HirosHIMA MATH. J.
37 (2007), 277-314

Some aspects of the classical potential theory on trees

Victor ANANDAM and Ibtesam Bajunaid

(Received August 2, 2004)
(Revised October 10, 2006)

ABSTRACT. Potential theory on a Cartier tree 7 is developed on the lines of the
classical and the axiomatic theories on harmonic spaces. The harmonic classifications
of such trees are considered; the notion of a subordinate structure on 7 is introduced
to consider more generally the potential theory on T associated with the Schrédinger
equation Au(x) = Q(x)u(x), Q(x) =0 on T; polysuperharmonic functions and poly-
potentials on 7 are defined and a Riesz-Martin representation for positive polysuper-
harmonic functions is obtained.

1. Introduction

In this note, we study some classical potential-theoretic concepts like
balayage, domination principle etc. in the context of a tree 7" and introduce the
notions of polysuperharmonic functions and polypotentials on 7 and obtain
some of their properties. The tree 7 is taken in the sense of Cartier’s [4], a
graph with infinite vertices, connected, locally finite and no circuits, provided
with a transition probability structure. Bajunaid et al. [1] show that the har-
monic functions on the vertices of T can be linearly extended to the edges, so
that the extended functions verify the axioms 1, 2, 3 of Brelot. Consequently,
some of the properties of harmonic functions and potentials on 7" can be im-
mediately deduced from the axiomatic potential theory.

However, on many occasions, direct proofs of theorems about harmonic
functions on 7" are simpler and give more informations in comparison to those
deduced from the axiomatic theory. Secondly, some theorems in the axiomatic
theory require more assumptions than the axioms 1, 2, 3 only. One such is the
converse to the Riesz representation theorem in a harmonic space Q which
states that given a positive Radon measure x on an open set @ in £, there
exists a superharmonic function s on @ with associated measure u in a local
Riesz representation. To prove this, we need the axiom of analyticity (de La
Pradelle [6]) which is not generally valid on 7. However, this converse to the
Riesz representation is true on 7 (Theorem 2.4). Thirdly, for polyharmonic
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functions of order m > 1, we do not have results like the Dirichlet solution
or the Harnack property. Consequently, the properties of polysuperharmonic
functions and polypotentials on a tree T cannot be deduced, by treating 7 as
another example of a Brelot harmonic space. Finally, in the theorems proved
here, we do not always place the restriction that there should be positive
potentials on 7.

Section 2 studies the potential theory on a Cartier tree 7" with a transition
probability structure P. One part of the paper [4] by Cartier deals with this,
by starting with the definition of the Green function G(x, y) as the kernel as-
sociated with the set of all the paths in T and developing the theory of super-
harmonic functions and potentials on 7" in the spirit of probability theory. In
contrast, the development in this section follows closely the methods of the
classical and the axiomatic potential theory, which is useful in the classification
theory (Section 3) of determining whether there exist on 7', positive potentials,
positive non-constant harmonic functions, bounded non-constant harmonic
functions etc..

Section 4 studies the potential theory associated with another structure P’
on T, that is subordinate to the initial probability structure P. An example of
the P’-potential theory on T is the potential theory on 7T associated with the
Schrédinger equation Au(x) = Q(x)u(x) for some Q >0 on T.

Section 5 studies the potenial theory on 7 associated with the operator 4™,
m integer > 2. After defining polypotentials on 7', we obtain a necessary and
sufficient condition for the existence of positive polypotentials on T'; we discuss
the balayage and the domination principle for polypotentials; and finally, in
Section 6 a general representation of positive m-superharmonic functions on 7'
is given, on the lines of the Riesz-Martin representation for positive super-
harmonic functions.

2. Preliminaries

Let T be a tree in the sense of Cartier’s [4]: T is an infinite graph,
connected, locally finite and without circuits. If [x, y] is an edge on 7', x and
y are called neighbours, denoted by x ~ y. A vertex x in T is called ter-
minal if and only if it has a single neighbour in 7. We say that a transition
probability structure P is given on 7 if for any two vertices x and y, there is
associated a number p(x, y) > 0 such that for any x in T, p(x) = > p(x, y:;) =

X~Di
L; p(x,y) >0if x ~ y; p(x,y) =0 if x and y are not neighbours; and p(x, y)
need not be equal to p(y,x).
With respect to a transition probability structure P, given any function

f(x) on T, define Af(x) = >_ p(x,y)f(y) — f(x) for any non-terminal vertex

X~y
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x in 7. Given a subset S of 7T, a vertex x is called an interior point of S
(denoted by x € S°), if every neighbour of x in 7 belongs to S.

We stipulate that a terminal vertex x is not in S° for any subset S. u is
said to be P-harmonic (resp. P-superharmonic) at a vertex xo, if xo is not
terminal and if u is defined at x¢ and on all its neighbours and verifies the
condition Au(xg) =0 (resp. du(xp) < 0).

A function /(x) defined on a subset S of T is called P-harmonic (resp.
P-superharmonic) on S, if / is real-valued on S and Ah(x) =0 (resp. 1 > —o0
on S and 4h(x) < 0) at every interior point x of S. (As usual, # = oo is not
considered as P-superharmonic, and v is called P-subharmonic if —v is P-
superharmonic.)

If x and y are two vertices, then the length of the geodesic (see [4, p. 212))
joining x and y is called the distance between x and y, denoted by d(x, y).
We shall fix a non-terminal vertex e in 7' and denote |x| = d(e, x), the distance
of x measured from e. That is, if {e,x;,x2,...,x, = x} is the geodesic path
connecting ¢ and x, then |x| = d(e,x) = n.

In this section, we shall fix a transition probability structure P.
Consequently, there will be no confusion if we drop the prefix “P-” from
P-superharmonic, P-harmonic etc..

LemMA 2.1 (See the proof of [1, Proposition 4.2]). Suppose u(x) is defined
on n < |x| <n+m, with an integer m > 1 and harmonic on n < |x| <n+m
(which is an empty set if m = 1). Then u(x) extends as a harmonic function for
|x| > n.

Proof. Let |x;| =n+m. Consider the neighbours of x;. There is one
xo with |xo| =n+m — 1 and the others are finite in number. If x is a vertex
in the latter group, then |x|=n+m+ 1. Denote the set of these latter
neighbours by N, which is empty if x; is terminal. Note that u(x) is defined
at xo and x;. Let u(xo) = oo and u(x;) = o;. Choose the constant o, such
that if u(x) = o at each neighbour x in N, then u(x) is P-harmonic at x;; that
is, o1 = aop(x1,x0) + o2 Y p(x1,x).

xeN

We repeat this procedure for each x; with |x;|=n+m. We then get
an extension of u(x) as a harmonic function on a set that includes
|x| =n+ m. Proceeding step-by-step, we extend u(x) as a harmonic function
on |x| > n.

REMARK 2.1. 1) In the above type of construction of a harmonic extension,
note the following: Let x and z be neighbours of y with |x| < |y| <lz|. If
0 < u(x) <u(y), then we have u(y) < u(z). For, with the notations in the above
lemma,
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o — oo p(X1, Xo)

D ST TES
N
B o (1 — %:P(xl,x)) — aop(x1,x0)
B > p(x1,x)
N
” (1 - zp<x1,x>) — a1p(xt, x0)
> al (if 0 <op <o)

> p(x1,x)
N

=0.

2) As a special case of the above Lemma, we state: Let s be a
superharmonic function defined on B, = {x:|x| <n} with finite harmonic
support on 4 < B,; that is, 4s(x) <0 if |x| <#n and 4s(x) =0 at each vertex
x in B,\A. Then there exists a superharmonic function # on T such that
u(x) = s(x) for all x, |x| <n and u(x) has the same harmonic support 4. In

particular, if i(x) is harmonic on B,, n > 1, then we can find a harmonic
function H(x) on T such that H(x) = h(x) if |x| <n.

DErRINITION 2.1. 1) A simple set w in T is a set consisting of points x such
that x is an interior point of @ or has an interior point of w as a neighbour. (A
terminal point in T is not considered as an interior point.)

2)  w is said to be a connected simple set, if w is simple and ®° is connected.

ExaMPLE 2.1. i) With e as a fixed non-terminal vertex in T, if |x| =
d(x,e), then |x| <n is a connected simple set and |x| >n is a simple set.

ii) The whole tree T is a connected simple set.

iii) If xo ~ e, then define the section determined by e and xo as

[e, xo] = {x: the geodesic path joining e and x passes through xo};

e and xo are also included in [e,xo]. Note that if e is not terminal, then T is
divided into a finite number (>1) of disjoint sections with e as the joining vertex;
also each section [e, x| is a connected simple set.

Networks and trees

An infinite network (see M. Yamasaki [8] and [9]) consists of a countable
set X of nodes and a countable set Y of directed arcs, each arc joining a pair
of nodes. If two nodes x; and x, are joined by an arc, we shall say that x;
and x; are neighbours and denote this situation by writing x; ~ x,. With the
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terminology as in the case of a Cartier tree, {X, Y} is locally finite and con-
nected. Corresponding to the transition probability structure given on a tree,
one is given a strictly positive real function r on Y. An infinite network N is
determined by the set X of nodes, the set Y of directed arcs and the strictly
positive function r.

Given a pair of distinct nodes x; and x, in X, using the function r, in [8,
p. 34] a real number #(x, x2) = #(x2,x;) > 0 is associated such that 7(x;, x,) =0
if and only if x; and x, are not neighbours. Set #(x) = > #(x,x;). Con-

Xi~X
sequently, #(x) > 0 for any node x. Then, given a real-valued function u(x) on
X, the Laplacian of u is defined as Ayu(x) = —t(x)u(x) + > 1(x, x;)u(x;); u
Xi~X
is said to be harmonic (resp. superharmonic) on a set A if Ayu(x) =0 (resp.
Ayu(x) <0) for all x e A.
For any pair of vertices x and y in T, define p(x,y) =2 Then

t(x)
p(x,y) >0 and p(x,y) =0 if and only if x and y are not neighbours;

> p(x,y) =1 for every fixed xe X; and p(x,y) may not be equal to
X~y
p(y,x). For this probability structure, let us define the Laplacian by

Aru(x) = YZN:Yp(x, xi)u(x;) — u(x).

If an infinite network N is thus considered with this probability structure,
then the harmonic structures defined on N by Ay and A7 are the same. For,

Ayu(x) = —t(x)u(x) + Z 1(x, x;)u(x;)

Xi~X

=t(x) | —u(x) + Z p(x, xi)u(x;)

Xi~X

= t(x)dru(x).

Since #(x) > 0 for any x, for the definition of harmonic (resp. superharmonic)
functions on N, one can use Ay or Ar.

Thus, Yamasaki’s study of harmonic functions on an infinite network N
([8] and [9]) is useful while investigating the properties of harmonic and super-
harmonic functions on a Cartier tree 7.

LeEmMA 2.2 (See [8, Lemma 2.3]). Let {u,} be a sequence of superharmonic
functions (resp. harmonic functions) defined on a connected simple set w in a tree
T. Suppose u(x) = lim u,(x) exists on w. If u(x) is finite at some point in ©°,
then u(x) is finite on ® and superharmonic (resp. harmonic) on w. Moreover,

(—u(x) = lim(—A)u,(x) on °.
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Proor. First note that if s(x) is superharmonic on , then s(x) should be
finite at each point. For suppose s(xo) = co for some xpew. If xy¢w°,
then there is some x; € w° such that xo ~ x;. Then, because s(x) is super-
harmonic at x; and s(x¢) = oo, s(x;) should be oo. Thus, if s = 00 at some
point x( in w, then we can take without loss of generality xo € @w°. Then, since
w°® 1s connected, s = o0 on w°. This is a contradiction.

Now to prove the lemma, since u, is superharmonic on w, for x € @°,

uy(x) = >0 p(x,x;))un(x;). Take the limit as »n— co. Then u(x)>

X~ X

> p(x, xi)u(x;). Since u(x) satisfies the sub-mean-value property on »° and
X~ X

is finite at some point, u(x) is superharmonic on w.
Finally, since for any x € w°®, (—A)u,(x) =u,(x)— >, p(x, yi))u,(y:), by
allowing n — oo we obtain i

(=Mu(x) = u(x) — Z plx, you(y) = lim (—A4)u,(x).

n—oo
X~Ji
CONSEQUENCE:  Let {u,} be a sequence of positive superharmonic func-

o0
tions on a connected simple set . Suppose > u,(y) < co for some y € w°.
Then n=1

is finite for each x € @ and u(x) is superharmonic on w.

THEOREM 2.1 (See [9, Theorem 2.3]). Let w be a connected simple set in a
tree T. Let a,bew°®. Then there exist positive constants o and 5, depending
on a and b only, such that for any superharmonic function s >0 on o, as(b) <

s(a) < ps(b).

ProoF. Let s> 0 be a superharmonic function on w. Suppose s(x) =0
for some x e w°. Then s =0 on w. So, let us assume s > 0 on w°. Since w°
is connected by assumption, there exists a path in w° that connects ¢ and b.
Hence (see [4, Proposition 1.1]), the geodesic path connecting @ and b lies in .

Let {a = x¢,x1,...,Xx, = b} be the geodesic path connecting ¢ and b.
Since s is superharmonic, s(x;) = > p(x;, x)s(x). Since x;1; is a neighbour of
xi (0<i<n-1), i

Z P(xi, X)s(x) = p(xi, Xi1)S(Xi11)-

Hence s(x;) = p(x;, xir1)s(xi41). Writing such inequalities for all i, 0 <i <
n — 1 and multiplying them we obtain p(x¢, x1)p(x1,x2) ... p(xu_1,b)s(b) < s(a).
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Similarly we can prove that p(b,x,_1)...p(x1,x0)s(a) < s(h). Since the
geodesic path {xo,...,x,} joining a and b is fixed, we conclude that there
are two constants « >0 and f >0 depending only on ¢ and b such that

as(b) < s(a) < Ps(b).

THEOREM 2.2. Let s and t be real-valued functions on a set w in a tree
T. Let s be superharmonic and t be subharmonic on w such that s >t Then
there exists a harmonic function h on w such that s > h >t

Proor. Take the family < of all subharmonic functions u on » majorized
by s on @°. Let A(x) =sup u(x). Let yew®. Then there exists a sequence
u,(y) increasing to h(y).*3

For x € o, let g(x) = sup u,(x). Then —oo < g(x) < h(x) < s(x) < oo and

q(x) =lim v,(x) where v, = sup wu; is subharmonic. Hence ¢(x) is a sub-
1<i<n
h

harmonic function on w (Lemma 2.2), ¢g(x) < /i(x), and ¢(y) = h(y). Con-
sequently,

h(y) =q(») < > p(ry)a(y) < > p(r, yi)h(y).
y~vi y~vi
Hence, A(x) is subharmonic at x = y. Since y is arbitrary in ®°, h(x) is
subharmonic on @w. We claim that /(x) is harmonic on w.
Take any yew®. By hypothesis, h(y) < > p(»,yi)h(yi) =v(y), say.
Consider, M
h(x) onw
g = {1 on A
v(y) atx=y.
Then v;(x) is subharmonic on @ and harmonic at x = y. To see this we have
only to check the inequalities at x = y, and at the neighbouring points of y

in o°. At x=y, vi(y) =v(y)= X p(y,yi)h(yi) = > p(y, yi)vi(»:) so that
y~vi Vi
vi(x) is harmonic at x=y. At x=z~y, z€w®,

v1(z) =h(z) < Zp(z, xi)h(x;) (since & is subharmonic on w)

Z~X;

- Z p(z, xi)h(x;) + p(z, y)h(p)

I~Xi Xi FY

> pEx)h(x) + plz p)e(y)  (since v(y) = h(y))

I~ Xy Xi Y

=Y plz,xi)oi(x:).

zZ~Xi

IA

Hence v is subharmonic at z.
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Also, v;(x) < s(x) on w. To see this, we have only to check at x = y; for,
on w\{y}, vi(x) =h(x) <s(x). Now at x =y,

ol(y) =v(y) =Y p(y, y)h(yi)

~pi

= Z (¥, yi)s(yi) (since h <)
y~Dbi

<s(y) (since s is superharmonic).

Thus, v; is subharmonic on w and v; <s. Hence vy € & and consequently
v; < hon w. But by the construction of v, v; > h on w. Hence vy =/ on w.
This means that /(x) is harmonic at x = y. Since y is arbitrary in w°, we
conclude that /A(x) is harmonic on w and & <'s.

REMARK 2.2. The harmonic function h constructed as above such that
s=>h>t on w is referred to as the greatest harmonic minorant (g.h.m.) of s
on .

DErFINITION 2.2. A real-valued superharmonic function s > 0 defined on a
set w in a tree T is said to be a potential on w, if the greatest harmonic minorant
of s on w is 0.

RIESZ DECOMPOSITION: Suppose s> 0 is a real-valued superharmonic
function on a set w in a tree 7. Then s can be written as a unique sum s =
p+h of a potential p on @w and a nonnegative harmonic function 4 on w, by
choosing / as the greatest harmonic minorant of s on w.

The Dirichlet problem

Let @ be a finite connected simple set. Let f be a real-valued function on
0w = w\w°. Choose constants « and f such that o < f < f on dw. Define

[ f(x) if xedw
t(x)_{oc if xew°,
and
[ f(x) if xedw
S(x)_{ﬁ if x e w°.

Then on w, s(x) is superharmonic, #(x) is subharmonic, and s(x) > #(x).

Let A(x) be the ghm. of s(x) on w. Since s(x) =t#(x) = f(x) on Jdw,
h(x) = f(x) on dw. Thus, & is the Dirichlet solution on @ with boundary
value f; remark that / is uniquely determined.
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To prove the uniqueness of 4, it is enough to show that H =0 if H is
harmonic on w and vanishes on dw: Suppose H > 0 at some point. Since @
is finite, H attains its maximum M at some point in ®°. Since @° is con-
nected, H =M on w°. Let yedw. Since w is simple, y has a neighbour
xew®. If M >0 then

M=H®= Y plx)H)+plx H) < M,
Xi~X,Xi #Y
since H(x;) < M and H(y) = 0; this is a contradiction. Hence H <0 on w.
Similarly, we show that H >0 on w. Hence H = 0.

(Remark that the above method to prove the uniqueness part can be
used to obtain the following property for superharmonic functions: Let w be
a connected simple set in 7. Suppose s is a superharmonic function on o,
attaining its minimum value at a vertex in w°. Then s is a constant on w.)

In this context, we prove the following minimum principle also for super-
harmonic functions:

MINIMUM PRINCIPLE: Let s be a superharmonic function defined on a
finite connected set w. Then infy, s = inf,, s.

For, suppose inf,, s = . Assume that for some x( € @°, s(x9) = . Take
a vertex y € dw. Since w is connected, there is a path {xg,xi,...,x, = y}
connecting xo and y. Let i be the smallest index such that x; € dw. Since
s(x0) = > p(x0,2)s(z) and s(x¢) = is the minimum value, we should have

Xo~zZ
s(z) = p for every z ~ x9. Since x; ~ x9, we have s(x;) =f. The same ar-
gument repeated, leads to the conclusion s(x;) = . Consequently, infy, s < f
which implies that infy, s = inf,, s.

We remark that the above method of finding the Dirichlet solution is
based on potential theoretic techniques on a tree 7. For an alternate method,
using the hitting distribution of the stochastic process generated by the transi-
tion probability structure of 7', see Berenstein et al. [2, p. 461]. We remark
also that the above method proves the existence (not necessarily the uniqueness)
of the Dirichlet solution in the following general situation: Let @ be an ar-
bitrary (finite or not) set in a tree 7. Let f be a bounded function on Jdw.
Then there exists a bounded function /% on w such that 7= f on dw and & is
harmonic on ®°.

We shall use the term P-tree T if there is a potential > 0 on T and the
term S-tree if there is no positive potential on 7.

THEOREM 2.3. Let e be a non-terminal vertex in a P-tree T. Then there
exists a unique potential G.(x) on T with point harmonic support at e (that is
G.(x) is harmonic outside e) and (—A)G,(x) = d.(x), the Dirac measure at e.
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Proor. Let p(x) be a positive potential on 7 such that p(e) = 1. Let &
be the family of all superharmonic functions u(x) > 0 on 7T such that u(e) > 1.
Let s(x) =inf,cq u(x). Then an argument as in the proof of Theorem 2.2
shows that s(x) is positive, superharmonic on 7, harmonic on 7\{e} and
s(e) = 1; moreover since p €S, s is a potential on 7. Since (—4)s(e) > 0, if
we define G,(x) = (j;)(()) on T, then G,(x) has all the properties stated in the
theorem.

For the uniqueness, suppose Q(x) is another such potential on 7. Then
(=A)[G.(x) — Q(x)] =0 for all x, so that for a harmonic function v(x) on T,
G.(x) = Q(x) + v(x). We conclude v=0 on T, by using the uniqueness of
decomposition of a positive superharmonic function as the sum of a potential
and a non-negative harmonic function.

Pseudo-potentials

Let T be an S-tree. Fix a non-terminal vertex e and a function H >0
on T such that H is harmonic on T\{e}, 4H(e) =1 and H(e) =0. Since H
is subharmonic on the S-tree, if H is bounded, then it should be a constant.
This is not the case here. Hence H is unbounded on 7. Then (using [I,
Theorem 4.3]) for any non-terminal y € 7T, there exists a unique superharmonic
function ¢,(x) on T such that (—4)g,(x) =d,(x) for all x in T, ¢,(y) =0 and
gy(x) — ayH(x) is bounded on T for a uniquely determined o, < 0.

To see the uniqueness of the function ¢,(x) and the constant «,, suppose
s(x) is another such superharmonic function on 7 with the properties:
(=4)s(x) = 0y(x), s(y) =0 and s(x) — fH(x) is bounded on 7. Then h(x) =
¢y(x) — s(x) is harmonic on T and |h(x)— (o, — f)H(x)| is bounded on T.
Since H is positive and unbounded, this would imply that /4 is bounded at least
on one side; and consequently % is a constant since 7' is an S-tree. Since
h(0) =0, h=0. Then |(a, —pB)H(x)| is bounded on 7, but H(x) is un-
bounded. Hence o, =f. We shall call ¢,(x) the (unique) pseudo-potential
on T with point harmonic support {y}. Suppose A4 is a set of non-terminal

vertices such that ¢(x) = > o;qy,(x), for o; > 0, is a superharmonic function
x;€A
on T. Then we refer to g(x) as a pseudo-potential with harmonic support A.

THEOREM 2.4. Let f(x) >0 be a real-valued funtion on T. Then there
exists a superharmonic function s(x) on T such that (—4)s(x) = f(x) on T°.
(T° is the set of all non-terminal vertices of T.)

PrROOF. In the proof of this theorem we shall write

0,(x) = Gy(x) if T is a P-tree
»Y = gy(x) if T is an S-tree.
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Correspondingly, the term Q-potential refers to a (Green) potential if 7" is a
P-tree and to a pseudo-potential if 7" is an S-tree.
1) Suppose f(x) =0 outside a finite set A of non-terminal vertices. Let
s(x) =Y f(a)Qu(x). Then s(x) is a Q-potential on T such that (—A4)s(a) =
aeA

f(a) for each a € A, and (—4)s(x) =0 if x¢ A. Thus, (—4)s(x) = f(x) for all
xeT°.

2) Suppose f(x) >0 is an arbitrary function on 7. Fix a non-terminal
vertex e and measure distances from e. (See the Preliminaries for the term
“distances measured from e”). Recall that for a real-valued function g(x) on
T, Ag(x) is defined only for the non-terminal vertices x of T.

Let

o Sfx) i |x[=n+2
Snlx) = {0 if |x| #n+2.

Then by 1) above, there exists a Q-potential s,(x) on T such that (—4)s,(x) =
Ja(x).  Since s,(x) is harmonic on |x| < n+ 2, by Remark 2.1, there exists a
harmonic function v,(x) on T such that s,(x) = v,(x) on |x| <n.

Let

s}

q(x) =Y [sulx) = oa(x)].

n=1

Now given any finite set K = {x: |x| <m}, t, =s, — v, is a superharmonic
o0

function on T and 7, =0 on K if n is large. That is, in >_ [s,(x) — v,(x)] all
n=1

the terms except a finite number of them are 0 when x € K. Consequently by
Lemma 2.2, ¢g(x) is a superharmonic function on {x:|x| <m} > K. Hence
¢(x) is a superharmonic function on 7 such that

SR G

n=1

Let o) = /(000 + & SO0+ % /(). Then o(x) is a ¢
potential on 7 such thaii .

BORTES
(=A)e(x) = {o if |x| > 2.

Hence, if s(x) = v(x) + ¢(x), s(x) is a superharmonic function on 7" such that
(=4)s(x) = f(x) for all xe T°.
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COROLLARY 2.1. Let F be any subset of T. Let f(x) >0 be defined on
F. Then there exists a superharmonic function s on T such that (—4)s(x) =
f(x) for each x e F°.

Proor. Extend f as a positive function on 7T, by defining f(y) =0 if
y ¢ F. Then, apply the above Theorem 2.4.

COROLLARY 2.2. Let v be a potential on a P-tree T. Then, for xe T,

yeT°

Proor. Fix a non-terminal vertex e in T, and measure distances from e.
Construct two superharmonic functions s; and s, on 7 such that (—A4)s;(x) =
fi(x) and (—4)s:(x) = fo(x) where

[ (=o(x) if |x[ <n
f‘(x){o if x| > n,

and

0 if |x| <n

o) = { (—A)o(x) if x| > n.

Then v(x) = s1(x) + s2(x) + A(x) on T where h(x) is harmonic on 7. Since
v >0, s, > —s; — h; that is, s, has a subharmonic minorant on 7. Hence by
Theorem 2.2, s» = ¢» + hy where ¢, is a potential and /4, is a (not necessarily
positive) harmonic function on 7.

For similar reasons, s; =¢; +/h; where ¢; is a potential and 5 is
harmonic. Then, by using the uniqueness of decomposition property, from
v=q1+ ¢+ (Il + ha + h), we conclude that v =¢q; + ¢» on T. Hence ¢; < v.
Since qi1(x) = > (—4)v(y)G,(x), by allowing n— oo we obtain Q(x) =

N<n

> (=)o( y)Gly}(‘x) <uwv(x). Since Q(x) is a non-negative superharmonic func-
yeT°

tion, majorized by the potential v(x), Q(x) is a potential. Further, (—4)Q(x)
= (—4)v(x) so that Q(x) = v(x) + u(x) where u(x) is a harmonic function on
T. Again the uniqueness of decomposition implies that u = 0. Thus, v(x) =
> (=A)v(y)Gy(x) for every xeT.

yeT°

REMARK 2.3.  The above representation of a positive potential on T is taken
as the definition of a potential in Cartier [4, Sections 2.2 and 2.3]. There, by
starting with the notion of the kernel associated to a collection of paths, the
Green function G(x, y) is defined. Then, for any function f >0 on T, Gf(x) =
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ST G(x, y)f(y) is either always oo or always finite on T satisfying AGf = —f in
B
the latter case, Gf(x) is termed as the potential of f.

LemmA 2.3, Let s(x) be a positive superharmonic function and q(x) be a
potential on a P-tree T such that (—A)s > (—4)q on T°. Then s>q on T.

ProOOF. By hypothesis, s = ¢ + s; where s; is superharmonic on 7. Since
§>0,¢g>—s; on T. Since ¢g is a potential and —s; is subharmonic, —s; < 0.
Hence s > ¢q on T.

THEOREM 2.5 (Domination Principle). Let s > 0 be a superharmonic func-
tion and q > 0 be a potential on T. Let E be the harmonic support of q. If
s>q on E, then we have s > q on T.

Proor. Let u =inf(s,¢). Then u is a potential on T satisfying u < ¢ on
T and u=¢q on E. Hence, if xe ENT°, then

(=d)u(x) = u(x) = > p(x, yi)u(yi)

X~ i

> q(x) = > plx,y)q(yi)  (since u(x) =g(x) and u<q on T)

X~Yi
= (~A)q(x).

Now, if xe ECNT°, then (—4)g(x) =0, but (—A)u(x) >0 always. Thus, for
all xe T°, (—A)u(x) = (—4)q(x). This implies (Lemma 2.3) that u(x) > ¢(x)
on T. Hence inf(s,q) =u=g¢ on T, so that ¢ <s on T.

REMARK 2.4. In [7, Theorem 5.3, this Domination Principle is proved on
T, under some restrictions on the transition probability structure P, namely:
There exists a constant 6 such that 0 <o <% and for all s,t e T with s ~t, we
should have & < p(s,t) < 1 —6.

NotaTioN: With the standard notations of balayage, let us write
I/{?(x) = inf{s(x) : s > 0 is superharmonic on 7 and s(e) > 1}.

THEOREM 2.6. Let T be a P-tree. For a non-terminal vertex e, G.(x) =
Ge(e)R{(x) on T. In particular, G.(x) < Ge(e) for all x in T.

Proor. Let s(x) >0 be a superharmonic function on 7 with s(e) > 1.
Let u(x) = gi:)) Let v(x) =inf(s(x),u(x)). Then v(x) is a superharmonic
function on T such that v(e) = 1.

Now,
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(=d)o(e) = v(e) = Y ple,xi)v(x;)

> u(e) — Z ple, xi)u(x;) (since u > v and u(e) =v(e) =1)

e~Xj

A)u(e).

(=
Since (—4)v(x) =0 for all x in 7° and (—4)u(x) =0 if x # e, we have
(—A)v(x) = (—A)u(x) for all x in 7°. Hence by Lemma 2.3, v(x) = u(x) on
T, so that u(x) = v(x) = inf(s(x),u(x)); that is u(x) < s(x) on 7. Taking the
infimum over all such funtions s, we conclude that u(x) < I/Q?(x) on 7. In
particular, u(x) < 1. Thus u(x) is a positive superharmonic function on 7" and
u(e) =1 so that u(x) > I/{?(x) on T. Hence we have u(x) = I/Qf(x) for all x
in T.

PrOPOSITION 2.1.  Let u be a subharmonic function defined outside a finite
set in a P-tree (resp. S-tree) T. Then there exist a subharmonic function v and
two potentials (resp. pseudo-potentils) p; and p, with finite harmonic support on
T such that u = v+ p; — py near infinity and p, — p, is bounded on T if it is a
P-tree.  Moreover, in case u is harmonic near infinity, v is harmonic on T; and
in this case the harmonic function v is uniquely determined if T is a P-tree, but v
is uniquely defined only up to an additive constant if T is an S-tree.

Proor. For ye T let Q,(x) denote the potential (resp pseudo-potential)
with harmonic support at y if T is a P-tree (resp. an S-tree). We have
(—=4)0,(y) =1 in all cases. Fix a non-terminal vertex e and let |x| = d(e, x)
be the distance of x from e. For large n, let B,u denote the Dirichlet solution
on |x| < n with boundary values u(x) on |x| = n.

Define
(x) = {u(x) if |x| >n

s(x) = .
Bu if |x] <n.

Then A4s(x) >0 if |x| >n and 4ds(x)=0 if |x|<n Let v(x)=s(x)+
Z As(y)0y(x). Clearly dv(x) >0 if |x| # n and if |x| =n, x =y, 4v(y) = 0.
lyl=
Thus Av(x) = 0 for every xe T°. Hence v is subharmonic on 7 and when
|x| > n, u(x) =v(x) + p1(x) — p2(x) where p;(x) = I; [45(y)]” Oy(x) and p(x)
y|=n
= 3 [4s(»)]7Qy(x) so that p; and p, are potentials (resp. pseudo-potentials)
=n

with finite harmonic support if 7" is a P-tree (resp. an S-tree). By Theorem
2.6, p; — p, is bounded if T is a P-tree.

Finally, suppose u is harmonic near infinity. Then Av(x) = A4s(x) =10

if |x| #n also, so that 4v =0 on 7°. Hence v is harmonic on 7. Now,
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suppose u = v’ + pj — pj is another such representation outside a finite set.
Then,

(i) if T is a P-tree, then the subharmonic function |v—0v'| on T is
majorized by the potential p; + p» + p| + p5 outside a finite set 4. Choose a
potential L > 0 on 7. Since A is finite, we can find a constant 4 > 0 such that
lv—v'| <AL on A. This implies that |v—v'| < AL+ (p1 + p2» + pj + p5) on
T. Since the subharmonic function |v — v’| is majorized by a potential on T,
|v — 0’| <0 and hence v — v’ =0; and

(i) if 7 is an S-tree, since the p’s are pseudo-potentials with finite
harmonic support, for some o, v— v’ —aH is bounded near infinity. Since
v—v' is harmonic on 7T, o= 0. This implies that v — v’ is a constant c.

CoroLLARY 2.3 (Laurent decomposition). Let e be a fixed non-terminal
vertex and |x| =d(e,x). Suppose u(x) is defined on n < |x| <n+m, with an
integer m > 1 and harmonic on n < |x| <n+m. Then there exists a har-
monic function t(x) on |x| < n+m and a harmonic function s(x) on |x| > n such
that u(x) = s(x) —t(x) on n < |x| <n+m. Moreover, s(x) can be chosen as
follows:

(i) i T is a P-tree, then there exists a potential p(x) on T such that
Is(x)| < p(x) outside a finite set. Hence the decomposition is unique.

(i) if T is an S-tree, then there exists a unique o such that s(x) — oH(x)
is bounded outside a finite set. Hence the decomposition is unique up to an
additive constant.

Proor. First use Lemma 2.1 to extend u as a harmonic function on all of
|x| > n. Then by the above Proposition 2.1, there exists a harmonic function v
on T such that u = v+ p; — p» (when |x| > n), where p; and p, are potentials
on T with finite harmonic support if T is a P-tree and p; and p, are pseudo-
potentials with finite harmonic support if 7' is an S-tree; the harmonic supports
of p; and p, are in |x| =n.

Define s(x) = u(x) —v(x) on |x|>n and #(x) = —v(x) on |x| <n+m.
Then the properties stated in the corollary can be verified.

3. Harmonic measure of the point at infinity of a section

The sections in a tree which we are going to define now, are useful to
classify the trees with or without positive potentials. They correspond to the
“ends” of Cartier’s (see “bouts” in [4, p. 212]) and hence to the boundary
points in the compactification given in [4, p. 219].

DEeFINITION 3.1.  Let e be a vertex in T. Let e be a neighbour of e, such
that there exists an infinite geodesic chain R = {e,e|,x1,x2,...} consisting of
distinct elements. Let o = agle,e] be the union of R and all the neighbours of
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the vertices in R\{e}. Then, we say that arle,e|] is a section determined by e
and ey containing R.

LeEMMA 3.1. Let agle,ei] be a section determined by e and e; containing
R=/{ee1,x1,x2,...}. Then there exists a function h on ogle,ei] such that
h(e) =0, h(e;) =1 and h(x)=c¢, if d(ei,x) =n where ¢, is a sequence of
positive numbers such that 1 < ¢, < ¢y for all n > 1. Moreover, h(x) is har-
monic on ogle, ey, that is harmonic at every interior point of agle,e].

PrROOF. Let x € ggle, e1], x # e be such that d(e;,x) = 1. Take h(x) = ¢
so that /i is harmonic at ¢;. That is, if ¢ is the probability of transition from e,
to e, then we have 0+ (1 —r)c; =1 so that ¢; =L > L.

Suppose ¢y, ...,c, are chosen such that A(x) = ¢ if d(e;,x) = k for all &,
1 <k <n and h(x) is harmonic at all interior points x of ogle,e;] for which
d(e;,x) <n—1. Let us fix ¢,y so that i(x) = ¢, if d(e;,x) =n+1 and
h(x) is harmonic at all interior points x of ogle,e;] for which d(e;,x) =n. For
this, we should have the following: Let d(e;,x)=n+1. Let #, be the
probability of transition from x, to x,-; (take xo =¢; and ¢y =1). Then
twen1+ (1 = ty)cuy1 = ¢y so that ¢, = % > ¢, since ¢,_i < c¢,. This
completes the proof of the lemma.

DEFINITION 3.2.  The section agle,ei] determined by the geodesic chain R
is called a P-section if the harmonic function h(x) in Lemma 3.1 is bounded;
otherwise it is called an S-section.

ExaMpLE 3.1. i) Let T be a homogeneous tree of degree q+1 (q > 2);
that is, every vertex in T has exactly q + 1 neighbours with the transition prob-
ability from one vertex to another being q—j_l (Cartier [4, p. 262]). In this case,
any section is a P-section.

For, let ey be a neighbour of e. Let ogle,ei]| be a section determined by an
infinite geodesic chain {e,e,x1,xa,...}. Then the construction of the harmonic

Sfunction as in Lemma 3.1 shows that h(e) =0, h(e;) =1, and h(x,) = i g
Since q > 2, h is bounded and hence agle,e1] is a P-section. k=0

i) Let T be a star tree with centre e (Cartier [4, p. 251]). Let e be a
neighbour of e. Then the section agrle,e;| is an infinite geodesic ray which we
shall denote by R = {e,e1,x1,X2,....}. Suppose the transition probability from
Xp 10 Xyy1 IS pp and from X, to x, is ¢, for n > 0 (taking xo = e1). Let q
be the transition probability from ey to e. Hence p,+q,=1 for n>0.

Then the function h for ogle,e|] constructed as in Lemma 3.1 is given
by: h(e) =0, and h(ey) =1 and if n>1, hix,) =1+ Z Ao -Gl Hence

PopP1---Pk-1

orle, e1] is a P-section if and only if Z % is convergem‘



Potential theory on trees 293

i) Let T be a star tree with centre e and N branches, N >2,1 <t <N,
denoted by C, = [s0.1,81.1,--., So.c = e for all t; and p,, is the transition prob-
ability from sy ; to Syy1; for n = 0. Like in (2), on each branch C,, construct
a harmonic function H; > 0 such that H,(e) =0 and H,(si ;) = 1. Note that H,
is unique and if u is defined on C; and harmonic at each s, for n > 1, then
(1) = [u(s1.0) — u(e) Hi(5,.1) + ue).

Consequently, any harmonic function h on T is uniquely determined by its
N values at {s;,}. For, since h is harmonic at e, h(e) =" po h(s1,,). Then at
any vertex s,; we should have h(s, ) = [h(s1,) — h(e)|H(sn,) + h(e).

Now assume that on such a star tree T, there exists a harmonic function
v >0 such that v(e) > v(s1,). Then C, is a P-section. For, from the above
representation of a harmonic function on T, we should have H,(s, ) <
v(e)[v(e) — v(slﬁ,)]fl. Since H, is bounded, C, is a P-section.

Let e be a vertex in 7. Let ¢; be a neighbour of e such that ogle,e;] is a
section determined by R = {e,e, x1,...}. Let H, be the Dirichlet solution in
w, = {d(e,x) < n}Nagle,e;] with boundary values 0 at e and 1 at all points x
in ogle,e;] such that d(e,x) =n, so that {H,} is a decreasing sequence. Let
Hg(x) = ir’%f H,(x) for each x € ogle,e;]. Clearly 0 < Hg(x) < 1.

DEerFINITION 3.3.  The harmonic measure of the point at infinity of the sec-
tion agle,ei] is said to be 0 if and only if Hg = 0.

PROPOSITION 3.1. A section agle,e;] determined by the geodesic chain R, is
an S-section if and only if the harmonic measure of the point at infinity of this
section is 0.

PrROOF. Let ogle,e;] be an S-section. Then by the construction given in
Lemma 3.1, there exists a harmonic function % increasing to infinity. Let
Xo € ogle,e;] be arbitrary. For any N, we can find »n such that i(x) > N
if d(e,x)>n. Hence (with the above notations) H,(x) < # on w,=

{d(e,x) < n}Nogle,ei], so that Hgr(x)=inf H,(x) < %Y) on w,. Choose n

large so that xo € w,. Hence Hg(xg) < hgf,(‘). Since N is arbitrary, Hgr(xg) =
0. Hence Hi = 0, that is, the harmonic measure of the point at infinity of the
section agle,e] is 0.

Conversely, suppose Hgr =0. Then ogle,e;] should be an S-section.
For, otherwise, it is a P-section in which case the function / constructed in
Lemma 3.1 should be bounded by a constant M. Let u(x) :%. Then
u(x) <1 and u(e) =0. Hence if H, is harmonic on w, = {d(e,x) <n}N
orle, e1] with boundary value 1 on d(e,x) = n and 0 at e, then H,(x) > u(x) on
w,. Consequently, Hg(x) = il’%f H,(x) > u(x). This contradicts the assump-

tion Hg =0. Hence ogle,e;] is not a P-section.
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In Bajunaid et al. [1, Theorem 5.2], it is proved that if a particular
function H*(w) defined on the boundary of a tree 7' has some special property,
then T is a P-tree. In a similar vein, we have the following sufficient condition
for T to be a P-tree.

THEOREM 3.1. Let T be a tree. Suppose e is a vertex such that for a
neighbour ey of e, agle,ei] defines a P-section. Then T is a P-tree.

PrOOF. Since ogle,e1] is a P-section, there exists a bounded harmonic
function % >0 on ogle,e;], h(e) =0, and h(e;) = 1. Hence / extended by 0
on T\og[e,e1] is a bounded non-constant subharmonic function on 7. This
implies that there exists a positive potential on 7.

CorROLLARY 3.1. If T is an S-tree, then every section ogle,e;| defined by
every vertex e in T is an S-section.

COROLLARY 3.2. Let h be a harmonic function on a star S-tree T. Then
on each branch, h is constant or tends to +oco or —oo.

Proor. Since T is an S-tree, each branch is an S-section. Hence
H, — oo (see Example 3.1 (3)) for each . Now / can be represented as

h(sut) = [h(s1.) — h(e)|H(sn,() + h(e).

Consequently on the branch C,, (i) 4 is a constant if A(s; ;) = h(e), (ii) h — oo if
h(sy,;) > h(e) and (iii) h — —oo if h(s),) < h(e).

We shall now introduce a method of dividing a tree 7 into a finite number
of subsets, starting with a non-terminal vertex. Let ¢ be a non-terminal ver-
tex and xo ~e. Write [e,x9] = {x e T: the geodesic joining ¢ and x passes
through x(}; we assume that e and x( are also in [e,xo]. Note that T =

() [e,x;] and some of these subsets [e,x;] can contain only a finite number
Xi~e

of vertices. (We have a situation here where the sets [e, x;] correspond to the
connected components of the complement of a nonempty compact set in a
harmonic space. This finite division of T can be used to obtain some sufficient
conditions for the existence of non-constant positive harmonic functions and
bounded non-constant harmonic functions on trees with positive potentials.)
Given a subset [e,xo], let Hje,xo] denote the family of functions / > 0
on [e, xo] such that h(e) =0, h(xo) =1 and A(x) is harmonic in the interior of
[e,x0]. Note that a construction as in Lemma 2.1 shows that Hjle,xo] # ¢.

DEFINITION 3.4, Let [e,xo] be a set containing an infinite number of
vertices. Then, [e,xo] is called a P-set if and only if there exists a bounded
Sunction h in Hjle, xo|, otherwise [e,x¢] is called an S-set.



Potential theory on trees 295

THEOREM 3.2. A tree T is a P-tree if and only if some non-terminal vertex
e determines a P-set [e,x).

PrOOF. Suppose [e,xg] is a P-set for a non-terminal vertex e. That is,
there exists a bounded function /1 > 0 on [e, xo] such that A(e) =0, h(x) =1
and A(x) is harmonic in the interior of [e, x¢]. Extend / as a function H on T,
by taking H(x) =0 if x¢ [e,x¢]. Then H(x) is a bounded (non-harmonic)
subharmonic function on 7', which (by Theorem 2.2) implies that there is a
positive potential on 7. For, if 0 < H(x) <M on T, then there exists a
harmonic function u(x) on T such that —M < u(x) < —H(x). By the con-
struction in Theorem 2.2, u(x) is the greatest harmonic minorant of —H (x) on
T. Hence, p(x) = —H(x) —u(x) is a potential on 7.

Suppose now that there is a potential p > 0 on 7. Choose a non-terminal
vertex e and let u(x)= I/Qf (x) = inf{s(x) : s positive superharmonic on T,
s(e) > 1}. Then u(x) is a potential, u(x) <1 on T, harmonic on T\{e} and
u(e) = 1. Since u cannot be a constant, there exists a set [e, xo], ¢ ~ xo, with
infinite vertices such that for some y in the interior of [e, x¢], u(y) < 1. (To
see that [e, x¢] contains an infinite number of vertices: Suppose u# =1 in the
interior of every one of the sets [e, x;] with infinite vertices. Then u=1 on
each [e,x;] with infinite vertices; it means that u = 1 outside a finite set in 7.
Since u is superharmonic on 7', by the minimum principle, # > 1 on T’; hence
u=1on T. This is a contradiction.)

Note u(xg) # 1. For if u(xg) =1, since u(x) <1, u(e) =1 and u is har-
monic outside e, then we should have u =1 on the connected set [e,x¢]; a
contradiction, since u(y) <1 for some y in the interior of [e,x¢]. Define
h(x) =Y for xele,xo). Then h>0, h(e) =0, h(xo) =1 and h(x) is

 Loulxo) T S .
bounded harmonic in the interior of [e,xo]. Hence [e, xo] is a P-set.

Let now {x;} be the finite set of neighbours of a non-terminal vertex e in
a tree T with positive potentials. On each [e, x;], construct a harmonic func-
tion u; such that u;(¢) =0 and u;(x;) = 1. Then the collection {u;} of func-
tions defines a function u(x) >0 on 7 such that u(e) =0, u(x;) =1 for each
neighbour x; of e, u(x) is harmonic on T\{e} and u(x) > 0 is subharmonic on
T. Then, using Proposition 2.1, we can find a harmonic function H on T such
that 0 < u(x) < H(x) on T. Hence we can now construct the least harmonic
majorant /s >0 of u(x) on T. Conversely, supppose 4 >0 is a harmonic
function on 7. Then u=h— I/QE is a positive subharmonic function on 7' and
u(e) = 0. Recall that for any function #(x) >0 on 7 and any subset 4 of T,
we write R/(x) = inf{s(x):s >0 is superharmonic on7 and s> on A}.

We prove now that this relation between u € Hy (T\{e}) (that is, u >0 is
subharmonic on 7, u(e) = 0 and u is harmonic on T\{e}) and # € H*(T) (that
is, & is non-negative harmonic on T) is isomorphic.
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THEOREM 3.3. In a tree T with positive potentials, let e be a non-terminal
vertex. Then the map H"(T) — Hy (T\{e}) is one-one and onto.

PrOOF. 1) One-one: Suppose /1 — Rh H RH for two posmve har-
monic functions 7 and H on 7. Then h +RH =H + Rh Since Rh and RH
are potentials, by the uniqueness of decomposition we have h =

2) Onto: Let now ue Hy (T\{e}). We shall show that u = h - 1/23 for
the least harmonic majorant /# of u (and hence if u is bounded, then / is
bounded).

Letv=h—u>0. Then vis superharmonic on 7 such that v(e) = /(e) so
that v(x) > ﬁf(x) on T; that is, h(x) > u(x) +§E(x).

Now, define
h(e) if x=e
q(x) = 5o .
u(x)+ Ri(x) if x #e.
Then ¢(x) is harmonic on T\{e}. At x=e,

= Zp(e, x;)h(x;) (since A is harmonic)

e~Xx;

Zp e, x;)[u(x;) +R (x;)] (since h > u—H’/QE (proved above))

e~ X;

=3 plex)a(x) (since x; # ).
e~ X
Hence ¢(x) is superharmonic at x = e. Thus, ¢g(x) > 0 is superharmonic on T
and g(e) = h(e). Clearly g(x) > u(x) on T since u(e) =0. Hence h(x) being
the least harmonic majorant of u(x), we have ¢(x) > h(x). Hence u(x)+
Rf(x) = h(x) on T. Consequently, u(x) + Rf(x) = i(x) on T. The theorem is
proved.

COROLLARY 3.3. Let e be a non-terminal vertex in a tree T. Suppose e
determines at least two infinite sets [e, x| and [e, x;], of which one is a P-set and
the other is an S-set. Then there exists a non-constant positive harmonic
function on T.

Proor. Since there is a P-set in 7, T is a P-tree (by Theorem 3.2). By
the definitions of a P-set and an S-set, there exist a bounded harmonic function
hi =0 on H{le,x;] and an unbounded harmonic function /; > 0 on H{le, x3].
Extend /) as a function i on T by giving the value 0 on T'\[e,x;]; similarly
hy is extended as A5 on T. Now, A and /; are non-proportional and are in
H{ (T\{e}). Then by using the above Theorem 3.3, we can find two non-
proportional positive harmonic functions H; and H, on 7. This proves the
existence of a non-constant positive harmonic function on T.
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COROLLARY 3.4. Let e be a non-terminal vertex in a tree T. Suppose e
determines at least two P-sets [e,xi] and [e,x;]. Then there exists a non-
constant bounded harmonic function on T.

Proor. With the same notations as in the proof of the above Corollary
3.3, we obtain two non-proportional harmonic functions H; (corresponding to
h{) and H, (corresponding to ;) on T. Since /] and h; are bounded, by the
construction (see the “onto” proof of Theorem 3.3) H; and H, are bounded
on 7. Thus, H >0 and H; > 0 are bounded, non-proportional harmonic
functions on 7. Hence at least one of them is non-constant.

4. Subordinate structures

In this section, we introduce the notion of a structure P’ subordinate to the
transition probability structure P given on a Cartier tree 7. The potential
theory corresponding to P’ can be used to study the properties of the solutions
of Au(x) = Q(x)u(x) on T, where Q(x) >0 is a finite-valued function on T.

Let T be a tree in the sense of Cartier’s with a probability structure P
giving the nearest neighbour transition probablity p(x,y) for x, y in 7. If
the neighbouring points x and y are indicated by x ~ y, then recall that
p(x,y) >0if x ~ y, p(x,y) =0 if x and y are not neighbours, 0 < p(x, y) <1
and Y p(x,y;) =1 for all x in 7. We shall refer to a tree T with such a

X~Yi
probability structure P as a Cartier tree (7, P).

In such a tree we shall introduce another structure P’ such that:

(1) For any pair x, y in T, there is an associated number p’(x, y) such
that 0 < p'(x,y) < 1;

@) p'(x») < plx,p);

(3) p'(x,»)#0 if x ~ y; and
@) p'(x)= > p'(x,y) <1 for at least one non-terminal vertex x in 7.
xX~i

This structure P’ giving the transition numbers p’(x, y) will be refered to
as the structure P’ on T subordinate to P.

In a tree (7, P) with a subordinate structure P’, given a function f(x) on
T, and a non-terminal vertex x, define A'f(x) = > p'(x, y:)f(y:) — f(x).

X~Ji

Then a lower-finite (resp. finite) function u # co, defined on a neigh-
bourhood of a non-terminal vertex xg € T is called a P’-superharmonic (resp.
P'-harmonic) function at xo if and only if A’u(x¢) <0 (resp. 4’u(xy) = 0).
A lower-finite function v % co0 on a set @ is said to be P’-superharmonic on
o, if A'v(xg) <0 for each xo e w°. With these definitions, the constant 1 is
P’-superharmonic but not P’-harmonic on 7. Hence, there always exists a
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P’-potential u > 0 on T that is, the greatest P’-harmonic minorant of the P’-
superharmonic function u is 0.

Consequently, if a Cartier tree (7, P) has a structure P’ subordinate to P,
then the potential theory associated with the P’-structure resembles that of a
Cartier tree with potentials. For example, we can prove the following results
as in Section 2:

1. Let e be a non-terminal vertex in 7. Then there exists a unique P’-

potential G/(x) on T such that (—4")G!(x) =J.(x) for x in T.
2. Gl(x) < Gl(e) for all x in T, if e is a non-terminal vertex.
3. If v is a P-potential on T, then for x in T, ov(x)=

> (=4")(y)Gy(x).

yeTe.

4. 1If s(x) >0 is a P’-superharmonic function and ¢(x) is a P’-potential
on T such that (—4")s > (—4")q on E, the P’-harmonic support of ¢,
then s >¢q on T.

5. If s(x) is P’-superharmonic and (x) is P’-subharmonic on a set w such
that s > ¢, then there exists the greatest P’-harmonic minorant (g.P’-
h.m.) & of s, such that s >/ > 1.

Let (7, P) be a Cartier tree with a probability structure P. Let P’ be a
structure subordinate to P. Then we have two different sets of superharmonic
functions on 7: one is with respect to the P-structure on 7" and the other is
with respect to the subordinate structure P’. We shall use the prefix P (like
the term P-superharmonic functions) with respect to the potential theory
associated with the structure P. Similarly the prefix P’ (like the term P’-
potential) is used with respect to the potential theory associated with the
subordinate structure P’. We shall prove that there always exists a positive
non-constant P’-harmonic function on 7 and give some sufficient conditions for
the existence of bounded non-constant P’-harmonic functions on 7.

PrOPOSITION 4.1. Let @ be a set in a tree (T,P), and P’ be a structure
subordinate to P. Then every P-potential on w is a P'-potential.

ProOF. Let u >0 be a P-potential on w. Then, for every y e w°,
w(y)= D plryuly) = Y p' (v, yu(n).
Vi y~yi

Hence u(x) is P’-superharmonic at y. Since y is arbitrary in ®°, u(x) is P’-
superharmonic and u(x) >0 on w. Let #>0 be the g.P’-h.m. of v on w.
Then for y e »°,

h(y) =Y p'(r y)h(yi) < D p(y, y)h(3).

y~Yi )~ i
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Hence h(x) is P-subharmonic at y. Since 0 </h(x) <u(x), h(x) is P-
subharmonic and u(x) is P-potential, we find # = 0. Hence u is a P’-potential
on w.

THEOREM 4.1. Let (T, P) be a Cartier tree on which positive P-potentials
exist. Let P’ be a structure on T subordinate to P. Then for any non-terminal
vertex e, G\(x) < G,(x) for x in T.

ProOF. Since any positive P-superharmonic function on 7T is P’-
superharmonic, G,(x) is a P’-superharmonic function on 7. Now, for x e T°,

(=4")Ge(x) = Gelx) = > (%, 1) Ge( 1)

X~Yi

> G,(x) — Z p(x, 3i)Ge(y1)

X~

Hence, as in Lemma 2.3, G, <G, on T.

THEOREM 4.2. There always exists a non-constant positive P'-harmonic
function on T.

ProoF. By the definition of the subordinate structure P’, there exists
at least one non-terminal vertex e on T such that p’(e) = > p'(e,x;) < L.

e~Xj
Choose a function 4 such that A(x;) =1 for all x; ~e and h(e) = p'(e) < 1.
Note that /4 is P’-harmonic at e. Then by the method used in the proof of
Lemma 2.1, we construct a P’-harmonic extension function 4 >0 on T.

REMARK 4.1.  Since h(e) < h(x;) if x; ~ e, we should have h(x) < h(y) if
x ~ y and |x| < |y| where the distances are measured from e. However, h may
or may not be bounded on T. We shall now give some sufficient conditions for
the existence of bounded non-constant positive P'-harmonic functions on T.

Lemma 4.1. For any xeT, 3 (1-p'(»)G(x) <1, where p'(y)
> P’y yi): yer

y~Dbi
ProOF. s=1 is a P’-superharmonic function on 7 and

(=4")s(x) = s(x) = Y p'(x, yi)s(yi) = 1 = p'(x).

X~Yi

Then by using the expression for the potential part of s as in Corollary 2.2, we
have,
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L=s(x) = 3 (~4")s()GL(x) + h(x)

yeTe.
= > (1=p'(0)G)(x) + h(x),
yeT°.
where h is a non-negative P’-harmonic function. Hence
> (1=p'(y)G)(x) <1 for every x in T.

yeTr.

THEOREM 4.3. In a tree (T,P) with a subordinate structure P’, the fol-
lowing are equivalent:
) > (1-p'(»)G(x) =1 for some x in T°.

yeTe.
2) > (1=p'(»)Gy(x)=1 for all x in T.

)
yeTe.

3) The constant function 1 is a P'-potential on T.

4)  The only bounded P’'-harmonic function on T is 0.

Proor. Using the above Lemma 4.1, we write 1 = g(x) + /i(x) where

g(x) =Y (1= p'(»)G(x)
yeTr.

is a P’-potential on 7 and h(x) is a non-negative P’-harmonic function.

1) =2): If h(x) =0 for some x in 7°, h =0.

2)=3): Since h=0, 1 =¢q(x) is a P'-potential on T.

3)=4): Let u(x) be a bounded P’-harmonic function on 7. Let
|u(x)| < M. Since M is a P’-potential and |u(x)| is a P’-subharmonic function
on T, |u(x)|=0 for xeT.

4)=1): Write 1 =g¢g(x)+h(x). Since 0 <h(x) <1, the P’-harmonic
function 7 =0 by the assumption 4). Hence 1=} (1 —p'(»))G(x).

yeTe.

COROLLARY 4.1.  Suppose there is no positive P-potential on T. Then the
only bounded P'-harmonic function on T is 0.

PrOOF. Suppose / is a bounded P’-harmonic function on 7, say |h| < M.
Then for xe T°

()] = |3 P (e x)h(x,)

X~ Xi

< Y p'(xxi)|h(x)]

X~ X

> plx, xi)h(x;)].

X~ X

IA
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Hence |i(x)| is a bounded P-subharmonic function on 7. Since by the as-
sumption there is no positive P-potential, |h(x)| =a, a constant. Suppose
a#0. Since a is P’-superharmonic (but not P’-harmonic) while || is P’-
subharmonic, we have a contradiction. Hence o = 0, that is & = 0.

COROLLARY 4.2.  Suppose there are positive P-potentials on T and if G,(x)
denotes the P-potential with (—A4)G,(x) =0,(x), then assume sup Gy(x) =

xeT°
M < co.  Suppose P' is a structure on T subordinate to P with Y, (1 — p'(x))

xeTe.
< o0. Then there is a bounded positive P'-harmonic function on T.

ProOOF. Suppose every bounded non-negative P’-harmonic function on T
is 0. Then by the above Theorem 4.3,

L= > (1-p'(»)Gx)

yeTe.

< Z (1-p'(»)Gy(x) (by Theorem 4.1)
yeTe.

< Z (1-=p'(»)Gy(») (Gy(x) < Gy(y) as in Theorem 2.6)

Hence u(x) = > (1 —p'(»))G,(x) should be a P-potential. Since u(x) > 1
yeTe.
and 1 is P-harmonic, this is a contradiction.

Using the P’-sets and the S’-sets, we shall now give a sufficient condition
for the existence of bounded P’-harmonic functions on T.

Recall the definition of [e, x¢]: Given a non-terminal vertex e and x( ~ e,
[e, xo] = {x: the geodesic joining ¢ and x passes through x¢}; e and x( are
also in [e,x¢]. Suppose /4(x) is a function such that /(e) =0 and h(xy) = 1.
Then (as in Lemma 2.1) A(x) can be extended as a P’-harmonic function on
the whole set [e, xg]. This P’-harmonic function on [e, xo] may or may not be
bounded. We say that an infinite set [e, xo] is a P’-set if /(x) is bounded and it
is an S’-set if A(x) is unbounded.

LemMa 4.2. Let h(x) be P’'-harmonic outside a finite set < {x: |x| <
n—2}. Then there exist a P'-harmonic function H on T and two P’-potentials
p1 and py on T with harmonic support on |x| =n such that h(x) = H(x)+
p1(x) — pa(x) when |x| >n and |p; — pa| is bounded on T.
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THEOREM 4.4. There exists a bounded positive P'-harmonic function on T if
and only if there exists a P'-set with respect to a non-terminal vertex e.

PrOOF. Suppose [e,xo] is a P’-set. Then there exists a bounded P’-
harmonic function u >0 on [e, x¢] such that u(e) =0 and u(x9) = 1. Define

u on [e, xo
v =
0 outside [e, xq].

Then v e Hf (T\{e}) and v is bounded on 7. By the above Lemma 4.2, there
exists a P’-harmonic function /s on T such that |v —h| < M, for a constant
M. Hence the least P’-harmonic majorant H of v verifies the inequalities
O0<v<H<h+MonT. HenceO0<H-v<(h+M)—v<2M. Sincevis
bounded on 7', H is bounded on 7. Since H > v > 0 and H(x¢) > v(xp) = 1,
by the minimum principle H >0 on T.

Conversely, suppose there exists a bounded P’-harmonic function 2 > 0 on
T. For a non-terminal vertex e, let

u(x) = R¢'(x) = inf{s(x) : s is positive P'-superharmonic on T, s(e) = h(e)}.

Then u(x) is a P’-potential on T such that u(x) <h(x) on T, u(x) is P’'-
harmonic on T\{e} and u(e) = h(e). Since u # h, there exists a set [e, xo],
e ~ xg, with infinite vertices such that for some y in the interior of [e, x|,
u(y) < h(y). To prove this statement:

(i) Write T = [ [e,x;]. Suppose u(x) = h(x) at every interior point of

e~X;

[e,x;]. Then, since h(x) — u(x) >0 is P’-harmonic on [e,x;], we should have
h=u on [e,x;] and hence on T. This is a contradiction. Hence for some
interior point y in some [e,xo], u(y) < h(y).

(i) We show now that it can be assumed that [e, x| contains an infinite
number of vertices. For suppose u =/ on every one of the sets [e,x;] with
infnite vertices. It means that u(x) = /(x) outside a finite set in 7. Since
v(x) = u(x) — h(x) is P’-superharmonic on 7, and equals 0 outside a finite set,
by the minimun principle, v > 0 on 7. This leads to the conclusion u =/ on
T, a contradiction.

Note u(xg) < h(xg). For otherwise by the minimum principle for the P’-
harmonic function, u —h > 0 on [e, x¢] and u = & in the interior of [e, xo]; this
is a contradiction, since u(y) < h(y). Define H(x) = hi’i;;%’;?zl) for x € [e, xo).
Then H >0, H(e) =0, H(xg) =1 and H(x) is bounded harmonic in the
interior of [e,xo]. Hence [e, x¢] is a P’-set.

CorOLLARY 4.3.  For a subordinate structure P’ on (T, P), suppose 1 is a
P’-potential on T. Then with respect to any non-terminal vertex e, every infinite
set [e,xo] is an S’-set.
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Proor. If [e,xq] is a P’-set, then there exists a bounded P’-harmonic
function H >0 on T by the above theorem. However 1 cannot be a P’-
potential on T (Theorem 4.3), which is a contradiction.

An application to Au(x) = Q(x)u(x) (See Yamasaki [8].)

Let O(x) >0 be a function defined on 7 with a Cartier structure
P. Assume Q #0 on 7°. We say that a function u(x) defined on T is Q-
harmonic (resp. Q-superharmonic) if (14 Q(x))u(x) = > p(x,x;)u(x;) (resp.
(14 Q(x))u(x) = > p(x,x;)u(x;)) for every xe 7°. *7%

X~ X
Now define a subordinate structure P’ on T as follows: For any pair x, y

in T, define p'(x,y) = 11;(;(}3) Then p'(x)= > p'(x,x;) =1++Q(X). Hence
X~X;

0<p'(x)<1 and p'(x) <1 for some x in 7° since Q#0 on 7°. With
respect to this subordinate structure P’, v(x) is P’-harmonic if and only
if o(x)= > p'(x,x;)v(x;) for every xeT°, that is, if and only if

X~ X

(I+ Q0(x))v(x) = > p(x,x;)v(x;) which means that v(x) is Q-harmonic.

X~Xi
Thus, v is P’-harmonic (resp. P’-superharmonic) if and only if v is Q-harmonic
(resp. Q-superharmonic). Consequently, the potential theory associated with
the Q-harmonic functions on 7 becomes a particular case of the potential
theory associated with a subordinate structure P’ on T.

5. Polypotentials on trees

In this section we study the properties of functions u defined on a
connected simple set «w in a Cartier tree 7, satisfying the condition 4™u > 0
at the interior points of w. For the discussion below, we do not place the
restriction that there are positive potentials on 7. Remark that for poly-
harmonic functions u (4™u = 0) defined on a homogeneous tree (and hence a
tree with positive potentials), Cohen et al. [5] give an integral representation
(inspired by the Almansi representation in the classical case), establish one-one
corespondence with polymartingales and study the boundary behaviour of u.

Let @ be a connected simple set in 7' (see Definition 2.1). Let f >0 be
a real-valued function on w. Then, by Corollary 2.1, there exists a super-
harmonic function s on @ such that (—4)s(x) = f(x) for each x € w°. Hence,
if g is an arbitrary real-valued function on w, we can find two superharmonic
functions s; and s, on @ such that (—4)s;(x) = ¢g*(x) and (—4)s2(x) =g (x)
at each xe w°. Thus, for g on , there exists a J-subharmonic function
s=s1 —5 on w such that (—4)s(x) = g(x) at each x € @°.

By the same procedure, we can find a J-subharmonic function u on w such
that (—A)u(x) = s(x) on @°, so that (—4)%u(x) = g(x) on ®°. Continuing
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thus, given a real-valued function on a connected simple set w, and an interger
m>1, we can find a J-subharmonic function v on  such that
(—=A)"v(x) = g(x) on o°.

DEerFINITION 5.1, Let (s8;),.;-,, be a set of real-valued functions on a
connected simple set @ such that (—A)s; = ;-1 on ° for 2<i<m. Then s=
(8i)1 <i<m 18 said to be an m-superharmonic (resp. m-harmonic) function on ®
if and only if s| is superharmonic (resp. harmonic) on w. We say that the m-

superharmonic (resp. m-harmonic) function s = (8;);.;<,, is generated by s;.

Tueorem 5.1. Let h= (h;),.,.,, be an m-harmonic function defined on
|x| < n (distances measured from a fixed non-terminal vertex e) in a Cartier tree
T. Then there exists an m-harmonic function H = (H;) on T such that
Hi(x) = hi(x) for |x|<n and 1 <i<m.

1<i<m

Proor. Note that /;(x) is harmonic on |x| < n. Hence by Remark 2.1,
we can find a harmonic function H; on T such that H,(x) = /i (x) if |x| < n.
Let (—A)u = H.

Write #(x) = u(x) —ha(x) if |x| <n. Then, if |x|<n, (—d)t(x)=
(=Mu(x) — (=)ha(x) = Hi(x) — hi(x) =0. Hence #(x) is harmonic on
|x| <n. Again by Remark 2.1 (2), we can find a harmonic function v on
T such that v(x) =#(x) for |x| <n. Write Hy(x) =u(x) —v(x) for x in T.
Then, for |x| <n, Hy(x) =hy(x); and in T°, (—4)Hy(x) = (—4)u(x) = H;.

Proceeding thus, we construct an m-harmonic function H = (H;),
T such that H;(x) = h;i(x) if |x] <n, 1 <i<m.

<i<m on

THEOREM 5.2 (Laurent decomposition for m-harmonic functions). Let e
be a fixed non-terminal vertex in T and d(e,x) = |x|. Suppose u= (1;); ;-
is m-harmonic on n < |x| < N, where N is an integer. Then there exists an
m-harmonic  function s = (8;);.;.,, on |x| >=n and an m-harmonic function
t= (1) <jem on |x| <N such that u(x) = s(x) —t(x) on n < |x| <N.

ProOF. Since u;(x) is harmonic on n < |x| < N, by Corollary 2.3, there
exist a harmonic function s;(x) on |x| > n and a harmonic function #;(x) on
|x| < N such that u;(x) = s1(x) — #;(x) on n < |x] < N. Choose (see Corollary
2.1) the functions f; and g; on T such that (—4)fi(x) =s(x) for |x| >n
and (—4)g1(x) = t;(x) for |x| < N. Then, (—A)uz(x) =ui(x)=(-4)fi(x)—
(=A)g1(x) on n < |x| < N, so that ux(x) = fi(x) — g1(x) + H(x) where H(x) is
harmonic on n < |x| < N.

Again by Corollary 2.3, there exist f3(x) harmonic on |x| >n and g»(x)
harmonic on |x| < N such that H(x) = fo(x) —¢a(x) on n < |x| < N. Write
52(x) = fi(x) + f2(x) and ©(x) = g1(x) + g2(x). Then (—A)s:(x)=s1(x) on
|x| > n, (=4)t2(x) = t;1(x) on |x| < N, and uz(x) = s2(x) — t2(x) onn < |x| < N.



Potential theory on trees 305

Proceeding thus, we construct s = (s;);.,.,, and = (#),.;,, as stated
in the theorem so that u(x) =s(x) —#(x) on n<|x| <N. This proves the
theorem.

NotaTION:  Let s = (8i); 2;,, and ¢ = (#;); _,;,, be two sets of real-valued
functions defined on a simple set w. We say that s > ¢ if and only if 5; > ¢; for
every i; s >0 if s; > 0 for all i.

THEOREM 5.3. Let s be an m-superharmonic function on a set w in T, and
let t be an m-subharmonic function on  such that t < s on . Then there exists
an m-harmonic function h on w such that t <h <s on w.

Proor. Let s=(s;)-;, and t= ()., Let & be the family of

subharmonic functions u on w such that t; <u <s;. Let &y =sup u. Then
S

hy is harmonic on @ and it is the greatest harmonic minorant of s; on w.

Let
fe hy onw
10 onT\w.

Then, there exists a J-subharmonic function g on 7T such that (—4)g = f. Let
H, =g|,. Then (—4)H, =h; on o°.

Similarly choose f; and ¢, on @ such that on w°, (—4)f, =s; —h and
(=4)g> =t —hy. Then f; is superharmonic on w and g, is subharmonic on
o such that

(71’)5‘2 =85 = (7A)f2 + (*A)Hz on w°
and
(—A)Zz =1 = (—A)gz + (—A)Hz on w°.

Consequently, s» = f2 + H» + (a harmonic function) on w; write s, = f, + H»
where f; is superharmonic on w. Similarly write #, = g5 + H> where g} is
subharmonic on w. Since s, > #, by hypothesis, f; > g5. Let u be the g.h.m.
of fJ so that £ >u=>g). Let hp = Hy+u. Then (—4)h, =h; on »° and
§2 = hy > 1. Suppose /) is a function such that (—4)h) =h; on @° and s, >
hy >t on w. Then hj=h;+ (a harmonic function v on w)= (Hy +u) + v.
Since s, > hy > t, we should have f; > u+ v >gj. Since u is the g.h.m. of f;,
v <0 so that i} < hy.

Proceeding thus, we construct /= (h;),_;_,, which is an m-harmonic
function such that t<h<s on w. This function has the additional
property that if 4’ is any m-harmonic function on w such that ¢t < 4’ < s, then
h' <h.
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DEFINITION 5.2.  Let s be m-superharmonic and t be m-subharmonic defined
on a set w in T, such that s > t. Then the m-harmonic function h constructed
in the above Theorem 5.3 such that s > h >t is called the greatest m-harmonic
minorant of s on .

DEFINITION 5.3.  An m-superharmonic function s > 0 on a set w in T is said
to be a polypotential of order m (an m-potential, for short) if its greatest m-
harmonic minorant on w is 0. We say that T is an m-potential tree if there
exists a positive m-potential on T.

THEOREM 5.4. Let s > 0 be an m-superharmonic function on a set w in T.
Then s = (i) <;<,, Is an m-potential if and only if s; is a potential for each i.

Proor. Let s be an m-potential. Suppose s; is not a potential for some
J» 1<j<m. Let h be the ghm. of s5; on w. Then as in Theorem 5.3,
we can construct an m-harmonic minorant i = (h;), _;_,, with #; =0 if i < j.
Since & # 0, s is not an m-potential. This is a contradiction.

Conversely, if each s; is a potential in the m-superharmonic function s =
(8i)1 <j<m ON @, then s is an m-potential. For, let h = (h;), _;_,, be the greatest
m-harmonic minorant of s. Since 0 </; <s; and s; is a potential, /s = 0.
Since (—A4)hy = hy on w°, hy should be harmonic on w. Since 0 < /iy < 5 and
sy 18 a potential, i, = 0. Proceeding thus, we show that # = 0. Hence s is an
m-potential.

COROLLARY 5.1.  Let 5= (s;),-;-,, be an m-superharmonic function on a
set win T. Suppose q is a potential on w such that for each i, |s;| < q, outside a
finite set in . Then s is an m-potential.

ProoF. Since s; has a subharmonic minorant (—g) outside a finite set in
, s; = p1 + M where p; is a potential and 4 is harmonic. Since |h1| < p1 + ¢
outside a finite set, 4,y = 0. That is, s; is a potential on w.

Since (—A4)s; =51 =0, 5, is a superharmonic function on w; and since
|s2] < ¢ outside a finite set in w, s, is a potential. Proceeding thus, we find
that in s = (s5;), each s; is a potential. Hence s is an m-potential.

THEOREM 5.5. Let s be an m-superharmonic function and t an m-
subharmonic function defined on a set, such that s > t. Then s is the unique sum
of an m-potential p and an m-harmonic function h, being the greatest m-harmonic
minorant of s.

Proor. This is a consequence of Theorem 5.3 and Definition 5.3. For,
if & is the greatest m-harmonic minorant of s, then let p =s—h. Then p =
(pi) = 0 is an m-superharmonic function whose greatest harmonic minorant is
0, and hence an m-potential on T.
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THEOREM 5.6. Let Q = (Qi),<;<,, be an m-potential on a set w. Let p
be a potential on w such that py < Q). Then there exists a unique m-potential
P = (Pi)i<ij<m generated by py such that p; < Q; for 1 <i<m.

PrOOF. As in Theorem 2.4, choose a superharmonic function s on @ such
that (—4)s = p; on w°. By hypothesis, (—4)0> = Q) = p1 on w°. Choose
a superharmonic function ¢ on w, such that (—4)t= Q) — p; on @°. Then
0> = s+ t+ (a harmonic function /;). Since Q> >0, s has a subharmonic
minorant on w, so that s = (a potential p;) 4 (a harmonic function /) on w;
similarly, = (a potential p}) + (a harmonic function /#}) on w. Thus O, =
P2+ py+ (hi + hy + hi).  Equating the potential parts, we have Q> = p> + p).
Hence p; < 0y; note that (—4)p, = (—4)s = p; on .

Proceeding similarly, we find the potential p; on w such that p; < Qs
and (—4)p3; = p, on w°. Continuing thus, we construct the m-potential p =
(Pi)i<i<m On @ such that p; < Q;.

As for the uniqueness, suppose (¢, ¢m-1,---, 42, P1) 1s another m-potential
generated by p;. Since (—4)pr = p1 = (=4)q2, p» = ¢2 + (a harmonic func-
tion /1) on w; and since p, and ¢, are potentials, # = 0. Proceeding similarly,
we find that the m-potential generated by p; is unique.

A SPECIAL CASE: Let p; be a potential with finite harmonic support in a
set @ on which a positive m-potential Q = (Q;),_,,, exists. Then p; gen-
erates an m-potential p = (p;);.,-,, on w. For, since p; has finite harmonic
support, we can choose 42 >0 so that p; < 10, on @ (Theorem 2.5, Domi-
nation Principle); and A0 = (1Q;) is an m-potential on w.

Tueorem 5.7 (Balayage). Let p = (pi),<,<,, be an m-potential on a set
w. Let E be a subset of w. Then there exists an m-potential kf = (q;)
on o such that

. RE<p on o,

2. RE = p+ (an (m — 1)-harmonic function) on E°,

3.

I1<i<m

NS S

is m-harmonic on (w\E)°.

Proor. Take ¢; = f(lf on o (which is the infimum of all positive super-
harmonic functions s on w such that s > p; on E). Then ¢; generates an m-
potential ¢ = (¢;), -, as indicated in the above Theorem 5.6 such that ¢ < p
on w. Since ¢; is harmonic on (w\E)°, ¢ is m-harmonic on (w\E)°. Fur-
ther ¢g; = p; on E°, so that (—A4)g, = q1 = p1 = (—4)p> and hence ¢ = p, +a
harmonic function /4, on E°.

Let (—4)Hs = hy on E°, so that (—4)q; = (—4)p3 + (—4)H; on E° and
¢3 = p3 + H3 + (a harmonic function u) on E°. Write h3 = H3 +u on E°.
Then ¢3 = p3+h3 on E° and (—A4)h; = hy. Thus proceeding, we obtain an
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(m — 1)-harmonic function (A, fy—1...,hy) on E° which can be identified with
the m-harmonic function & = (A, Ap—1 ..., h,0) so that ¢g=p+h on E°.

REMARK 5.1.  In the above theorem, if E is a finite set and p is any positive
m-superharmonic function on w, then also Rf is an m-potential with the stated
properties.

Suppose s = (8;), <;<,, is an m-superharmonic function on a set w in 7.
We say that E is the m-harmonic support of s if the superharmonic function
s; has F as its harmonic support.

Tueorem 5.8 (Domination Principle). Let s = (si),.;-,, be a positive
m-superharmonic function and p = (p;), -;-,, be an m-potential on a set w in T
with its m-harmonic support E. Suppose sy > p, on E. Then s> p on w.

ProoF. As in Theorem 2.5, if sy > p; on E, then s; > p; on w. Let
(—Au=sy—py = (—=A)ss — (=4)p>. Then u is superharmonic on o and
s2 = p» +u+ (a harmonic function) > 0. Hence u has a subharmonic mi-
norant on w, so that u is the sum of a potential ¢ and a harmonic function on
. Hence s, = pr + ¢+ (a harmonic function) on w. Use now the unique-
ness of decomposition of s, as the sum of a potential and a harmonic function
to conclude that s, > p> on w. Proceeding thus, we conclude that s; > p; on @
for every i.

THEOREM 5.9. Let T be a tree with positive potentials. Then T is an
m-potential tree if and only if given an m-harmonic function h = (h;), _;_,,
infinity, there exists a (unique) m-harmonic function H = (H;),_,_,, on T such
that for some potential ¢ >0 on T, |h; — H;| < q near infinity for each i.

near

Proor. Let T be an m-potential tree. Since /; is harmonic near infinity,
by Proposition 2.1, there exists a harmonic function H; on 7T and a potential
p1 with finite harmonic support on T such that |h — H | < p; near infinity.
Since p; has finite harmonic support, it generates an m-potential p = (pi);~; -,
on T. Let (—4)H;=H, on T°. (—A)h, =h; outside a finite set by the
assumption. Then, |h — H| < p1 near infinity means that —(—A)p, <
(—=A)hy — (—4)H} < (—4)p, outside a finite set 4 on T. Write s = hy — H, +
p>» and t=hy — Hj — p,. Then on T\A, s is superharmonic and ¢ is sub-
harmonic such that # <s. Hence there exists a harmonic function sy on T\A4
such that ¢ < hy <s (Theorem 2.2). Consequently, we can as before find a
harmonic function # on 7 and a potential v with finite harmonic support such
that |hg — u| < v outside a finite set.

Set Hy = Hj +u so that (—4)H, = (—4)H; = H, and note that

|hy — Hy| = |(hy — Hy — ho) — (u— ho)| < p> + v near infinity.
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Now, since v is a potential with finite harmonic support, there exists a potential
vy such that (—4)vy =v on T°. Hence, if g3 = p3 + vy, then (—4)g3 = pr +v.
Set ¢ = p» +v. Thus far, we have proved that there exist H, such that
(—4)H, = H; and the potential g3 such that (—4)g; = ¢, and |hy, — Hy| < ¢»
outside a finite set in 7. Then by induction we prove that for m > i > 3, there
exist H; such that (—4)H; = H;_; and a potential ¢; such that |, — H;| < ¢;
outside a finite in 7. Write ¢ = p1 + g2+ -+ gn. Then H = (H;),_;_,, is
an m-harmonic function on 7 such that for every 1 <i<m, |h— Hj| <gq
outside a finite set.

Conversely, let p; be a potential with finite harmonic support on 7. For
example, if 4 is a finite subset of 7', then take pi(x)= ) a,G,(x) where

yed

a, >0 are constants. Let p = (pi);.;.,, be an m-superharmonic function
generated by p;. Since p; is harmonic outside a finite set A, p is an m-
harmonic function on 7\A4. Hence by the assumption, there exist an
m-harmonic function H = (H;),_;,, on T and a potential ¢ on 7 such that
|pi — Hi| < q near infinity. Set s; = p; — H; on T. Then by Corollary 5.1,
$=(8i)1<;<m 1s an m-potential on T; hence T is an m-potential tree.

THEOREM 5.10. Let T be a tree with positive potentials. For y e T°, let
G,(x) = G(x,y) be the potential such that (—4)G,(x) =0,(x). Then T is an
m-potential tree if and only if there exist two vertices u and v on T° such that

Z G(u, Xm-1)G (X1, Xm—2) - - - G(x2,x1)G(x1,v) < 0.

X1, X250y X1 € T

Proor. Take wu=x,_1=---=x3=Xx, in the above sum. Since
G(u,u) < oo, we see that > G(x2,x1)G(x,v) < oo. Hence ¢(x)=

x1eT°
> G(x,x1)G(x1,v) is a potential on T, and (—4)g2(x) = G(x,v) = G,y(x).
x1eT°

Similarly, since > G(x3,x2)G(x2,x1)G(x1,0) < o0, we find that
X1, xp€T°

> G(x3,x2)¢q2(x2) is finite. Hence ¢3(x) = > G(x,x2)¢q2(x2) is a poten-

x,eT° xXp,eT°

tial on T such that (—A4)g3(x) = ¢2(x). Thus proceeding, we construct ¢; as a
potential such that

(=A)qi(x) = qi-1,2 <i<m,

where ¢(x) = Gy(x). This means that ¢ = (¢;),.,,, is an m-potential on 7.
Conversely, let (pm,...,p1) be an m-potential on 7. Since

Pn(X) =G, »)(=Apw)(») = D> G(x, y) pm-1(»)
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is a potential by hypothesis, S Gty Xip1) pm1(Xm_1) < 0 for ueT.
This means Xm-1€T°

Z G(U, xmfl) Z G(xmflyxm72)pm72(xn172) < 0.

Xm-1€T° Xm—2

Hence

Z G(“a Xm—1 ) G(xmfl ) xmfZ)pmfZ (xm72) < 0.

Xin—15Xm—2 € T°

Proceeding thus, we arrive at the conclusion

Z Gy Xm1)G(Xm_1, Xm—2) - - - G(x2,x1) p1(x1) < c0.

Xpp—15e-ey X1 € T

But for v fixed in 7° and x e T, we can find A > 0 such that G(x,v) < Ap;(x).
Consequently, > Gty Xp—1)G(Xpm—1, Xm—2) - . - G(x2,x1)G(x1,v) < 0.
X1 s X1 €T
REMARK 5.2. 1) From the above proof it follows that if T is an m-potential
tree, then for any pair of vertices u and v in T°,

Z Gy X—1)G(Xp—1, Xm—2) - - - G(x2,x1) G(x1,v) < o0.

X150y X1 € T°

Hence, if we write for ye T°

Q)= Y Gxxm1)G(Xm1,Xm2) . G(x2, x1)G(x1, )

X1 5oy X1 € T

in an m-potential tree T, then Q,(x) is an m-potential such that (—A)m*le(x)
= Gy(x). We term Qy(x) as the m-harmonic Green function on T with pole
{y}. Since Q,(x) is an m-potenial generated by G,(x), the m-harmonic Green
function is uniquely determined (Theorem 5.6).

2) If T is an m-potential tree, then for any z € T°, there exists a poten-
tial u on T such that (—A4)"u(x) =d.(x) and (—A)'u is a potential on T for
l<i<m-1

3) Let q=(4i)i<i<cpm1 be an (m—1)-potential on T such that
(—A)qy = 1. Then we say that q is a quasi (m — 1)-harmonic potential on T.
It can be seen that such a potential q exists on T if and only if for one (and
hence any) u in T°,

Z G(uy Xp—1)G (X1, Xm—2) - .. G(x2,X]) < 0.

X1 ey X1 €T
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Since G(x1,v) < G(v,v), from the above Theorem 5.10 it follows that if there is
a quasi (m — 1)-harmonic potential on T, then T is an m-potential tree.

PROPOSITION 5.1. A homogeneous tree is a bipotential tree.

Proor. Let T be a homogeneous tree of degree (¢ + 1) with ¢ > 2 (see
Cartier [4, p. 262]); that is, each vertex has exactly ¢+ 1 neighbours. Let
d(s,t) be the length of the geodesic joining s to #. Then d(s,#) = 1 if and only
if s and ¢ are neighbours and d(s,s;) = d(s,s1) + d(s1,52) (mod2). Also T is
a P-tree and the Green function is G(s,f) = q%]ﬁ
Let us fix # and v two neighbours in 7. Then for xe T,

7’ !
((] _ 1)2 qd(u,x)er(x,v) :

Since d(u, x) +d(x,v) =1 (mod 2), if we write 4, = {x: d(u,x) + d(x,v) = n},
then n is odd and T = () 4,. Now

G(u, x)G(x,v) =

|d(u,x) —d(x,v)] < 1,d(u,x) =d(x,v) + 1,

so that if xed,, then d(u,x)="5' or d(x,v)="5'. This implies that
card 4, < 2(g+1)" 2. Hence

3" G, x)Glx,0) < 2(g + 1) p_ g 1 @+D"™

i (¢-1)4q" q"
where A is the constant 2(q + 1)71/ 2# Consequently,
n/2
Z G(u, x)G(x,v) < iz (g +

xeT

Note that this last series is convergent since ¢ > 2. Consequently, Theorem
5.10 implies that 7" is a bipotential tree.

6. Riesz-Martin representation for positive m-superharmonic functions on 7'

In the classical potential theory in #”, n > 2, let s > 0 be a superharmonic
function defined on a bounded domain  in #". Then (see for example Brelot
[3, pp. 150-152]), there exist two uniquely determined positive Radon measures
(on Q and v on the Martin boundary A with support in the minimal boundary
41, such that s(x) = [, G(x, p)du(y) + [, K(x,p)dv(y); here G(x,y) is the
Green function of 2 and K(x, y) is the Martin kernel. This representation is
referred to as the Riesz-Martin representation for the positive superharmonic
function s on Q. For such a representation on a tree, see Cartier [4, pp. 235—
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237]. Below, we give a similar representation for positive m-superharmonic
functions defined on a tree T.
Let T be an m-potential tree. Let M be the class of measures u >0 on T
such that pi(x) = > G,(x)u({y}) is a potential that generates an m-potential
yeTe

(Pi)psis1 on T. Let 4; (1 <i<m) be the class of measures v; >0 on the
Martin boundary (with the usual normalization) such that the harmonic
function /; > 0 on T associated with v; (see Cartier [4, Theorem 2.1, p. 232])
generates an i-harmonic function (h;,h;_1,...,h) =0 where hy,... h; are all
potentials. Such a function can be identified with the positive m-harmonic
function (h;, h;—_1,...,h1,0,...,0). Note that if such a function exists, then the
potentials /5, ...,h; are all uniquely determined.

THEOREM 6.1 (Riesz-Martin representation for positive m-superharmonic
functions). Any positive m-superharmonic function s= (s;),_;,, n an m-
potential tree T can be uniquely identified with (m + 1)-measures ((, vy, ..., v1)
eEM x A, x - X A.

PrOOF. As in Theorem 5.5, s can be written uniquely as the sum of
an m-potential P = (P,,...,P;) and a positive m-harmonic function H =
(Hy,...,H). Since (—4)Pi1 =P;, 1 <i<m—1, the potentials P,,..., P,
are uniquely determined once P; is known. And P; is determined if its as-
sociated measure u, (—4)P; =y, is known. Thus the measure # on T deter-
mines uniquely the m-potential P = (P,,, ..., P).

Consider now H = (Hy,,...,H;) >0. Since (-4)H,=H; >0, H, is a
positive superharmonic function and hence is a potential ¢, up to an additive
harmonic function /,, so that H, = ¢, + h, and (—A4)q> = Hy. Since H, > ¢,
we can find a potential ¢3 on T such that (—A4)g; = ¢, and g3 < H;. Thus
proceeding, we construct an m-harmonic function (g, ...,q2, H;) > 0 with all
the functions ¢»,...,q, as potentials. Clearly this function is uniquely de-
termined if H; is known. And H; is determined if its associated measure
v on the Martin boundary (with the usual normalization) is known. Thus
the measure v,, on the Martin boundary determines uniquely the m-harmonic
function (g, ..., q», Hi); that is v, € 4,,. Then

H=(Hp,....,HyH)

= (%117”'7‘1271—11) + (um,...u37h2,0)

where H; =¢q; +u; for 3<j<m. Since h >0 is harmonic, following the
construction in the above paragraph, we obtain (q,,...,q5,/2,0) where
Qs -+ q3 are potentials, (—=4)g;,; =¢;, 3<j<m—1, and (-4)g5=hy is
harmonic. Again this function is uniquely determined if 4, is known. And
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h, is determined if its associated measure v,_; on the Martin boundary is
known. Thus the measure v,,_; on the Matrin boundary determines uniquely
the function (g, ...,q3,h»,0); that is v,_; € 4,,_1. Moreover, if we write
(s uz,h2,0) = (g, - 45, 12,0) + (Fy ..., 74, 13,0,0), we find that each r;
is positive superharmonic such that (—4)rj =1 for4 < j<m—1, (=d)ry =
h; which is a positive harmonic function.

Proceeding thus, we find that we can write

H = (H,,...,H,, H))

= (Qma---aQLHl) + (q,,n,---,qg711270)
(g qh3,0,0) + -+ (B, 0,...,0)

m
D v
i=1

where each v; is uniquely determined by a measure v; € A; in the Martin
boundary.

Finally, since s = P + H, we conclude that s is uniquely determined by the
measures 4 € M and v; € A;.
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