Biharmonic extensions in Riemannian manifolds

I. BAJUNAID and V. ANANDAM (Received June 29, 1998)

ABSTRACT. We give a characterization of the hyperbolic Riemannian manifolds R in which for any biharmonic function b outside a compact set, there exists a biharmonic function B in R such that B-b is bounded outside a compact set.

1. Introduction

Let R be a hyperbolic Riemannian manifold. It is known that given a harmonic function h outside a compact set, there always exists a harmonic function H in R such that H-h is bounded outside a compact set. One method of proof of this is via the principal functions [11] making use of the potentials >0 in R, a potential in R being a superharmonic function $u \ge 0$ in R such that if h is a harmonic function satisfying $0 \le h \le u$, then $h \equiv 0$. To solve a similar problem for the biharmonic functions in R, Chung [8] uses a variant of these principal functions. But the result is not satisfactory.

We prove in this note that a biharmonic extension in R is possible if and only if R satisfies the following condition: There exist potentials p > 0 and q > 0 in R such that $\Delta q = p$ where $\Delta = -\sum_{i,j} g^{ij} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$ is the Laplace-Beltrami operator, and q is bounded outside a compact set. We remark that this condition is verified in \mathbf{R}^n , $n \ge 5$.

The proof of this biharmonic extension depends on a lemma giving the representation of a biharmonic function defined outside a compact set in R by means of the difference of some special potentials in R.

2. Preliminaries

Let R be an oriented Riemannian manifold of dimension $n \ge 2$ with local parameters $x = (x^1, ..., x^n)$ and a C^{∞} metric tensor g_{ij} such that $g_{ij}x^ix^j$ is positive definite. We denote the volume element by $dx = \sqrt{\det(g_{ij})} dx^1 \cdots dx^n$;

²⁰⁰⁰ Mathematics subject classification. 31C12

Key words and phrases. Tapered manifold; Biharmonic extension.

 $\Delta = d\delta + \delta d$ is the Laplace-Beltrami operator which, acting on a function f, gives $\Delta f = -\text{div}$ grad f. R is said to be hyperbolic or parabolic depending on the existence or the non-existence of a potential >0 on R respectively.

LEMMA 1. Given any locally dx-integrable function f on an open set ω in R, there exists a δ -superharmonic function g on ω (that is, the difference of two superharmonic functions) such that $\Delta g = f$; in this case, g is said to be generated by f.

PROOF. This can be deduced from Theorem 4.2 [4].

For an outerregular compact set K in R (that is, if ω is a relatively compact open set containing K, every point of ∂K is regular for the Dirichlet solution in $\omega \setminus K$), let $B_K f$ stand for the Dirichlet solution in $R \setminus K$ with boundary values f on ∂K and 0 at the point at infinity of R.

Terminology: The term "near infinity" is used to mean a set that is the complement of a compact set in R.

DEFINITION 2. A biharmonic function b (that is, $\Delta^2 b = 0$) defined near infinity in R is said to be regular at infinity, if there exists an outerregular compact set K such that $B_K(\Delta b) = \Delta b$ in $R \setminus K$.

REMARK 1. a) In a hyperbolic manifold R, $B_K h = h$ in $R \setminus K$ if and only if there exists a Green potential p in R such that $|h| \le p$ near infinity; and in a parabolic manifold $B_K h = h$ if and only if h is bounded near infinity.

b) In a hyperbolic manifold R, given a biharmonic function b near infinity, it is always possible (using Lemma 1 above and Remark 23 [2]) to find a biharmonic function B in R such that (B-b) is regular at infinity; however (B-b) may not be bounded near infinity (see Theorem 13). For example, if b(x) = |x| in $|x| \ge 1$ in \mathbb{R}^3 , we can take $B(x) \equiv 0$. In view of this example, the following proposition is interesting.

PROPOSITION 3. Let b be a biharmonic function defined near infinity in \mathbf{R}^n , $n \geq 5$. If b is regular at infinity, then there exists a harmonic function H in \mathbf{R}^n such that $\lim_{|x| \to \infty} [b(x) - H(x)] = 0$.

PROOF. Since b is regular at infinity, for some a if $K = \{x : |x| \le a\}$, $B_a(\Delta b) = B_K(\Delta b) = \Delta b$ in |x| > a. Since $B_K 1 = \left(\frac{a}{|x|}\right)^{n-2}$ in |x| > a, if $m = \max_{\partial K} |\Delta b|$, we see that $|\Delta b| \le m \left(\frac{a}{|x|}\right)^{n-2} = \frac{ma^{n-2}}{2(n-4)} \Delta(|x|^{4-n})$ in |x| > a. This

means that there exist in |x| > a, a superharmonic function s(x) and a sub-harmonic function t(x) such that $s(x) = b(x) + A|x|^{4-n}$ where $A = \frac{ma^{n-2}}{2(n-4)} > 0$ and $t(x) = b(x) - A|x|^{4-n}$.

Since $t(x) \le s(x)$, there exists a harmonic function h(x) in |x| > a such that $t(x) \le h(x) \le s(x)$. Then, if r > a (following Remark 23 [2]), there exists a harmonic function H(x) in \mathbb{R}^n such that $|H - h| \le \alpha B_r 1$ in $|x| \ge r$ for some constant α . Consequently

$$|b - H| \le |b - h| + |H - h| \text{ if } |x| > r$$

$$\le A|x|^{4-n} + \alpha \left(\frac{r}{|x|}\right)^{n-2}$$

and hence $\lim_{|x|\to\infty} [b(x)-H(x)]=0$. Hence the proposition holds.

For a set A in R, R_1^A stands for the infimum of the family of positive superharmonic functions s on R such that $s \ge 1$ on A; let $\widehat{R_1^A}(x) = \liminf_{y \to x} R_1^A(y)$.

DEFINITION 4. A hyperbolic Riemannian manifold R is said to be a bipotential manifold if there exist potentials p > 0 and q > 0 in R such that $\Delta q = p$; q is called a bipotential.

Using the integral representation of the potentials in R with respect to the Green kernel, or as in [6], we can prove the following:

THEOREM 5. In a hyperbolic Riemannian manifold R, the following are equivalent:

- 1) R is a bipotential manifold.
- 2) For some (and hence any) nonpolar compact set A, there exists a potential q > 0 in R such that $\Delta q = \widehat{R_1}^A$.
- 3) For any potential p > 0 in R with compact harmonic support (that is, p is a potential in R and is harmonic outside a compact set in R), there exists a potential q > 0 in R such that $\Delta q = p$.
- 4) For some (and hence any) y in R, if $G_y(x)$ is the Green function with pole $\{y\}$, there exists a bipotential $Q_y(x)$ called the biharmonic Green function with pole $\{y\}$, such that $\Delta Q_y(x) = G_y(x)$ in R.

Suppose now that R is a parabolic Riemannian manifold. Fix $x_0 \in R$. Let ω_n be a fixed sequence of regular domains in R such that $x_0 \in \omega_n \subset \overline{\omega_n} \subset \omega_{n+1}$ and $R = \bigcup \omega_n$. Let $D_n f$ denote the Dirichlet solution in ω_n with boundary values f on $\partial \omega_n$. Let $E(x) = E(x_0, x)$ be a fixed Evans function for R (see Nakai [9] and Sario et al [12] p. 369).

DEFINITION 6. A superharmonic function s in a parabolic Riemannian manifold R is called a pseudo-potential if for some constant α , $D_n(s-\alpha E)$ tends locally uniformly to 0 when $n \to \infty$.

Note: It can be proved in this case (see [3]) that every superharmonic function with compact harmonic support in R is the unique sum of a pseudopotential and a harmonic function in R.

3. Representation of biharmonic functions near infinity

In this section, we give a method to express a given biharmonic function near infinity in a Riemannian manifold R, in terms of globally defined potentials (or pseudo-potentials) and biharmonic functions in R.

LEMMA 7. Let h be a harmonic function defined outside a compact set A in a Riemannian manifold R (hyperbolic or parabolic). Then there exist two finite continuous superharmonic functions s_1 and s_2 with compact harmonic support in R such that $h(x) = s_1(x) - s_2(x)$ near infinity.

PROOF. Let K be a compact set and ω a relatively compact domain such that $A \subset K^0 \subset K \subset \omega$ and $\omega \backslash K$ is a regular open set for the Dirichlet problem. For $y \in K^0$, let $s_y(x)$ denote a superharmonic function in R with harmonic point support at $\{y\}$.

Let Df denote the Dirichlet solution in ω with boundary values f on $\partial \omega$. Since $s_y > Ds_y$ in ω , it is possible to find $\alpha \ge 0$ such that $h - Dh \ge -\alpha(s_y - Ds_y)$ on ∂K . The minimum principle then implies that this inequality is valid on $\omega \setminus K$.

Then

$$s_1 = \begin{cases} h + \alpha s_y & \text{in } R \setminus \omega \\ D(h + \alpha s_y) & \text{in } \omega \end{cases}$$

is a continuous superharmonic function with compact harmonic support in R and

$$s_2 = \begin{cases} \alpha s_y & \text{in } R \backslash \omega \\ D(\alpha s_y) & \text{in } \omega \end{cases}$$

is also a continuous superharmonic function with compact harmonic support in R.

Finally
$$h(x) = s_1(x) - s_2(x)$$
 in $R \setminus \omega$.

Notation: Let \wp_0 denote the cone of finite continuous potentials with compact harmonic support in R if it is hyperbolic (resp. the cone of continuous

pseudo-potentials with compact harmonic support if R is parabolic). Let \Im_0 denote the cone of functions in R generated (Lemma 1) by the elements of \wp_0 ; that is, $s \in \Im_0$ if and only if $\Delta s \in \wp_0$. Let β denote the set of all biharmonic functions in R. Finally, let \pounds_0 be the smallest vector space containing \wp_0 , \Im_0 and β .

THEOREM 8. Let b be a biharmonic function defined near infinity in a Riemannian manifold R. Then there exists some $u \in \pounds_0$ such that u = b near infinity.

PROOF. Since Δb is harmonic outside a compact set, by Lemma 7, $\Delta b = s_1(x) - s_2(x)$ near infinity. Since $s_1(x)$ and $s_2(x)$ are finite continuous superharmonic functions with compact harmonic support, we can represent each of them as the unique sum of a continuous potential if R is hyperbolic (resp. a pseudo-potential if R is parabolic) and a harmonic function in R.

Thus, $\Delta b = u_1 - u_2 + h$ near infinity, where $u_i \in \wp_0$. Let $t_i \in \Im_0$ be generated by u_i and $B \in \beta$ be generated by h. Consequently, $b = t_1 - t_2 + B + v$ near infinity where v is a harmonic function outside a compact set in R and hence by Lemma 7, $v = p_1 - p_2 + H$, where $p_i \in \wp_0$ and H is harmonic in R.

Thus, outside a compact set in R, $b = (t_1 - t_2) + (p_1 - p_2) + (B + H)$ which is an element in £₀.

REMARK 2. a) In the above theorem, suppose that R is a bipotential manifold. Then a biharmonic function b near infinity can be represented as $b=(q_1-q_2)+(p_1-p_2)+B$ where q_i , Δq_i and p_i are potentials in R, with the finite continuous functions Δq_i and p_i having compact harmonic supports and B is a uniquely determined biharmonic function in R. For, in a bipotential Riemannian manifold R, if p is a potential with compact harmonic support, there exists a potential q such that $\Delta q=p$ (Theorem 5).

To show that B is unique: Suppose $(q_1-q_2)+(p_1-p_2)+B=(q_1'-q_2')+(p_1'-p_2')+B'$ outside a compact set. Then near infinity, $\Delta(B-B')=\Delta(q_1'+q_2)-\Delta(q_1+q_2')$; in this equality the right side is the difference of two potentials and the left side is a harmonic function in R. Hence $\Delta(B-B')=0$; that is B'=B+h where h is harmonic in R. Then again, near infinity h is the difference of two potentials in R and hence $h\equiv 0$.

b) We can easily deduce from the above theorem that in a hyperbolic Riemannian manifold R, given a biharmonic function b outside a compact set, there exists a biharmonic function B in R such that b-B is bounded near infinity if and only if for any given $t \in \mathcal{F}_0$, there exists a biharmonic function u on R such that t+u is bounded near infinity.

In the next section, we give a sufficient condition expressed in different equivalent forms on R so that such a biharmonic extension is possible on R.

4. Biharmonic extension in a manifold

In this section, we study the manifolds R with the following property: Given a biharmonic function b near infinity in R, there exists a biharmonic function B in R such that B-b is bounded near infinity.

DEFINITION 9. A hyperbolic manifold R is said to be tapered if there exist potentials p and q, q being bounded outside a compact set such that $\Delta q = p > 0$ in R

THEOREM 10. In a hyperbolic Riemannian manifold R, the following are equivalent:

- 1) There exists a bounded function s outside a compact set such that Δs is a superharmonic function >0.
- 2) For any harmonic function h defined outside a compact set K such that $|h| \le R_1^K$, there exists a bounded function b near infinity such that $\Delta b = h$.
 - 3) R is tapered.

PROOF. 1) \Rightarrow 2): Let s be a bounded function outside a compact set A such that $\Delta s = t > 0$ is superharmonic. Clearly s can be assumed to be positive. Let h be a harmonic function defined outside a compact set K such that $|h| \leq R_1^K$ in K^c . Since R_1^K is an increasing function of K, we can assume $A \subset K^0$. Then $R_1^K \leq \alpha t$ in K^c where $\alpha = (\min_{\partial k} t)^{-1}$ and by Lemma 1, there exist superharmonic functions u_1 and u_2 in K^c such that $\Delta u_1 = R_1^K$ and $\Delta u_2 = \alpha t - R_1^K$ so that in K^c , $u_1 + u_2 = \alpha s + v$ where v is a harmonic function.

Since $s \ge 0$, u_1 has a subharmonic minorant in K^c and hence in the equation $\Delta u_1 = R_1^K$ we can assume u_1 is a potential and so is u_2 . Consequently, the potential $u_1 + u_2$ majorizes the harmonic function v; this implies $v \le 0$ and hence $u_1 + u_2 \le \alpha s$. Since s is bounded, so are u_1 and u_2 . Thus, there exists a bounded function u_1 in K^c such that $\Delta u_1 = R_1^K$. Since $h^+ \le R_1^K$ in K^c , the same argument shows that there exists a bounded function v^+ in K^c such that $\Delta v^+ = h^+$; and similarly another bounded function v^- in K^c such that $\Delta v^- = h^-$.

Thus, if $b = v^+ - v^-$, b is a bounded function in K^c and $\Delta b = h$.

2) \Rightarrow 3): Let K be a nonpolar compact set and let $\Delta q = R_1^{K}$ in R.

Now, by the assumption (2), there exists a bounded function b near infinity such that $\Delta b = \widehat{R_1^K}$ (taking $h = \widehat{R_1^K}$ in K^c). Hence, outside a compact set, q = b + a harmonic function u; this implies that q has a harmonic minorant outside a compact set and consequently q is the sum of a potential in R and a

harmonic function (not necessarily positive). This means that in the equation $\Delta q = \widehat{R_1^K}$, q can be taken as a potential.

Recall that (Théorème 2.6 [1]) if ω_n is a regular exhaustion of R and if $D_n u$ denotes the Dirichlet solution in ω_n with boundary values u (u being the above mentioned harmonic function outside a compact set), then $D_n u$ converges locally uniformly to a harmonic function v in R so that |u-v| is bounded outside a compact set.

Now q being a potential, $D_n q$ tends locally uniformly to 0 in R. Thus, the equation q = b + u outside a compact set implies that the harmonic function $v = \lim D_n u$ is bounded in R since b is bounded. Consequently, u is also bounded near infinity and hence the potential q in R is bounded near infinity and $\Delta q = \widehat{R_1^R}$. Hence R is tapered (Definition 9).

 $3) \Rightarrow 1$): Since a tapered manifold is a bipotential manifold, the implication $3) \Rightarrow 1$) is a consequence of the following theorem.

THEOREM 11. A bipotential manifold R is tapered if and only if for any nonpolar compact set A in R, there exists a potential u in R bounded near infinity such that $\Delta u = \widehat{R_1^A}$.

PROOF. Let R be tapered and A be a nonpolar compact set in R. Since R is tapered, there exist potentials p and q, q being bounded near infinity, such that $\Delta q = p > 0$. Now, p being a potential, $\widehat{R_1^A} \le (\inf_A p)^{-1} p$.

Hence, if u is the potential in R such that $\Delta u = \widehat{R_1^A}$ (Theorem 5), $u \le (\inf_A p)^{-1}q$. For, if $q_1 = (\inf_A p)^{-1}q$, there exists a subharmonic function s in R such that $u = q_1 + s$ in R. This implies that $s \le 0$ since the potential $u \ge s$; hence $u \le q_1$. Since q_1 is bounded near infinity, so is u.

The converse is evident.

LEMMA 12. Let R be a tapered manifold and $s \in \Im_0$ (see Notation in §3). Then s = v + h where h is harmonic in R and v is a potential bounded near infinity.

PROOF. Let $\Delta s = p$ where p is a finite continuous potential with compact support A in R. If K is an outerregular compact set, $K^0 \supset A$, $p \le (\sup_K p) \widehat{R_1^K}$ in R. Since by Theorem 11, there exists a potential u in R, bounded near infinity and $\Delta u = \widehat{R_1^K}$, there also exists a potential v in R, bounded near infinity and $\Delta v = p$; consequently, s = v + h in R, where h is harmonic in R.

Theorem 13. Let R be a bipotential Riemannian manifold. Then the following are equivalent:

- 1) R is tapered.
- 2) For any biharmonic function b defined outside a compact set in R, there exists a biharmonic function B in R such that B-b is regular at infinity (Definition 2) and bounded outside a compact set.

- 3) Any bipotential with compact biharmonic support in R is bounded near infinity.
- PROOF. $1) \Rightarrow 2$: Let R be tapered and b be a biharmonic function defined outside a compact set in R.

By Remark 2(a), b can be represented as $(q_1 - q_2) + (p_1 - p_2) + B$ where Δq_i and p_i are in \wp_0 and B is biharmonic in R. By Lemma 12, we can take q_1 and q_2 to be bounded near infinity and p_1 and p_2 , being potentials with compact support, are also bounded near infinity. Hence b - B is bounded near infinity.

Also, since $|\Delta(b-B)| = |\Delta q_1 - \Delta q_2|$ outside a compact set and since $\Delta q_i \in \omega_0$, (b-B) is regular at infinity (see Remark 2.3 [1]).

(q - B): Let q be a bipotential with compact biharmonic support in R. Then, by the assumption, there exists a biharmonic function B in R such that (q - B) is regular at infinity and bounded near infinity.

Since $|\Delta(q - B)| \le p$ near infinity, where p is a potential in R and since Δq is also a potential in R, the harmonic function ΔB is bounded by a potential near infinity and hence $\Delta B \equiv 0$; that is, B is harmonic in R.

Since q is also a potential and since $|q - B| \le \lambda$ outside a compact set A, $|B| \le q + \lambda$ in $R \setminus A$. Hence the subharmonic function |B| in R is bounded above by λ . Consequently, q is bounded outside the compact set A.

3) \Rightarrow 1): Let A be a compact nonpolar set in R. Since \widehat{R} is a bipotential manifold, there exists a bipotential q in R such that $\Delta q = \widehat{R_1^A}$ (Theorem 5). Since q has compact biharmonic support A, by the assumption, q is bounded near infinity. Hence R is tapered.

We prove now a result that is useful in the extension of biharmonic functions with singularities.

Theorem 14. In a tapered manifold R, let K be a compact set and ω an open set $\supset K$. Suppose b is a biharmonic function in $\omega \backslash K$. Then there exists a biharmonic function v in ω and a biharmonic function u in $R \backslash K$ which is bounded near infinity such that b = u + v in $\omega \backslash K$.

PROOF. A similar result in \mathbb{R}^n is given in Theorem 3.1 [5]. It is not difficult to modify the proof in the context of any Riemannian manifold; but in this general case we cannot prove that u is bounded near infinity.

So, we need the restriction that the Riemannian manifold R should be tapered in which case Theorem 10 will ensure that u is bounded near infinity, proving the theorem in the given form.

We conclude this section with a characterization of tapered manifolds, using Remark 1(b) and Theorems 10 and 13.

THEOREM 15. In a hyperbolic manifold R, the following are equivalent:

- 1) R is tapered.
- 2) For any biharmonic function b defined outside a compact set and regular at infinity, there exists a harmonic function h in R such that b-h is bounded near infinity.
- PROOF. 1) \Rightarrow 2): Let b be a biharmonic function regular at infinity. Then by Theorem 13, there exists a biharmonic function B in R such that B-b is regular at infinity and bounded outside a compact set. Since b and B-b are regular at infinity, so is the biharmonic function B defined on R. This implies that B is harmonic. Set B=h to obtain (2).
- 2) \Rightarrow 1): Let K be a compact nonpolar set and $\Delta b = \widehat{R_1^K}$ in R. Then b is biharmonic in K^c and regular at infinity. Hence, by the assumption there exists a harmonic function h in R such that b-h is bounded near infinity. Set s=b-h. Then s is a bounded function outside a compact set such that $\Delta s=\widehat{R_1^K}$ is superharmonic. Hence, by Theorem 10, R is tapered.

5. Biharmonic extension in \mathbb{R}^n

In \mathbb{R}^n , $n \ge 5$, $s_n(x) = |x|^{4-n}$ is a bipotential tending to 0 at infinity. Hence these spaces are tapered and the biharmonic extensions mentioned in Theorems 13 and 14 are valid here.

But the spaces \mathbb{R}^n , $2 \le n \le 4$, are not tapered. For, \mathbb{R}^2 is not hyperbolic; and \mathbb{R}^3 and \mathbb{R}^4 , though hyperbolic, are not even bipotential spaces. In this section, we show that if b is a biharmonic function near infinity in \mathbb{R}^n , n=3 or 4, then there exists a biharmonic function B in \mathbb{R}^n such that (b-B) is bounded near infinity if and only if the flux at infinity of Δb is 0. This result is contained in the following theorem, where we denote by E_n the fundamental solution $\Delta E_n = \delta$ in \mathbb{R}^n , $n \ge 2$.

THEOREM 16. For a biharmonic function b defined outside a compact set in \mathbb{R}^n , $2 \le n \le 4$, the following are equivalent:

- 1) Flux at infinity of Δb is 0.
- 2) There exists a biharmonic function B in \mathbb{R}^n and a constant α such that $(b B \alpha E_n)$ is bounded near infinity.
- 3) For some r_0 , the mean-value $M(r, \Delta b)$ of Δb on $|x| = r > r_0$ is independent of r.

In particular, if b is harmonic so is B in (2).

PROOF. For the simplicity of writing, we give the proof when n = 3; the case n = 4 does not differ much from n = 3; when n = 2, we indicate the relevant changes.

We start with the following remark: In \mathbb{R}^3 , let μ be a measure with compact support K. Then $u(x) = |x| * \mu$ is well-defined in \mathbb{R}^3 , biharmonic in K^c . Let $y \in K$ be fixed. Then, for $x_0 \in K^c$, we have $|u(x_0) - |x_0 - y|\mu(\mathbb{R}^3)| \le \mu(\mathbb{R}^3)$ (diameter of K). Consequently, for i = 1, 2, if μ_i is a measure with compact support K_i such that $\mu_1(\mathbb{R}^3) = \mu_2(\mathbb{R}^3) = ||\mu||$ and if $u_i(x) = |x| * \mu_i$ then $|u_1(x_0) - u_2(x_0)| \le 3 ||\mu||$ diam $(K_1 \cup K_2)$ for any $x_0 \in (K_1 \cup K_2)^c$.

1) \Rightarrow 2): By Theorem 8, the given biharmonic function b outside a compact set is of the form $b = s_1 - s_2 + p_1 - p_2 + B$. By the construction, there exist two measures μ_i , i = 1, 2, with compact support such that $\Delta^2 s_i = \mu_i$.

If the flux Δb at infinity is 0, then $\mu_1(\mathbf{R}^3) = \mu_2(\mathbf{R}^3)$ and by the above remark we can find u_i such that $\Delta^2 u_i = \mu_i$, so that u_1 and u_2 are biharmonic outside a compact set and $|u_1 - u_2|$ is bounded near infinity. Thus, in the above decomposition of b, we can assume that $s_1 - s_2$ is bounded outside a compact set.

Moreover, p_1 and p_2 are potentials (resp. logarithmic potentials if n=2) with compact support in \mathbb{R}^3 . Hence there are constants α_1 and α_2 such that $p_i - \alpha_i E_n$ ($2 \le n \le 4$) is bounded near infinity. (Actually, if n=3 or 4 we can take $\alpha_1 = \alpha_2 = 0$). Finally, if $\alpha = \alpha_1 - \alpha_2$, $(b - B - \alpha E_n)$ is bounded near infinity.

2) \Rightarrow 1): Conversely, suppose that for the biharmonic function b near infinity in \mathbb{R}^n , $2 \le n \le 4$, there exists a biharmonic function B in \mathbb{R}^n and a constant α such that $(b - B - \alpha E_n)$ is bounded near infinity. We shall show that the flux Δb at infinity is 0.

Whatever be flux Δb , there exists a constant β such that if $u = b - \beta s_n$ where $\Delta^2 s_n = \delta$, then the flux Δu at infinity is 0. Consequently, from the above proof of $1) \Rightarrow 2$), there exist a biharmonic function v in \mathbb{R}^n and a constant v such that $(u - v - vE_n)$ is bounded near infinity.

Hence $B - v = (u - v - vE_n) - (b - B - \alpha E_n) + (v - \alpha)E_n + \beta s_n$, and consequently B - v which is biharmonic in \mathbb{R}^n is bounded on one side. Such a biharmonic function is of the form $c|x|^2 +$ (a harmonic polynomial of degree ≤ 2) (see Nicolesco [10] p. 20; can also be proved as Lemma 17 below).

Now, taking the mean-values on |x| = r of both sides and allowing $r \to \infty$, we obtain $\beta = 0$ (recall that up to a multiplicative constant, $s_2 = |x|^2 \log |x|$, $s_3 = |x|$ and $s_4 = \log |x|$). This means that u = b and the flux Δb at infinity is 0

3) \Leftrightarrow 1): This is an old result for harmonic functions in \mathbb{R}^n , proved in M. Brelot [7] p. 303.

Finally, suppose b is harmonic outside a compact set so that $\Delta b = 0$. Then, using the representation above that $b = s_1 - s_2 + p_1 - p_2 + B$, we have $0 = \Delta b = \Delta s_1 - \Delta s_2 + \Delta B$ near infinity. Since ΔB is harmonic in \mathbb{R}^n and Δs_i is a potential in \mathbb{R}^n for n=3 and 4 (resp. a logarithmic potential if n=2) with compact support, we conclude that $\Delta B=0$.

Thus, the theorem is proved.

In the context of the final part of the proof of the above theorem, we remark that it is known that if b is harmonic outside a compact set in \mathbb{R}^n , $n \geq 2$, then there exists a harmonic function h(x) in \mathbb{R}^n such that $b(x) - h(x) - \beta E_n(x)$ is bounded near infinity, where β is a constant (which can be taken as 0 if $n \geq 3$). Using this fact, we have another proof of the final remark of Theorem 16 when we prove the following lemma.

LEMMA 17. Let B be a biharmonic function and h be a harmonic function in \mathbb{R}^n , $n \ge 2$, such that $B(x) - h(x) = o(|x|^2)$ when $|x| \to \infty$. Then B is harmonic.

PROOF. By Almansi representation, $B(x) = |x|^2 h_1(x) + h_2(x)$ in \mathbb{R}^n where $h_1(x)$ and $h_2(x)$ are harmonic. Thus, $|x|^2 h_1(x) + h_2(x) = h(x) + o(|x|^2)$ when |x| is large.

For a fixed $z \in \mathbf{R}^n$, let $\rho_z^r(x)$ denote the harmonic measure on |x| = r > |z| with large r. Then integrating the above equality with respect to $\rho_z^r(x)$ we have

$$r^2h_1(z) + h_2(z) = h(z) + o(r^2).$$

Dividing by r^2 and allowing $r \to \infty$, we find $h_1(z) = 0$. Since z is arbitrary, this implies that $h_1 \equiv 0$ and hence B is harmonic in \mathbb{R}^n .

REMARK 3. (a) If b is a bounded biharmonic function defined outside a compact set in \mathbb{R}^n , $2 \le n \le 4$, then by Theorem 16 the flux Δb at infinity is 0.

(b) By considering the function $|x|^{4-n}$, we see that the above remark(a) is not valid if $n \ge 5$.

Biharmonic functions outside a compact set in \mathbb{R}^n :

The above discussion leads to the following more precise representation of a biharmonic function defined near infinity in \mathbf{R}^n , $n \ge 2$ (see Theorem 8). If b(x) is a biharmonic function defined outside a compact set in \mathbf{R}^n , $n \ge 2$, there exist uniquely determined constants α and β and a biharmonic function B(x) in \mathbf{R}^n unique up to an additive constant such that outside a compact set

$$b(x) = \begin{cases} \alpha \log|x| + \beta|x|^2 \log|x| + B(x) + u(x), & \text{if } n = 2\\ \beta|x| + B(x) + u(x), & \text{if } n = 3\\ \beta \log|x| + B(x) + u(x), & \text{if } n = 4\\ B(x) + u(x), & \text{if } n \ge 5. \end{cases}$$

Here u(x) is a bounded biharmonic function near infinity; also u(x) is regular at infinity if $n \ge 5$; and flux at infinity of Δu is 0 if $2 \le n \le 4$.

Consequently, in view of Proposition 3, if b(x) is a biharmonic function near infinity in \mathbb{R}^n , $n \ge 5$, then there exists a biharmonic function $B_1(x)$ in \mathbb{R}^n such that $\lim_{|x| \to \infty} [b(x) - B_1(x)] = 0$. In particular, if b(x) is bounded near infinity in \mathbb{R}^n , $n \ge 5$, $\lim_{|x| \to \infty} b(x)$ exists.

This last statement concerning the limit of a bounded biharmonic function at infinity is true even when n=4 (can be proved by using the extended Kelvin transform as given in Nicolesco [10] p. 14) but not when n=2 or 3; for example, $\sin 2\theta$ in \mathbb{R}^2 and $\frac{x_1}{|x|}$ in \mathbb{R}^3 where $x=(x_1,x_2,x_3)$.

References

- [1] V. Anandam: Espaces harmoniques sans potentiel positif, Ann. Inst. Fourier 22 (1972), 97–160.
- [2] V. Anandam: Harmonic spaces with positive potentials and nonconstant harmonic functions, Rend. Circolo Mate. Palermo XXI (1972), 149-167.
- [3] V. Anandam: Pseudo-potentiels dans un espace harmonique sans potentiel positif, Bull. Sc. Math. 100 (1976), 369-376.
- [4] V. Anandam: Admissible superharmonic functions and associated measures, J. London Math. Soc. 19 (1979), 65-78.
- [5] V. Anandam and M. A. Al Gwaiz: Global representation of harmonic and biharmonic functions, Potential Analysis 6 (1997), 207-214.
- [6] V. Anandam: Biharmonic Green functions in a Riemannian manifold, Arab J. Math. Sc. 4 (1998), 39-45.
- [7] M. Brelot: Sur le rôle du point à l'infini dans la théorie des fonctions harmoniques, Ann. Ec. Norm. Sup. 61 (1944), 301-332.
- [8] L. Chung: Biharmonic and polyharmonic principal functions, Pacific J. Math. 86 (1980), 437-445.
- [9] M. Nakai: On Evans' kernel, Pacific J. Math. 22 (1967), 125-137.
- [10] M. Nicolesco: Les fonctions polyharmoniques, Hermann, Paris, 1936.
- [11] B. Rodin and L. Sario: Principal functions, Van Nostrand, 1986.
- [12] L. Sario, M. Nakai, C. Wang and L. Chung: Classification theory of Riemannian manifolds, Springer-Verlag, LN 605, 1977.

Department of Mathematics College of Science
King Saud University
P.O. Box 2455
Riyadh 11451
Saudi Arabia

E-mail: bajunaid@ksu.edu.sa E-mail: vanandam@ksu.edu.sa