,Co(5) Yy
s=1

Since A(t—1;5,a142,...,ap41) = C1(s) U Ca(s) (disjoint), by the inductive
hypothesis on t, we have S(—=1,Ci(s)) + f(t = 1,Cq(s)) =
f(t—1,A(t—1;5,a142,...,8541)) =0. Hence we have only to show
1St =1,G3(9) Yiyi = 0.
We set C(2s)={oe€d(t—1;s,a12,...,ap11)|0(t) =t —1,0(t = 1) Z s}
for 1 <s<t—2. Then we have A(t— 1;s,a42,...,ap41) = C(>s)UC(<s)U
C3(s) (disjoint). By using inductive hypothesis on ¢, we have

ft=1,G(s) = =f(1 - 1,C(>5)) - f(t = 1,C(<9)).
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For o e C(<s) set t=g(¢t—1,t+1) and r=0a(t — 1) Then we have /(1) =
l(6) +1 and te€ C(>r). Smce Yoy iy Yieris =47 YYiivg Yiersis We have
f(t=107Y, ., =f(t—-1,1)7Y,, ;. Therefore we obtain

=2

Zfr—l C3(8)Yi, i, = — Zf(r 1,C(>9)) Y, th 1,C(<9) Y
=1 s=1 =1
t—2 -2

= f-1, C(>s>>Y,,,,,+Zfz—1 C>r)Yi
s=1 =1

=0. O

Let us show Proposition 5.3.

By Lemma 5.1, it is clear that ad(F,)y, =0 for r > p and ad(E,)l//; =
for r <n—p.

Let r < p. We shall show ad(F,)y, =0. We set for g€ Sp1) and ye

U,(ng)
. . —1\ /(o -
90,1, 3,02) = (=4 O K Y o1y Yy o0 K 9 0+ Yot o(pe1)s

and for a subset 4 of S,

g(A7j11y7j2) = ZQ(G,J],)’,]})-

geA
We have

p+l1

ad(F)W, =Y g(Spr1,j — 1,ad(F) ) o), + 1)

Jj=i

=(q+q )g(A,r, Yypp1,r +2) +q72g(A2, 1, Yy pyr +2)

+g(B7r, Yr,cr(r+1),r+2) + Z g(C(j)aj_ 1, Yj,r,j"' 1)
J#r+1

where A; = {olo(r+1)=r+1}, Ay ={olo(r+1)=r}, B={olo(r+1) #r
r+ 1}, and C(j) = {o]o(j) =r+ 1}.

Let ce 4;. If o(r)=r+1, we have I(o) =I(r) + 1 and Y, ,hK; 'Y, =
q* Y,,,(,)K,‘ 'Y, 41, where 7= a(r,r+ 1). On the other hand, we have
YooK Yo = Yooy Yok i o) <7=1, and YooK Yy =
q Y 1), a(r+1) Y,K ! if a(r) > r+2. Therefore we obtain

q_ g(A27ry Yrrar+2) = _qg(A{?ry Yr,r+1ar+2)
+q729(Ayr — LK Yo o0+1) YK 7 4+ 2)
+@*g(A3,r = LK Yo o000 Yo K L r 4 2),
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where A ={olo(r+1)=r+1,0(r)=r}, A;={olo(r+1)=r,0(r)<r—1}
and 4} = {alo(r+1) =r,a(r) > r+2}.

For 0 e B set t=oa(r,r +1). We define subsets B; (1 < j<10) of B as
follows:

By ={o(r) <o(r+1) <r}, By ={o(r+1) <oa(r) <r},
By={o(r)<r<r+1<o(r+1)}, By={o(r+1)<r<r+1<oa(r)},
Bs={r+1<a(r)<o(r+1)}, Bs={r+1<o(r+1)<a(r)},

By ={o(r+1) <o(r) =r}, By ={o(r)=r<r+1<oa(r+1)}

By={o(r+1)<r<r+1=0a(r)}, Bi={r+1=0a(r)<a(r+1)}.
If o€ By, we have t€ B,, I(tr) =I(0s) + 1, and
Yo K Yropity = 4 Ve o) K Yy ity
Therefore we obtain
9B, 1, Yy ora1)s 7 +2) = =g(Ba, 1, Yy o1y, T+ 2).
Similarly, we have
9(Bs, 1, Yy ors1), 7 +2) = —g(Be, 1, Yy (1), 7 + 2),
9(Ba, 1, Yy orp1), ¥ +2) = —g(Bs, 1, Yy o(ry1), ¥ + 2)
+(q72 = )g(Bs,r — L, K, Yoy, i) Yo K 7+ 2),
9(B1, 1, Yy ori1)s T +2) = —g(A5, 1 — LK, Yoy o1y YKL 7+ 2),
9(Bs, 1, Y, or41),F +2) = —q%g(A5,r — LK Yo 1(r41) YoK 1 r+2),
9(Bo, 1, Yy ors1)s 7 +2) = —qg(Ay,1, Yo pi1,7 +2)
+ (g7 = Dg(Ah,r = 1K Yoi ooy YK 7 4 2),
9(Bo,7, Yo o(rr1)s ¥ +2) = —qg(As, 1, Yr ri1,7 +2),

where A ={tjt(r)<r<r+1=1(r+1)} and Ai={rlt(r+1)=r+1<
7(r)}.

Here, we set A(r) = {olo(r) <r<a(r+1)}. Since A; = A]UA;UA;
(disjoint) and A(r) = A;UB3U 4, (disjoint), we obtain

q_zg(AZ,r’ Y, r+2)+g(B,r, Yr,a(r+1),r+2)
=—q9(A1,r, Yy 1,7 +2)
+ (q_z - l)g(A(r)’r - 1,Kr Yo’(r),a(r+1) YrrKr_lvr+2)~
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For j#k we set C(j,k)={olo(j)=r+1,0(k)=r}. Let o€ C(j,k),
and set 1 =o0(j,k) € C(k j). fk=r+1and j<r, we have I(t) =I(0) —
and Kr Jsr j+1 o(j+1) " Yr,a(r) Yr+l,cr(r+1) = Yj,r(j) Yj+1,r(j+1) T Yr,1'(r)1<r_l Yr,r+]-
Hence we obtain

(C(J’r+ l) ] - l h] + 1) - —q_lg(C(r+ l’j)vr’ Yr,r+17r+2)'
Similarly, we obtain for j >r+2
g(CUr+1),j— L, Y,j+1)=—q"g(Clr+1,j),r, Yrye1,r +2).

If 1 <j<k<r we have l() (o) -1 andK Y Yiiio0+1) Ye—1,0k-1) *
Yiott) = 4Yj () Yier,2(j+1) "+ Yot (k= 1K Yk,r. Therefore we obtain

Z g(C(j’k)aj'— 1, Yj,r’j+ 1) =- Z g(C(k,j),k— 1, Yk,r7k+ 1)

I<j<k<r 1<j<k<r

Similarly, we have

> 9(CUK), =LY+ ) == DY g(Clk, j), k=1, Yir, k+1),
1<j<r I<j<r
r+2<k<p+1 r+2<k<p+l
> g(CUK) -1, Yj+ == Y g(Clk,j), k=1, Y, k+1),
r+2<j<k<p+l1 r+2<j<k<p+1

Therefore we obtain

> 9(CULI =1L, j+1) =) g(C(,k),j =1, Y, j+ 1)

j#r+1 J#r+l
/ k#j

== > g(Clr+1,)),r, Y pi1,r +2)
Jj#Er+l1

=—q 'g(4d1,r, Y, p11,7 +2).

Here we have used for the last step that 4; = Uj 21 C(r+1,j) (disjoint).
Hence we have

ad(F )y, = (7% — Dg(A(r),r — 1L, K Yo o(r41) Ve K 1+ 2).
We can write

g(A(r),r - 1, K, Ya(r),a(r+l)) = Z K. f(r, A/(r)) Yr‘rKr_l Yii2a, Yp+l,a,,+|>

Ar 42y Ap+1

where A'(r) = {oeSpu|o(r)<r—1, a(r+1)=r, a(s) = a(s>r+1)}.
Hence, by Lemma 5.4 we obtain ad(F,)y, =0 for r < p.
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Letr>n—pand i;=n— p—1+4s. Then there exists ¢ such that r = i,.
Similarly to the case r < p for F, we have

ad(Eh)l//; = —q Z f(t A lH—Iv’H—tKl, : Yi:+2,ia,+2 e Yip+1,iap+, Kil'
az+2 <y Ap+1
By Lemma 5.4 we obtain ad(E; )y, = 0. O

We denote ¥, ; =V, by ¢,_;. By Lemma 5.1 and Proposition 5.3 we
have the following:

PROPOSITION 5.5. C(q)¥,—y and 31, ;<,C(q)Yy are irreducible highest
weight Uy (I;)-modules.

The highest weight of C(q)y,_; coincides with that of .#"(C,—;). Hence,
Clq),_; is a quantum deformation of .#"(C,_;). By Theorem 1.2 we have
Uy(n7 Wy = ¥n_1Ug(n7), and this two sided ideal is a quantum deformation
of the defining ideal ( Cu-1) of the closure of C,_;. Similarly, Y~ C(q)Yy is
the quantum deformation of .#!(Cp). Moreover, the generator y, ; of the
quantum deformation of #(C,_;) is the quantum deformation of the basic
relative invariant.

Therefore we have the following.

THEOREM 5.6. (i) A quantum deformation A4(nf) of the coordinate algebra
A(nf) of nf is generated by Y; (1 <i< j<n) satisfying the fundamental
relations (5.1).

(i) The action of Uy(l;) on Ay(nj) is given as follows. For rely and
sel,

Kr . YU =q (!X,,ﬂ,,) Yl],
( Yir1) (s=i<j)
E..Y: = },i,j+1 (l < ] = S)
’ (@+q )Y (i=j=y9)
0 (otherwise),
Yi1, (s+1=i<))
F..Y:— (g+q7")Yio, (s+1=i=j)
C Yi j-1 (i<j=s+1)
0 (otherwise)

(iii) y,_, is the quantum deformation of the basic relative invariant.

We also obtain the explicit description of quantum deformation of .#2(C)
as follows. Letl1<i <ip<n,1<j, <j, <nsatisfying i; < j;,ir < j,. Set
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b { i1 Yio iy = Y, jy Yo, jy (h <j1 <k <))
v T2 Yilsf\ Yiz»fz - q_l Yl'hfz Yi2,h (OtherWise)'
Then we can show that Y C(g) ;1 ; is an irreducible highest weight U,(l;)-
1 J2
n—1

module with highest weight vector w1

module is a quantum deformation of #2(C}).

For 2 < p<n—2, we have not yet obtained the explicit description of
the quantum deformation of #7*!(C,) as in the case p=0,1,n—1. The
difficulty mainly comes from the fact that the I;-module #7*!(C,) is not a
multiplicity free h-module. It would be an interesting problem to define a
quantum deformation of the non-principal minors of a symmetric matrix, and
to develop an analogue of the classical invariant theory for symmetric matrices.

n’ (we omit the proof). This
n
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