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ABSTRACT. Our main result states that two signed measures x and v with bounded
support contained in the zero set of a polynomial P(x) are equal if they coincide on the
subspace of all polynomials of polyharmonic degree Np where the natural number Np is
explicitly computed by the properties of the polynomial P(x). The method of proof
depends on a definition of a multivariate Markov transform which is another major
objective of the present paper. The classical notion of orthogonal polynomial of second
kind is generalized to the multivariate setting: it is a polyharmonic function which has
similar features to those in the one-dimensional case.

1. Introduction

Recall that a complex-valued function f defined on a domain G in the
euclidean space R” is polyharmonic of order N if f is 2N-times continuously
differentiable and

AVNf(x)=0  for all xe G

where 4" is the N-th iterate of the Laplace operator 4 = p 2 +% For

N =1 this class of functions are just the harmonic functlons while for N =2
the term biharmonic function is used which is important in elasticity theory.
Fundamental work about polyharmonic functions is due to E. Almansi [2], M.
Nicolesco (see e.g. [25]) and N. Aronszajn [3], and still this is an area of active
research; see e.g. [7], [8], [9], [12], [17], [18], [23], [27], [28]. Polyharmonic
functions are also important in applied mathematics, e.g. in approximation
theory, radial basis functions and wavelet analysis; see e.g. [5], [19], [20], [21],
[24].

In this paper we address the following question: Let u and v be signed
measures with compact support. Suppose that there exists a polynomial P(x)
such that the supports of ¢ and v are contained in the zero set of P. Under
which conditions do g and v coincide? As motivating example consider the

polynomial P(x) = |x|* — 1 where |x| := r(x) := /x? 4 - -- + x2 is the euclidean
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norm in R”. It is well known that two measures x and v with support in the
unit sphere S"! = {x e R" : |x| = 1} coincide if they are equal on the set of all
harmonic polynomials. We shall show that two measures u and v with support
in the set Kp(R) (defined below in (2)), are equal if the moments u(f) and v(f)
are equal for polyharmonic polynomials f of a certain degree Np which depends
on the polynomial P. In order to formulate this precisely, let us introduce the
polyharmonic degree d(f) defined by

d(f) == min{N € Ny : 4¥*1(f) = 0}. (1)

In the appendix we shall compare properties of the polyharmonic degree and
the total degree. Note that f has polyharmonic degree < N if and only if f is
of polyharmonic order N + 1.

Let us denote by £ the set of all polynomials. One of the main results of
this paper reads as follows:

THEOREM 1. Let
Kp(R) :={xeR": P(x) =0 and |x| < R} (2)
for R >0 and for a polynomial P(x), and define
Np=sup{d(P-h):h is a harmonic polynomial}. (3)

Let u and v be signed measures with support contained in the set Kp(R) for some
R>0. If [hdu= [hdv for all polynomials h in the subspace

Uy, ={Qe2?: 4" Q =0}

then u and v are identical.

It is not difficult to see that Np is lower or equal to the total degree of the
polynomial P(x), see Corollary 20. In the appendix we shall give a procedure
to determine the number Np explicitly.

An application of the Hahn-Banach theorem shows us the following
consequence of Theorem 1: the space Uy, is dense in the space C(Kp(R),C) of
all continuous complex-valued functions on the compact space Kp(R) endowed
with the supremum norm, see Corollary 18. Let us emphasize that Theorem 1
is only a sufficient criterion, and does not always give the expected result: As
illustrating examples consider the case of a sphere and an ellipsoid. In the first
case, the defining polynomial P(x) = |x|> — 1 has the property that Np = 1, so
Uy, is equal to the space of all harmonic polynomials. In the case of an
ellipsoid, Np is equal to 2, although it would be sufficient to know that the
measures ¢ and v are identical for harmonic polynomials. However, density
results for solutions to 4”1 =0 in C(K) for compact sets K for p > 1 are much
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more complicated and obtained with the techniques of Potential theory in the
1970s; see [13], [14] and the references therein. The following example shows
that our approach delivers a nontrivial criterion for density which is not
covered by the other approaches so far: take P(x) = <a,x>(|x|* — 1) where
{a,x) =a;x1 + - -+ ayx,. Then Np =2, and we need now the space of all
biharmonic polynomials to ensure that two measures ¢ and v are equal.
Indeed, harmonic polynomials are not sufficient: take o as the usual measure df
on the unit sphere S"~!' and v as the point evaluation in x = 0. Then ¢ and v
coincide on the space of all harmonic polynomials and both measures have
support in P~!(0). Clearly ¢ and v are different measures.

The proof of Theorem 1 will be a by-product of our investigation of the
so-called multivariate Markov transform which we will introduce below and
which we consider as a suitable generalization of the univariate Markov
transform, an important tool in the classical moment problem and its appli-
cations to Spectral theory. Recall that the Markov transform® of a finite
measure ¢ with support in the interval [—R, R] is defined on the upper half-
plane by the formula

() = JC;X dao(x) for Im { > 0, 4)
see e.g. [1, Chapter 2], [26, Chapter 2.6]. Let us recall a central result called
Markov’s theorem: the N-th Padé approximant ny({) = On({)/Pn({) of the
asymptotic expansion of ¢({) at infinity converges compactly in the upper half
plane to 6({); here the polynomial Py is the N-th orthogonal polynomial with
respect to the measure o and Qy is the orthogonal polynomial of the second kind
with respect to the measure ¢ given through the formula

Py({) — Pn(x)
{—x

Further, to each 7y ({) there corresponds a (non-negative) measure oy with
support in the zeros of the nominator Py, thus leading to a proof of the
famous Gaull quadrature formula.

Our definition of a multivariate Markov transform depends on the work of
N. Aronszajn [3] on polyharmonic functions, and of L. K Hua [15] about
harmonic analysis on Lie groups; the definition is related to the Poisson
formula for the ball Bg := {x € R" : |x| < R} which we recall now: Let R >0

0x() = J do(x). (5)

In some recent works in Approximation theory, Potential theory, and Probability theory this
function is called the Markov function of a measure, see e.g. [29] or [11]. On the other hand
apparently Widder [32] was the first who has given the name Stieltjes transform to this function. If
1 has infinite support the transform is also called Stieltjes transform. This tradition has been
followed by Akhiezer [1] and other Russian mathematicians.
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and / be a function harmonic in the ball Bg and continuous on the closure Bg;
then for any x € R" with |x| < R

1 J (R =R, oo, ©
Su—]

") = (RO~ x)"

where , denotes the area of S""!, 0 € S"™!, and r(x) is the euclidean norm of
x. Note that for fixed x with |x| < R the function p — r(p — x) defined for
p € R with |p| > R has an analytic continuation for { € C with |{| > R, so we
can write ({0 — x) for { € C with |{| > R. The following Cauchy type integral
Sformula, proved in [3, p. 125], is important for our approach: for any
polynomial u(x) and for any |x| < R the following identity holds

1 én—l

=— ———u({0)dbd 7

“) = 2ric, JFR LH g0 — 00 @

where the contour I'z(7) = R-e™ for t€[0,2n]. A similar result is also valid

for holomorphic functions u defined on the so-called harmonicity hull of Bg; we
refer the reader to [3, p. 125] for details.

Assume now that u is a signed measure with support in the closed ball

{xeR":|x| < R}. The multivariate Markov transform j of u is a function
defined for all € S™! and all { e C with |{| > R by the formula

n—1
60 = [ e ®)
Since { — r({0 — x) has no zeros for || > R the function { — ({, ) is defined
for all |{| > R. In the following Section we shall show that the multivariate
Markov transform j determines the measure x4 uniquely, cf. Theorem 3.

Our second main innovation is the introduction of the notion of the
Sfunction Qp((,0) of the second kind with respect to a given polynomial P(x)
which is the multivariate analogue of (5), defined by

0r.0) = | DG e dut) ©)

for all || >R, 0eS"'. Let us emphasize that Qp is in general not a
polynomial. However, we shall show the surprising and interesting result that
the function r0 — r~"=1Qp(r0) is a polyharmonic function of order < deg P(x)
where deg denotes the total degree of a polynomial.

One further main result of the paper, Theorem 13, is concerned with
measures u having their supports in algebraic sets: Let us assume that the
measure g has support in Kp(R). Then the Markov transform g has the
representation
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o) =20 tor (> R (10)
where Qp is the function of second kind with respect to P(x). The reverse
statement holds as well, i.e. if the measure u with supp(u) = Bg satisfies (10)
for some polynomial P where Qp is defined by (9), then supp(u) = Kp(R). By
means of these characterizations we can deduce our main result Theorem 1.

Finally let us recall some terminology from measure theory: a signed
measure on R? is a set function on the Borel g-algebra on R? which takes real
values and is g-additive. By the Jordan decomposition [6, p. 125], a signed
measure u 1is the difference of two non-negative finite measures, say
u=u" —u with the property that there exists a Borel set 4 such that
u(A4) =0 and = (R"\A) = 0. The variation of u is defined as |u| := u™ + u~.
The support of a non-negative measure u on RY is defined as the complement of
the largest open set U such that u(U) = 0. The support of a signed measure o
is defined as the support of the total variation |o| = o + o_ (see [6, p. 226]).
Recall that in general, the supports of ¢, and ¢_ are not disjoint (cf. exercise 2
in [6, p. 231]). Note that if a signed measure u has compact support then all
polynomials are integrable with respect to u*, u~, and |u].

2. The multivariate Markov transform

Recall that the univariate Markov transform has, for || > R, the
asymptotic expansion
= 1
4(0) :Zk—ﬂjzk do(t). (11)
=0 ¢
Let I'r denote the contour in C defined by I'z(t) = R-e" for 1€ [0,2n]. By
means of standard facts from complex analysis the following identity may be
proved:

3| P30 = [ px1dat) (12)

for all polynomials p and any R; > R.

In this Section we want to show that similar results hold for the mul-
tivariate Markov transform j; in particular the following is the analogue of
formula (12) in the multivariate case:

PROPOSITION 2. Let u be a signed measure over R" with support in Bg and
let Ry > R. Then for every polynomial P(x)

)= | | o oddo = | peduto. 3

n
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Proor. Replace (¢, 0) in (13) by (8) and interchange integration. Then

R 27i, l r(6 — x)

According to (7) we obtain M,(P) = [P(x)du(x). W

n—1
P = [ | | PO deaodu. 9
FR] S”

THEOREM 3. Let u, v be finite signed measures over R" with compact
support. If the multivariate Markov transforms of u and v coincide for large {,
Le., if there exists R >0 such that ji((,0) =v((,0) for all |{| > R and for all
0eS" !, then u and v are identical

PrOOF. Since the multivariate Markov transforms coincide for large |{]
it is clear that the functionals M, and M, in (13) are identical by taking
the radius R; of the path Ik, large enough. Then Proposition 2 shows that
[ P(x)du(x) = [ P(x)dv(x) for all polynomials P(x). Further we apply a
standard argument: since x# and v have compact supports we may apply the
Stone—Weierstrass theorem according to which the polynomials are dense in the
space C(supp(u)Usupp(v)) which implies that x=v. W

Next we want to determine the asymptotic expansion of the multivariate
Markov transform and we need some notations from harmonic analysis; for a
detailed account we refer to [4] or [30]. Recall that a function ¥ : S"~! — C is
called a spherical harmonic of degree k e Ny if there exists a homogeneous
harmonic polynomial P(x) of degree k (in general, with complex coefficients?)
such that P(0) = Y(0) for all 9 € S""!. Throughout the paper we assume that
Yim(x), m=1,... a, is a basis of the set of all harmonic homogeneous
polynomials of degree k which are orthonormal with respect to scalar product

g ::J 1(0)9{0)do.

sn—l
For a continuous function f : 8"~ ! — C we define the Laplace-Fourier series by

0 43

SO =33 femYem(0)
k=0 m=1

and fi ., = jsn—l f(0) Yk n(6)dO are the Laplace-Fourier coefficients of f.
Using the Gauss decomposition of a polynomial (see Theorem 5.5 in [4]) it
is easy to see that the system

X% Vi (), tkeNg,m=1,....a

is a basis of the set of all polynomials. The numbers

2One may restrict the attention to real valued spherical harmonics and this does not change the
results essentially.
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oo = J W Tem@du(x),  tkeNom=1,....a  (15)
are sometimes called the distributed moments, see [16]. For a treatment and
formulation of the multivariate moment problem we refer to [10], see also [31].

THEOREM 4. Let u be a signed measure over R" with support in the closed
ball Bg. Then for all |{| > R and for all 0 € S"™" the following relation holds

- - - Y m 9 t
=333 S | P i) (16)

t=0 k=0 m=

Proor. A zonal harmonic of degree k with pole 0 € S"™! is the unique
spherical harmonic Z of degree k such that for all spherical harmonics Y ozf
degree k the relation Y = [ Z Y (n)dn holds. Let p,(0,x) =L ‘lv ‘;‘l
be the Poisson kernel for O <|x| < 1 = |0| Theorem 2.10 in [30, p. 145] glves
pa(0,x) = >0 0\x|kZ (x') for all 0,x'eS"', where x=|x|-x
|x| < 1. Lemma 2.8 in [30] shows that Z< )( =3 Yiem(x') Yi m(0) where

x',0eS"", so

m=1

0 43

pa(0,x) = ZZW Yiem(X) Y (0). (17)

k=0 m=

for |x| < 1. Let R be as in the theorem, and replace now x in (17) by x/p,
p € R such that |x| < R < p; one obtains that

n

wip(’fg——xixl ZZ 7 Yiem0) Vi (0). (18)

The real variable p can now be replaced by a complex variable { with |{| > R.
We multiply by ((¢* —|x|*)”", and integrate over the closed ball Bz with
respect to u. This gives

0 ay - 7}, x
=33 Ym0 J ;7()2 du(x), (19)

k=0 m=1 Rnc - |X|
and we have determined the Laplacg:-Fourier series of 6+ j((,0). Since
|| > R > |x| we can expand 1/ <1 - {—‘2> in a geometric series and we obtain

0=35 Tl | ¥ (i ) (0

0

After interchanging summation and integration the claim is obvious. H
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3. The function of the second kind

In the following we want to a give a multivariate analogue of the
polynomial of second kind. It turns out that in the multivariate case the
corresponding definition does not lead to a polynomial but to a polyharmonic
function Qp((,0) which is defined only for all || > R, 0 eS"".

DERINITION 5. Let P(x) be a polynomial and u be a non-negative measure
with support in Bg.  Then the function Qp({,0) of the second kind is defined by

1 P(O)— P
000 = 5| D= dut) o1
for all |¢| >R, 0S"'.  Similarly we define the function Rp((,0) by
1 P(x
Ret.0) = [ e dut) 22)

for all |{| >R, 0eS"".

The last definitions immediately give the identity

THEOREM 6. Let P(x) be a polynomial, u be a signed measure with support
in Bg and Qp((,0) the function of the second kind. Then for any Ry > R and
Jor each polynomial h(x)

1
b I I (24)

Proor. Let us denote the integral in (24) by I(#). By (23) we obtain
that I(h) = I,(h) — L(h) where

o] | neopeon.oacao, (25)
r, JS"

hin) = 27i )

B =5 h@a)jw(cgf“m Ldu(dedo. (26)

2miwn )y, )

Proposition 2 yields I;(h) = [g. h( x)du(x). Change the integration order
n (26) and use formula (7). Then we obtam L(h) = L (h), therefore I(h) =0
which was our claim. H

A similar argument to that in the proof of formula (16) proves the
following:
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THEOREM 7. The function Rp((,0) has the asymptotic expansion

S5 Tk [ Pl T (). o

t=0 k=0 m=1

Note that the map { — Rp((,0) for (| > R and 6 € S"! is holomorphic in
the complex variable {. So we can consider the Laurent series of the function
{— Rp((,0) and we write for |{| > R and fixed 0 e S"!

Z rslP CS+1 (28)

s=0
From (27), by putting s = 2t + k, it follows that

[s/2] a5

ZZYS 20, J P Y2 m () dp(x). (29)

=0 m=

Hence the coefficient function r,[P] is a sum of spherical harmonics with
degree < s.

We can now formulate a characterization of orthogonality in asymptotic
analysis:

THEOREM 8. Let u be a signed measure with compact support and P(x) be
a polynomial. Then P is orthogonal to all polynomials of degree < M with
respect to u if and only if

V()[P] == }’Mfl[P} =0
where rg[P] are the functions defined in (28)—(29).

Proor. From (29) we see that ro[P] =--- =ry_;[P] =0 if and only for
all s=0,..., M —1

[ PON T du) o

But the polynomials |x|* Y, o ,(x) with s=0,....M —1, 1=0,...,[s/2],
m=1,...,a5 5, span up the space of polynomials of degree < M— 1. |

The next theorem, interesting in its own right, is not needed later, and
therefore the proof will be omitted.

THEOREM 9. Let u be a signed measure with compact support and let
P(x) be a polynomial of degree 2N. If P is orthogonal to all polynomials of
degree < 2N and polyharmonic degree < N then ro[P] = --- =ryy_1[P] =0 and
ran[P)(0) is constant.
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4. Polyharmonicity of the function of second kind

In this Section we want to show that the function Qp({,6) of the second
kind, multiplied by D s a polyharmonic function.

Recall that we have defined Np = sup{d(P -h) : h harmonic polynomial}
for a polynomial P(x). In the Appendix we will show that Np < deg P(x) and
an explicit determination of Np will be given there as well.

ProposiTION 10.  Let Y, m=1,...,ax, be an orthonormal basis of the
space of all homogeneous harmonic polynomials. Then

Np = sup d(P(x) Y, m(x)). (30)

ProOF. Let us denote the right hand side by Mp. Then the inequality
Mp < Np is trivial. For the converse let /(x) be a harmonic polynomial and

write A(x) = Z,jjzo S Aeom Yiem(x).  Then
d(P-h) < sup d(P(x) Y m(x)) < Mp. R

keN(),m:I ,,,,, aj

Note that Np = supyen, m=1...q, A(P(X) Y m(x)) since Yy, m=1,... a;
is an orthonormal basis as well. Now we determine the asymptotic expansion
of the function of the second kind:

THEOREM 11. Let P(x) be a polynomial and u be a signed measure with
support in Br.  Then 0+ Qp((,0), the function of the second kind, possesses a
Laplace-Fourier series of the form

(473

ZZ@ 1 Pkn(E) Yien(0) (31)

k=0 m=1

where pi.m(t) are univariate polynomials of degree strictly smaller than Ny, ==
d(P(x) Yk, m(x)). The function Qp({,0) of the second kind depends on those
distributed moments

[, ACodut) (2
.

where t < supy N, deg pr,m and h(x) is a harmonic polynomial.

Proor. For each fixed { with || > R the function 6 — Qp({,0) possesses
a Laplace-Fourier expansion, say

0

Z Z ekm Yk m

k=0 m=
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Recall that Qp((,0) = P((0)i(¢,0) — Rp(L,0), see (23). Formula (27) easily
yields the Laplace-Fourier expansion of # — Rp({,0): in (27) one has only to
compute the sum over the variable ¢ obtaining

o, o PO V(D)
Z Z Yk m k—1 J ();) k’ g-X) dlu(x) (33)
k=0 m= év v =

The Laplace-Fourier coefficients of 0 — P({0)a({,0) are given through

finl®) = [ PO 0) Ticp 0. (34)

Let us write P(x) Y »(x) in the GauB decomposition, see Theorem 5.5 in [4], in
the form

NA m

Yk m Z hj k, m |X| (35)

where A i, are harmonic polynomials and Ny ,, is the polyharmonic degree of
P(x) Yk m(x). Then (34) and (35) yield

1
fenl) =5 |, PO T DAL O)a0

Ni,m

Zc'j By ke m(CO)A(E, 0)d0

Ni.m 1 Cn71

< Z CZJJ J Bk (0) — = d0du(x).

S"- 1

Since 7 x,m is a harmonic polynomial the Poisson formula shows that for real
{ > R holds

1

n—=2s2
an) = | e =L ao

W

Since the integrand is holomorphic in { this holds for all complex values { with
|| > R as well. Thus

Ni,m

Jiem( Ck Z ¥ J ) _7x|2hj.,k,m(x)dﬂ(x) (36)

are the Laplace Fourier coefficients of 6 — P({8)a(¢,0).



36 Ognyan KouncHEV and Hermann RENDER

Replace now P(x) Yk ,(x) in (33) by the right hand side of (35) and take
the difference of the Laplace-Fourier coefficients we computed so far. Then
the Laplace-Fourier coefficients of Qp((,0) are given by

Ni.m

1 1 _ '
I e

k—1
1 4

ek,m(C) ==

Note that for j =0 the summand is just zero. For j > 1 we have
Y |x|¥ . . A
Cz | ‘2 _ |x‘2(/*1) + |x‘2(/*1>62 4ot C2(171).
& = Ix|
We conclude that { — Cl‘*lekﬁm(é) =: Pk‘,m(Cz) is a polynomial in e of degree
at most Ny, — 1. It follows that e ,,({) can be computed if we know all
moments of the form (32) where 7 < deg pi ,, and h(x) is a harmonic poly-
nomial. The proof is complete. M

From this we have the following interesting consequence:

COROLLARY 12. Let P(x) be a polynomial, i be a signed measure with
support in Br and Qp((,0) be the corresponding function of the second kind.
Then the function 10— r~""VQp(r,0) defined for r > R and 0eS" ! is a
polyharmonic function of polyharmonic degree < Np where Np is defined in (3).

ProOF. By the last theorem the function 6 r~""DQp(r,0) has the
following Laplace-Fourier expansion

o (43

F0) = D00, 0) = 303 pin () Vi (6).

k=0 m=1
Let us define the differential operator

d_2+n—li_k(k+n—2)
T dr? rodr r? '

(37)

It is known that a function g(rf) is a solution of A”g(x) = 0 if and only if the
coefficient functions g ,(r) of its Laplace-Fourier expansion are solutions of
the equation [L(k)]” gi,m(r) = 0; an elaboration of these classical results can
be found in [19]. Further the polynomials r/ with j =~k —n+2,—k —n+
4 ...,—k —n+2p are solutions of this equation. It follows that

1
Jie,m(r) :mpk,m(”z)

are solutions of the equation [L)|”gk,m(r) =0 when p > N;. The proof is
complete. H
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5. Measures with algebraic support

A measure u over R” has algebraic support if the support of the measure is
contained in an algebraic set, i.e. if the support of x is contained in P~!(0) for
some polynomial P(x). Further we say that u has finite support if the support
has only finitely many elements. The following gives a characterization of
algebraic support of a measure in terms of the Markov function:

THEOREM 13. Let p be a measure with support in Br and let P(x) be a
polynomial.  Then u has support in P~'(0) if and only if

P(LO)A(L,0) = Op(L,0)  for all 0eS™ ", (] > R, (38)
where Qp(L,0) is the function of the second kind.

PrOOF. If x has support in P~'(0) it follows that the function Rp((,0)
is equal to zero and (38) is evident by (23). For the converse assume
that P((O)a(L,0) = Qp(C,0). Define the polynomial P* by P*(x) := P(x) for
x e R". By Proposition 2 and Theorem 6

* _ 1 * ~
Jiep =g |, weor coreoac o

| [ eor- oo -o (39)
I, gn-

- 2mi
for any polynomial /(x). Since the polynomials are dense it follows that
P*P du is the zero measure. Let u= u" — u~ be the Jordan decomposition.
It follows that P*P du* and P*P du~ are zero measures, and it is easy to see
that this implies that the support of x* and x~ is contained in P~'(0). Thus u
has support in P~1(0). W

Let U be an open non-empty subset of the complex plane C and f be a
function defined on U x S"!. We say that f is pointwise rational if there
exists a polynomial P(x) in n variables such that for each fixed e S"™! the
function {+— P({0)f({,0) is a polynomial in the variable (.

PrOPOSITION 14. Let u be a signed measure with bounded support and
suppose that the Markov function j((,0) is pointwise rational. Then u has
algebraic support.

Proor. Let P(x) be a polynomial such that the map { — P({0)i((,0) is a
polynomial in the variable {. Then the integral over I'g, in (39) is already zero
and as in the last proof we obtain that u has support in P~1(0). W

The converse of the last proposition is not true as the following result with
o equal to the Lebesgue measure on the unit interval shows:
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PROPOSITION 15. Let o be a measure over R with compact support, o, the
Dirac measure over R at the point 0 and let =0 ® . Then for || > R the
multivariate Markov transform is given by

T®B(Ce) = o5 [ do) L (@0)

) 4= sin ¢
The measure u has algebraic support.  Its multivariate Markov transform a@)\éo
is pointwise rational if and only if the measure o has finite support.
Proor. Let 0= e with teR. It is straightforward to verify that for
|| > R holds

T®d((,0) = wizj i m d(o ® dp)

1 J 14
=— |3 do
wy ) (" —2(x cos t + x2
Note that

2i{ sin ¢ 1 1
C—ZC)ccost—i—x2 0 —x - x

Define for the measure o the one-dimensional Markov transform by &({) =
IC%Y do(x). Then 2iw; sin ¢ - J@O(C, 0) = 6(¢0) — 6(0) and the asymptotic
expansion of ¢ leads to (40).

Assume now that 069\50(5 ,0) is pointwise rational. Then for 1 = 7/2 the
function

1 & (-n*F 1 1
7 ®do((,m/2) :—ZJ * do Cz"“ :ECJida(x)

@2 = 0+ x2

must be a rational functional in (. As it is known from univariate Padé
approximation this implies that ¢ must have finite support, [26, chapter 2,
section 3, Theorem 3.1]. Conversely, if a measure x over R” has finite
support, and the dimension n is even then it is easy to see that (a({,6) is a
quotient of two polynomials, in particular it is pointwise rational. H

We finish this section with the following example:

EXAMPLE 16. Let p be the Lebesque measure on the unit circle S'.  Since
the measure is rotation-invariant it follows that f((,0) =="—. Hence the
multivariate Markov transform (i((,0) is pointwise rational but u does not have
finite support.
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6. Proof of Theorem 1

Proor. In Theorem 11 we have seen that O, p and Q, p only depend on
the moments ¢, x ,, defined in (15) where ¢+ < Np. It follows that Q, p = O, p.
By Theorem 13 P(£0)i(C,0) = O, p(¢,0) and P(L0)V(,0) = 0O, p(L,0) for all
large ¢ and for all @ € S"!, therefore P((6)i(C,0) = P(CO)V(C,0). We want to
conclude that g({,0) = ¥({, 0); in that case Theorem 3 yields g =v. If P({0)
has no zeros for large ( it is clear that g({,0) = ¥({,0). In the general case, it
suffices to show that 4 := {({,0) € C x S"~! : P(¢A) = 0} is nowhere dense since
then a continuity argument leads to ({,0) = ¥((,0). This fact will be proven
in the next Proposition. H

PROPOSITION 17.  The set A := {((,0) € C x 8"~ : P(¢0) = 0} is closed and
has no interior point, i.e. A is nowhere dense in C x S""!.

ProoF. Clearly A4 is closed. Suppose that there 0y € S"~' and ¢, such
that P({0) =0 for all { in a neighborhood U of {, and for all § in a
neighborhood V' of 6. For fixed 0 € V it follows that { — P({#) must be
the zero polynomial since for all { € U (hence uncountably many {) we have
P((0) =0. Tt follows that P({f) =0 for all {e C and for all # e V. Hence
P(x) =0 for all x in an open set W of R” and, by the properties of real
analytic functions, we conclude that P=0. B

COROLLARY 18. Let P(x) be a polynomial and Np be given by (30). Then
the space

Uy, ={0e?: 4" Q =0}

is dense in the space C(Kp(R),C) of all continuous complex-valued functions on
Kp(R) endowed with the supremum norm.

Proor. Since Uy, is closed under complex conjugation we may reduce
the problem to the case of real-valued continuous functions. Suppose that Uy,
is not dense in C(Kp(R),R). By the Hahn-Banach theorem there exists a
continuous non-trivial real-valued functional L which vanishes on Uy,. By
Riesz’s Theorem there exists a signed measures ¢ representing the functional L
with support in Kp. By Theorem 1 (applied to ¢ and the zero measure) we
conclude that ¢ =0, a contradiction. W

7. Appendix: The polyharmonic degree

We want to list some of the properties of the polyharmonic degree map.
Note that the inequality d(P+ Q) < max{d(P),d(Q)} is trivial. In [3] the
important equality
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d(Q - |x]) = d(Q) +d(|x]*) = d(Q) + 1. (41)

is proved for any polyharmonic function Q defined on a domain containing
zero. The following inequality is implicitly contained in [3, Theorem 1.2, p.
31]. For completeness we give the short proof.

ProposITION 19.  Let f, g be harmonic. Then d(fyg) < min{deg f,deg g}
and d(ff*) = deg f.

Proor. Let Vf be the gradient of f. Then 4(fg) = (4f)g+ 2KV f,Vg)>+
fAg. 1If h and g are harmonic it is easy to show by induction that

- 0 0 0 0
AP (fg) = 2F Z <5in g f> (6in T g). (42)

ity ip=1

Suppose that s:=deg f <degg. Then %f: 0 for all BeN; with
|| = s+ 1. Tt follows from (42) that A4°"'(fg) = 0. Hence d(fg) <s and the
first statement is proved. Clearly this implies also that d(ff*) <deg f.

2

a a

Suppose that 4”*'(ff*) =0 for some peN. Then Y/ | oS
+ Ox;y 0Xiy

=0. It follows that %fzo for all feN{j with |f|=p-+1. Hence
deg / < p, and we have proved that deg /' < d(ff*). N

Now we can prove the following:
CoROLLARY 20. Let P(x) be a polynomial with the Gauf3 decomposition
P(x) = ho(x) + ¥ A1 (x) + - + [V hw (). (43)
Then for N, defined in (3) the following inequality holds:
Np < r:rglaxN{r +deg h,} < deg P(x). (44)

Proor. Recall formula (30) for Np and let Y, be a harmonic homo-
geneous polynomial of degree k. An iteration argument in (41) implies
that d(|x|2"h, Yy) =r+d(h.Yy). By Proposition 19 d(h,Y;) < deg h,. Hence
d(P-Yy) <max,—__ ny{r+degh}, and this proves the first inequality.
Further we know that deg(|x|*h,) = 2r+degh, <degP for r=0,...,N.
Hence the second inequality is established. W

In the following we want to give an explicit formula for Np. We need the
following result which is interesting in its own right:

THEOREM 21. Let Yy ,(x) be an orthonormal basis of spherical harmonics
with k€N and m=1,...,ar. Then d(Yim(x)Yim (x)) =k if and only if

m = m;j.
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Proor. We start with a general remark: Let Y; and Y; be harmonic
homogeneous polynomials of degree k and / respectively. Clearly Yi(x)Y;(x)
is a homogeneous polynomial of degree k+ /. By Proposition 19 it has
polyharmonic degree at most min{k,/}. By GauBl decomposition there exist
harmonic homogeneous polynomials /i ; 5, either /. 5, is zero or of exact
degree k+/—2u for u=0,...,min{k,/}, such that

min{k,/}

V) Yi(x) = Y g rau(x). (45)

u=0

Now assume that Yj(x) = Yi u(x) and Y;(x) = Yi »,(x). Let us consider the
summand |x|*ho(x) for u=k. Then hy must have degree 0, hence it is a
constant polynomial. Integrate equation (45) with respect to df. Since hy_2,
is either 0 or of exact degree 2k — 2u > 0 for u = 0,...,k — 1 the integral over
the sphere of |x|2“hk+,,2u(x) will vanish. Then we obtain with the ortho-
gonality relations for spherical harmonics

5m,ml = J hO do = hocu,,.
gn-1

Hence for m # m; we see that the polyharmonic degree is less than k, for
m=my it is exactly k. The proof is finished. W

THEOREM 22. Let P(x) be a homogeneous polynomial of degree N, say of
the form

di

PX)= " > > bkl Yim(x).

t,keNy, 2t+k=N m=1

Let ko = ko(P) be the largest natural number such that by, i, m, # 0 for some my
and ty in the above sum. Then

Np Z%(N + ko(P)).

Proor. Let ky be as specified in the theorem. Let k; € Ny and
my € {l,...,ax}, then

d(P(x) Yk m (X)) < max d(|x|2t Yie.m Yiey,my (X)) (46)

where the maximum ranges over all indices ¢, k, m with b, ;. ,, # 0. Using (41)
and the inequality d( Yy, Yk,.m,) < k in (46) we arrive at (note that 2t + k = N)

max{N + k} < %(NJrko)7

N —

d(P(X) Ykl,ml (X)) < max{t —+ k} =
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where the last inequality follows from the choice of ky. Now (30) yields
Np < 1(N + ko). For the other direction it suffices to show that P(x) Yy, m,
has polyharmonic degree > %(N + ko). Clearly it suffices to show that there
exists a polynomial R(x) of polyharmonic degree <1 (N + ko) such that

P(x> Yko,mo = bf()ykr)-,mr)|x|2t(J Yko,mo Yio,mg + R(x) (47)

since (41) and Theorem 21 imply that b,o,koﬁ,m]\)c|2’0 Yko,mo Yko,my has poly-
harmonic degree

(N + ko)

N =

th + d( Ykoﬁmo Yko,mo) =1+ kO =

using the fact that 27+ ko = N. It remains to prove that R(x) has poly-
harmonic degree less than 4 (N + ko). It suffices to show that for each non-
zero summand b; x| x|* Yim Yig.me in R(X)

1
d(bt,k,m|x|21 Yk-,m Yko-,mo) =1+ d( Yiem Yko-,mo) < E (N + ko) (48)

If k < ko this is clear since d(Yi,m Yigm) <k and t+k =3(N +k). If k=ko
we know that m # my, and by Theorem 21 we have again strict inequality. By
choice of ko we always have k < kg, so the theorem is proved. H

In the last theorem it is essential that the polynomial P(x) is homoge-
neous. If P(x) is arbitrary, we can write P(x) = E/]i o Pi(x) where Pj(x) are
homogeneous polynomials. It is not very difficult to see that

d(P Y/c,m) max d(P/ Yk,m);

T 0N
see e.g. the proof of Theorem 1.27 in [4]. Hence Np is the maximum of Np,
for j=0,...,N.
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