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ABSTRACT. We give a characterization of the hyperbolic Riemannian manifolds R in

which for any biharmonic function b outside a compact set, there exists a biharmonic

function B in R such that B - b is bounded outside a compact set.

1. Introduction

Let /? be a hyperbolic Riemannian manifold. It is known that given a

harmonic function h outside a compact set, there always exists a harmonic
function H in R such that H - h is bounded outside a compact set. One
method of proof of this is via the principal functions [11] making use of the
potentials >0 in R, a potential in R being a superharmonic function u > 0 in R
such that if h is a harmonic function satisfying 0 < h < u, then h = 0. To
solve a similar problem for the biharmonic functions in R, Chung [8] uses a

variant of these principal functions. But the result is not satisfactory.

We prove in this note that a biharmonic extension in R is possible if
and only if R satisfies the following condition: There exist potentials p > 0

and q > 0 in R such that Aq = p where A = -Σ/y^^— T— is the Laplace-
CXi CXj

Beltrami operator, and q is bounded outside a compact set. We remark that
this condition is verified in R", n > 5.

The proof of this biharmonic extension depends on a lemma giving the
representation of a biharmonic function defined outside a compact set in R by

means of the difference of some special potentials in R.

2. Preliminaries

Let R be an oriented Riemannian manifold of dimension n > 2 with local
parameters x = (xl,... ,xn) and a C00 metric tensor #// such that gijXlxj is

positive definite. We denote the volume element by dx = >/det(g//) dxl dxn\
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A = do + δd is the Laplace-Beltrami operator which, acting on a function /,
gives Δf = -div grad /. R is said to be hyperbolic or parabolic depending

on the existence or the non-existence of a potential >0 on R respectively.

LEMMA 1. Given any locally dx-integrable function f on an open set ω in R,

there exists a δ-superharmonίc function g on ω (that is, the difference of two
super harmonic functions) such that Ag —f; in this case, g is said to be generated

by f.

PROOF. This can be deduced from Theorem 4.2 [4].

For an outerregular compact set K in R (that is, if ω is a relatively
compact open set containing K, every point of dK is regular for the Dirichlet

solution in ω\K\ let Bκf stand for the Dirichlet solution in R\K with
boundary values / on dK and 0 at the point at infinity of R.

Terminology: The term "near infinity" is used to mean a set that is the
complement of a compact set in R.

DEFINITION 2. A biharmonic function b (that is, A2b — Q) defined near
infinity in R is said to be regular at infinity, if there exists an outerregular

compact set K such that Bκ(Ab] = Δb in R\K.

REMARK 1. a) In a hyperbolic manifold R, Bκh = h in R\K if and only
if there exists a Green potential p in R such that \h\ < p near infinity; and in
a parabolic manifold Bκh = h if and only if h is bounded near infinity.

b) In a hyperbolic manifold R, given a biharmonic function b near infinity, it
is always possible (using Lemma 1 above and Remark 23 [2]) to find a
biharmonic function B in R such that (B - b) is regular at infinity; however

(B — b) may not be bounded near infinity (see Theorem 13). For example, if
b(x) = \χ\ in x\ > 1 in R3, we can take B(x] = 0. In view of this example, the

following proposition is interesting.

PROPOSITION 3. Let b be a biharmonic function defined near infinity in

R", n > 5. If b is regular at infinity, then there exists a harmonic function H
in R" such that \\m\x\^^(b(x) - H(x)] = 0.

PROOF. Since b is regular at infinity, for some a if K = {x : \x\ < a},

(
\ n—2

-—) in |jc| > a, if m =
\x\/

, we see that \Δb\ <mί—Λ = ™a A(\x\*~n) in |jc| > a. This
X\J ^(n ~ v
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means that there exist in \x > a, a superharmonic function s(x) and a sub-
MΛ^ W - 2

harmonic function t(x) such that s(x) = b(x) + -4|*|4~" where A = — - — > 0

and t(x)=b(x)-Ax4~n.
Since t(x) < s(x), there exists a harmonic function h(x) in \x\ > a such

that t(x) < h(x] < s(x). Then, if r > a (following Remark 23 [2]), there exists
a harmonic function H(x) in R" such that \H — h\ < aBr\ in \x\ > r for some

constant α. Consequently

\b-H\ <\b-h\ + \H-h\ if |x| >r

and hence lim|x|_^00[ft(x) — H(x)] = 0. Hence the proposition holds.

For a set Λ in R, Rf stands for the infimum of the family of
positive superharmonic functions s on R such that s > 1 on A\ let Rf(x) =

DEFINITION 4. A hyperbolic Riemannian manifold R is said to be a

bipotential manifold if there exist potentials p > 0 and q > 0 in R such that
Aq = pi q is called a bipotential.

Using the integral representation of the potentials in R with respect to the
Green kernel, or as in [6], we can prove the following:

THEOREM 5. In a hyperbolic Riemannian manifold R, the following are
equivalent:

1) R is a bipotential manifold.
2) For some (and hence any) nρnpolar compact set A, there exists a

potential q > 0 in R such that Aq = Rf.

3) For any potential p > 0 in R with compact harmonic support (that is, p
is a potential in R and is harmonic outside a compact set in R), there exists a

potential q > 0 in R such that Aq = p.

4) For some (and hence any) y in R, if Gy(x) is the Green function with

pole { y}, there exists a bipotential Qy(x) called the bίharmonίc Green function
with pole {y}, such that AQy(x) = Gy(x) in R.

Suppose now that R is a parabolic Riemannian manifold. Fix XQ e R.

Let ωn be a fixed sequence of regular domains in R such that XQ e ωn c
ω^ c= ωn+\ and R = [jωn. Let Dnf denote the Dirichlet solution in ωn with

boundary values /on dωn. Let E(x) = E(XQ,X) be a fixed Evans function for

R (see Nakai [9] and Sario et al [12] p. 369).
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DEFINITION 6. A superharmonίc function s in a parabolic Rίemannian

manifold R is called a pseudo-potential if for some constant α, Dn(s — ctE) tends

locally uniformly to 0 when n — > oo.

Note: It can be proved in this case (see [3]) that every superharmonic

function with compact harmonic support in R is the unique sum of a pseudo-

potential and a harmonic function in R.

3. Representation of biharmonic functions near infinity

In this section, we give a method to express a given biharmonic function

near infinity in a Riemannian manifold R, in terms of globally defined

potentials (or pseudo-potentials) and biharmonic functions in R.

LEMMA 7. Let h be a harmonic function defined outside a compact set A in

a Riemannian manifold R (hyperbolic or parabolic). Then there exist two finite

continuous superharmonic functions s\ and 82 with compact harmonic support in

R such that h(x) = s\(x) — S2(x) near infinity.

PROOF. Let K be a compact set and ω a relatively compact domain such

that A d KQ ci K c ω and ω\K is a regular open set for the Dirichlet problem.

For yeK®, let sy(x) denote a superharmonic function in R with harmonic

point support at {y}.

Let Df denote the Dirichlet solution in ω with boundary values / on

dω. Since sy > Dsy in ω, it is possible to find α > 0 such that h — Dh >

—tt(sy — Dsy) on dK. The minimum principle then implies that this inequality

is valid on ω\K.

Then

f λ + oίSy in R\ω

-f oίS) in ω\ D(h

is a continuous superharmonic function with compact harmonic support in R

and

( ΰίSy in R\ω

\ D(<y,Sy) in ω

is also a continuous superharmonic function with compact harmonic support

in R.

Finally h(x) = s\(x) - s2(x) in R\ω.

Notation: Let p0 denote the cone of finite continuous potentials with

compact harmonic support in R if it is hyperbolic (resp. the cone of continuous
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pseudo-potentials with compact harmonic support if R is parabolic). Let %

denote the cone of functions in R generated (Lemma 1) by the elements of p0;

that is, s e So if and only if Δs e p0. Let β denote the set of all biharmonic
functions in R. Finally, let £Q be the smallest vector space containing p0, So
and β.

THEOREM 8. Let b be a biharmonic function defined near infinity in a
Riemannian manifold R. Then there exists some u e £Q such that u — b near

infinity.

PROOF. Since Ab is harmonic outside a compact set, by Lemma 7, Δb —

s\(x) — s2(x) near infinity. Since s\(x) and s2(x) are finite continuous super-
harmonic functions with compact harmonic support, we can represent each
of them as the unique sum of a continuous potential if R is hyperbolic (resp.
a pseudo-potential if R is parabolic) and a harmonic function in R.

Thus, Δb = u\ — U2 + h near infinity, where Ui e p0. Let // e So be
generated by Ui and B e β be generated by h. Consequently, b = t\ - t2 +
B + v near infinity where v is a harmonic function outside a compact set in R

and hence by Lemma 7, v — pλ — p2 4- H, where pt e p0 and H is harmonic in

R.
Thus, outside a compact set in R, b = (t\ — t2) + (p\ — p2) + (B + H)

which is an element in £0.

REMARK 2. a) In the above theorem, suppose that R is a bίpotential
manifold. Then a biharmonic function b near infinity can be represented as b —

(q\ — #2) + (p\ — P2) + B where #/, Δqi and pt are potentials in R, with the finite
continuous functions Δqi and pt having compact harmonic supports and B is a
uniquely determined biharmonic function in R. For, in a bipotential Riemannian
manifold R, if p is a potential with compact harmonic support, there exists a
potential q such that Δq — p (Theorem 5).

To show that B is unique: Suppose (q\ — q2) + (pλ - p2} + B= (q(— q2) +
(p(—p'2}+B' outside a compact set. Then near infinity, Δ(B — B') =

Δ(q( + q2) — A(q\ + q2); in this equality the right side is the difference of two
potentials and the left side is a harmonic function in R. Hence Δ(B — B1} = 0;
that is B' = B -\- h where h is harmonic in R. Then again, near infinity h is the

difference of two potentials in R and hence h = 0.

b) We can easily deduce from the above theorem that in a hyperbolic
Riemannian manifold R, given a biharmonic function b outside a compact set,

there exists a biharmonic function B in R such that b — B is bounded near infinity
if and only if for any given t e ^SQ, there exists a biharmonic function u on R such

that t + u is bounded near infinity.
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In the next section, we give a sufficient condition expressed in different
equivalent forms on R so that such a biharmonic extension is possible on R.

4. Biharmonic extension in a manifold

In this section, we study the manifolds R with the following property:

Given a biharmonic function b near infinity in R, there exists a biharmonic
function B in R such that B — b is bounded near infinity.

DEFINITION 9. A hyperbolic manifold R is said to be tapered if there exist
potentials p and q, q being bounded outside a compact set such that Δq = p > 0

in R.

THEOREM 10. In a hyperbolic Rίemannian manifold R} the following are
equivalent:

1) There exists a bounded function s outside a compact set such that As is
a superharmonic function >0.

2) For any harmonic function h defined outside a compact set K such that
\h\ <R^, there exists a bounded function b near infinity such that Δb = h.

3) R is tapered.

PROOF. 1) => 2): Let s be a bounded function outside a compact set
A such that As = t > 0 is superharmonic. Clearly s can be assumed to be
positive. Let h be a harmonic function defined outside a compact set K such
that \h\ < Rf in Kc. Since Rf is an increasing function of K, we can assume
A c KQ. Then Rf < at in Kc where α = (min^ t)~l and by Lemma 1, there
exist superharmonic functions u\ and UΊ in Kc such that Δu\ — R^ and Δui =

at — Rf so that in Kc,u\ -\-UI = OLS + V where v is a harmonic function.
Since s > 0, u\ has a subharmonic minorant in Kc and hence in the

equation Δu\ = Rf we can assume u\ is a potential and so is 1/2. Conse-
quently, the potential u\ + UΊ majorizes the harmonic function v; this implies

v < 0 and hence u\ + uι < as. Since s is bounded, so are u\ and UΊ. Thus,

there exists a bounded function u\ in Kc such that zfwi = R*. Since A+ < /^
in Kc, the same argument shows that there exists a bounded function v+ in Kc

such that Δυ+ = Λ+; and similarly another bounded function υ~ in Kc such that
zfir =/r.

Thus, if 6 = t;+ - ιr, ft is a bounded function in AΓC and Δb^= h.
2) =^ 3): Let AT be a nonpolar compact set and let Δq = R* in R.
Now, by the jissumption (2), there exists a bounded function b near infinity

such that Δb = Rf (taking h = Rf in Kc). Hence, outside a compact set,
q = b+ a harmonic function u\ this implies that q has a harmonic minorant
outside a compact set and consequently q is the sum of a potential in R and a
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harmonic function (not necessarily positive). This means that in the equation

Aq = Rf, q can be taken as a potential.

Recall that (Theoreme 2.6 [1]) if ωn is a regular exhaustion of R and if
Dnu denotes the Dirichlet solution in ωn with boundary values u (u being the

above mentioned harmonic function outside a compact set), then Dnu converges

locally uniformly to a harmonic function v in R so that \u — v\ is bounded

outside a compact set.

Now q being a potential, Dnq tends locally uniformly to 0 in R. Thus, the

equation q — b + u outside a compact set implies that the harmonic function

υ = \\mDnu is bounded in R since b is bounded. Consequently, u is also

bounded near infinity and hence the potential q in R is bounded near infinity

and Aq = Rf. Hence R is tapered (Definition 9).

3) =Φ 1): Since a tapered manifold is a bipotential manifold, the impli-

cation 3) => 1) is a consequence of the following theorem.

THEOREM 11. A bipotential manifold R is tapered if and only if for any

nonpolar compact^set A in R} there exists a potential u in R bounded near infinity

such that Au = Rf.

PROOF. Let R be tapered and A be a nonpolar compact set in R. Since

R is tapered, there exist potentials p and q, q being bounded near infinity, such

that Aq = p > 0. Now, p being a potential, Rf < (inf^;?)"1/?.

Hence, if u is the potential in R such that Au = Rf (Theorem 5), u <

(mΪAp)~lq. For, if q\ = (inf^/?)"1^, there exists a subharmonic function s in

R such that u = q\ + s in R. This implies that s < 0 since the potential u>s\

hence u<q\. Since q\ is bounded near infinity, so is u.

The converse is evident.

LEMMA 12. Let R be a tapered manifold and s e 3?o faee Notation in §3J.

TTzefl ^ — t; + A where h is harmonic in R and v is a potential bounded near

infinity.

PROOF. Let As = p where p is a finite continuous potential with compact

support A in R. If K is an outerregular compact set, K® => A, p < (supκp)Rf

in R. Since by Theorem 11, there exists a potential u in R, bounded near

infinity and Au — Rf, there also exists a potential v in Λ, bounded near infinity

and ΔΌ = p\ consequently, s = v + h in R, where h is harmonic in /?.

THEOREM 13. Let R be a bipotential Riemannian maniflod. Then the

following are equivalent:

1) R is tapered.

2) For any biharmonic function b defined outside a compact set in R,

there exists a biharmonic function B in R such that B — b is regular at infinity

(Definition 2) and bounded outside a compact set.
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3) Any bipotentίal with compact bίharmonίc support in R is bounded near

infinity.

PROOF. 1)=>2): Let R be tapered and b be a biharmonic function
defined outside a compact set in R.

By Remark 2(a), b can be represented as (q\ — q2] + (pl — p2) + B where

Aqi and pt are in p0 and B is biharmonic in R. By Lemma 12, we can take #ι
and qi to be bounded near infinity and p{ and p2, being potentials with
compact support, are also bounded near infinity. Hence b — B is bounded

near infinity.

Also, since \A(b — B)\ = \Δq\ — Aq2\ outside a compact set and since Aqt e
PQ, (b — B) is regular at infinity (see Remark 2.3 [1]).

2) => 3): Let # be a bipotential with compact biharmonic support in R.
Then, by the assumption, there exists a biharmonic function B in R such that

(q — B) is regular at infinity and bounded near infinity.
Since \A(q — B)\ < p near infinity, where p is a potential in R and since Aq

is also a potential in R, the harmonic function AB is bounded by a potential
near infinity and hence AB = 0; that is, B is harmonic in R.

Since q is also a potential and since \q — B\ < λ outside a compact set A,
\B\ <q + λ in R\A. Hence the subharmonic function \B\ in R is bounded

above by λ. Consequently, q is bounded outside the compact set A.
3) => 1): Let A be a compact nonpolar set in R. Since R^is a bipotential

manifold, there exists a bipotential q in R such that Aq — R^ (Theorem 5).

Since q has compact biharmonic support A, by the assumption, q is bounded
near infinity. Hence R is tapered.

We prove now a result that is useful in the extension of biharmonic

functions with singularities.

THEOREM 14. In a tapered manifold R} let K be a compact set and ω an

open set =>K. Suppose b is a biharmonic function in ω\K. Then there exists a
biharmonic function v in ω and a biharmonic function u in R\K which is bounded
near infinity such that b = u + v in ω\K.

PROOF. A similar result in R" is given in Theorem 3.1 [5]. It is not
difficult to modify the proof in the context of any Riemannian manifold; but in

this general case we cannot prove that u is bounded near infinity.
So, we need the restriction that the Riemannian manifold R should be

tapered in which case Theorem 10 will ensure that u is bounded near infinity,
proving the theorem in the given form.

We conclude this section with a characterization of tapered manifolds,
using Remark l(b) and Theorems 10 and 13.
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THEOREM 15. In a hyperbolic manifold R} the following are equivalent:
1) R is tapered.

2) For any biharmonic function b defined outside a compact set and regular
at infinity, there exists a harmonic function h in R such that b — h is bounded

near infinity.

PROOF. 1) => 2): Let b be a biharmonic function regular at infinity.

Then by Theorem 13, there exists a biharmonic function B in R such that B - b

is regular at infinity and bounded outside a compact set. Since b and B — b

are regular at infinity, so is the biharmonic function B defined on R. This

implies that B is harmonic. Set B = h to obtain (2). ^

2) => 1): Let AT be a compact nonpolar set and Ab = Rf in R. Then b

is biharmonic in Kc and regular at infinity. Hence, by the assumption there

exists a harmonic function h in R such that b - h is bounded near infinity. Set

sj= b — h. Then s is a bounded function outside a compact set such that As =

R^ is superharmonic. Hence, by Theorem 10, R is tapered.

5. Biharmonic extension in R"

In Rw, n > 5,sn(x} = \x\4~n is a bipotential tending to 0 at infinity. Hence
these spaces are tapered and the biharmonic extensions mentioned in Theorems

13 and 14 are valid here.
But the spaces R", 2 < n < 4, are not tapered. For, R2 is not hyperbolic;

and R3 and R4, though hyperbolic, are not even bipotential spaces. In this
section, we show that if b is a biharmonic function near infinity in Rw, n = 3 or

4, then there exists a biharmonic function B in Rn such that (b — B) is bounded

near infinity if and only if the flux at infinity of Ab is 0. This result is

contained in the following theorem, where we denote by En the fundamental
solution AEn = δ in R", n > 2.

THEOREM 16. For a biharmonic function b defined outside a compact set in

R", 2 < n < 4, the following are equivalent:
1) Flux at infinity of Ab is 0.

2) There exists a biharmonic function B in R" and a constant α such that

(b — B — (x,En) is bounded near infinity.

3) For some ΓQ, the mean-value M(r,Ab] of Ab on \x = r > ΓQ is inde-
pendent of r.

In particular, if b is harmonic so is B in (2).

PROOF. For the simplicity of writing, we give the proof when n = 3;

the case n = 4 does not differ much from n — 3; when n — 2, we indicate the

relevant changes.
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We start with the following remark: In R3, let μ be a measure with

compact support K. Then u(x) = \x\*μ is well-defined in R3, biharmonic
in Kc. Let y e K be fixed. Then, for XQ e Kc, we have \U(XQ) - \XQ -
7|μ(R3)| <μ(R3) (diameter of K). Consequently, for ι '=l,2, if μf is a

measure with compact support Kj such that μj(R3) = μ2(R3) HI ^ II and
if Ui(x) = \x\ *μt then \U\(XQ) - u2(xo)\ < 3 || μ || diam(AΊ (JK2) for any XQ e

1) =>• 2): By Theorem 8, the given biharmonic function b outside a

compact set is of the form b = s\ - 82 + p\ - p2 + B. By the construction,
there exist two measures μh i = 1,2, with compact support such that A2Si = μt.

If the flux Ab at infinity is 0, then μι(R3) = μ2(R3) and by the above
remark we can find HI such that A2ut = μ/5 so that u\ and u2 are biharmonic
outside a compact set and u\ — u2\ is bounded near infinity. Thus, in the
above decomposition of Z>, we can assume that s\ — s2 is bounded outside a
compact set.

Moreover, p\ and p2 are potentials (resp. logarithmic potentials if n =
2) with compact support in R3. Hence there are constants αi and %2 such that
Pi — oCjEn (2 < n < 4) is bounded near infinity. (Actually, if n = 3 or 4 we can

take «ι = αi — 0). Finally, if α — αi — α2, (b — B — α£"Λ) is bounded near
infinity.

2) => 1): Conversely, suppose that for the biharmonic function b near

infinity in RM, 2 < n < 4, there exists a biharmonic function J? in R" and a

constant α such that (b — B — uEn) is bounded near infinity. We shall show
that the flux Ab at infinity is 0.

Whatever be flux Ab, there exists a constant β such that if u = b — βsn

where A2sn=δ, then the flux Au at infinity is 0. Consequently, from the

above proof of 1) => 2), there exist a biharmonic function f in R" and a
constant v such that (u — v — vEn] is bounded near infinity.

Hence B-υ=(u-v- vEn) - (b - B - aEn) + (v - #)£„ + /foπ, and con-

sequently B — v which is biharmonic in R" is bounded on one side. Such a
biharmonic function is of the form c|x|2+ (a harmonic polynomial of degree
<2) (see Nicolesco [10] p. 20; can also be proved as Lemma 17 below).

Now, taking the mean-values on \x\ = r of both sides and allowing r — > oo,
we obtain β = 0 (recall that up to a multiplicative constant, s2 = \x\2 \og\x\,
S3 = x\ and ^4 = log|x|). This means that u = b and the flux Ab at infinity
is 0.

3) 4Φ 1): This is an old result for harmonic functions in R", proved in
M. Brelot [7] p. 303.

Finally, suppose b is harmonic outside a compact set so that Ab = 0.
Then, using the representation above that b = s\ — s2 + pλ — p2 + B, we have

0 = Ab = As\ - As2 + AB near infinity. Since AB is harmonic in R" and Δsi is
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a potential in Rw for n — 3 and 4 (resp. a logarithmic potential if n = 2) with
compact support, we conclude that AB = 0.

Thus, the theorem is proved.
In the context of the final part of the proof of the above theorem, we

remark that it is known that if b is harmonic outside a compact set in R",
n > 2, then there exists a harmonic function h(x) in R" such that b(x) — h(x) —

βEn(x) is bounded near infinity, where β is a constant (which can be taken as 0
if n > 3). Using this fact, we have another proof of the final remark of
Theorem 16 when we prove the following lemma.

LEMMA 17. Let B be a biharmonic function and h be a harmonic
function in R", n > 2, such that B(x) - h(x) = o(\x 2) when \x\ -> oo. Then B

is harmonic.

PROOF. By Almansi representation, B(x) = \x 2h\(x) + h2(x) in R" where

h\(x) and /^(X) are harmonic. Thus, \x\2h\(x) + h2(x) = h(x) + o(\x\2) when

\x\ is large.
For a fixed z e R", let p[(x) denote the harmonic measure on \x\ = r >

\z\ with large r. Then integrating the above equality with respect to pr

z(x)
we have

r 2 Aι(z)+A 2 (z)=A(z)+0(r 2 ) .

Dividing by r2 and allowing r — > o o , we find A ι ( z ) = 0 . Since z is
arbitrary, this implies that h\ = 0 and hence B is harmonic in R".

REMARK 3. (a) If b is α bounded biharmonic function defined outside a
compact set in R", 2 < n < 4, then by Theorem 16 the flux Δb at infinity is 0.

(b) By considering the function \x\4~n, we see that the above remark (a) is
not valid if n > 5.

Biharmonic functions outside a compact set in R":
The above discussion leads to the following more precise representation

of a biharmonic function defined near infinity in R", n > 2 (see Theorem 8).

If b(x) is a biharmonic function defined outside a compact set in R", n > 2,

there exist uniquely determined constants α and β and a biharmonic function

B(x) in R" unique up to an additive constant such that outside a compact set

'α log |x +β\x\2log|jc| +B(x) + u(x), if n = 2

β\x\+B(x) + u(x), if n = 3
β log |jt| + B(x) + u(x), if n = 4

B(x) + u(x), if n>5.

b(x) =

Here u(x) is a bounded biharmonic function near infinity; also u(x) is regular
at infinity if n > 5; and flux at infinity of Au is 0 if 2 < n < 4.
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Consequently, in view of Proposition 3, if b(x) is a biharmonic function

near infinity in R", n > 5, then there exists a biharmonic function B\(x) in R"

such that \\m\x\^^(b(x) - B\(x)\ = 0. In particular, if b(x) is bounded near

infinity in R", n > 5, lim^i^oo b(x) exists.
This last statement concerning the limit of a bounded biharmonic function

at infinity is true even when n = 4 (can be proved by using the extended Kelvin

transform as given in Nicolesco [10] p. 14) but not when n — 2 or 3; for

example, sin2Θ in R2 and —- in R3 where Λ: = (x\,X2,X3)
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