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ABSTRACT. Bivariate and univariate gamma distributions are some of the most popular
models for hydrological processes (Yue er al, 2001). In fact, the intensity and the
duration of most hydrological variables are frequently modeled by gamma distributions.
This raises the important question: what is the distribution of the fotal amount =
intensity x duration? 1In this paper, the exact distribution of P = XY and the corre-
sponding moment properties are derived when the random vector (X, Y) has two of the

most flexible bivariate gamma distributions. The expressions turn out to involve several

special functions.

1. Introduction

Bivariate and univariate gamma distributions are some of the most popular
models for hydrological processes. The reader is referred to the review paper
by Yue er al. (2001) for detailed references. It is known that gamma dis-
tributions are popular models for the intensity and the duration of most
hydrological variables and that often intensity and duration are correlated (Yue,

2001).

This raises the important question: what is the distribution of the tozal

amount = intensity X duration? In particular,

L.

4,

if X denotes the rainfall intensity and Y denotes the rainfall duration
then what is the distribution of the amount of rainfall P = XY?

if X denotes the drought severity and Y denotes the drought duration
then what is the distribution of the magnitude of drought P = XY?
if X denotes the rate of stream-flow into a reservoir’s catchment and Y
denotes the storm duration then what is the distribution of the amount
P = XY of water received during the storm?

if X denotes the snowfall intensity and Y denotes the snowfall du-
ration then what is the distribution of the amount of snow P = XY?

Thus, it is important that the distribution of the product of components of
bivariate gamma distributions is studied. In this paper, we consider two of
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the most flexible bivariate gamma distributions that have received hydrological
applications.
The distribution of XY has been studied by several authors especially when
X and Y are independent random variables and come from the same family.
For instance, see Sakamoto (1943) for uniform family, Harter (1951) and
Wallgren (1980) for Student’s ¢ family, Springer and Thompson (1970) for
normal family, Stuart (1962) and Podolski (1972) for gamma family, Steece
(1976), Bhargava and Khatri (1981) and Tang and Gupta (1984) for beta
family, Abu-Salih (1983) for power function family, and Malik and Trudel
(1986) for exponential family (see also Rathie and Rohrer (1987) for a com-
prehensive review of known results). However, there is relatively little work
of this kind when X and Y are correlated random variables. The only work
known to the authors is the one by Garg er al. (2002) for Dirichlet family.
In this paper, we derive the exact distribution of P = XY when X and
Y are correlated gamma random variables arising from the following dis-
tributions:
1. McKay’s bivariate gamma distribution (McKay, 1934) given by the
joint pdf
ab+a

S(xy) = )X”’l(y — )" exp(—ay) (1)

I'(p)I'(q

for y>x>0,a>0, p>0and ¢ >0. For hydrological applications
of this model, see Clarke (1979, 1980).
2. Kibble’s bivariate gamma distribution (Kibble, 1941) given by the joint

pdf
L e Xty 2,/57p
flx,y) = (@)1= p)pt P eXp<_ 1 p>1“1( 1—p ) @

for x>0, y>0, >0 and 0<p <1, where [,(-) denotes the
modified Bessel function of the first kind of order v defined by

I,(x) = x Y : x k
I AT ) & )k \d)

For hydrological applications of this model, see Izawa (1965) and
Phatarford (1976).
The explicit expressions for the pdfs and the moments of P = XY for these
two distributions are derived in Sections 2—4. The calculations involve several
special functions, including the ;F> hypergeometric function defined by

L (a), xK
le(a,b,C, x) - ; (b)k(lé)k E,




Bivariate gamma based intensity—duration models 389

the Jacobi polynomial defined by

PEA)(x) = (z_nln)!n (1-x)(1 +x)_/j%{(1 x)*(1+ X)BM}’

the modified Bessel function of the first kind defined by
o

0 2 k
L) =561 Z kk'< )

k:O

the modified Bessel function of the third kind of order v defined by
I -1
KV<X) — 77,'{ V(x) V(x)}

2 sin(vn)

with Ky(-) interpreted as the limit
Ky(x) = limo K,(x),

and the modified Laguerre polynomial defined by

x7Vexp(x) d"

L) = TP L exp(—x)},

n

where (e), =e(e+1)...(e+k—1) denotes the ascending factorial. We also
need the following important lemmas.

Lemma 1 (Equation (2.3.7.3), Prudnikov ef al., 1986, volume 1). For
>0 and p >0,

J X1 (x2 = )7 exp(—px)dx

1o 2 1o ap?
=34 B B, 1—/3—5 | 55 B

Lo g 1 -« l+o 3 1+a , ap?
_Epa B ﬁ) 2 _ﬂ 1F2 2 7§a 2 +ﬁ7 4

e o 3—a a’p?
+(2)” 2ﬂF(%+2ﬂ—2)1Fz<1—ﬂ;Z—ﬂ—TT—ﬂ;Tp)-

Lemma 2 (Equation (2.3.16.1), Prudnikov et al, 1986, volume 1). For
p>0 and q >0,

J " exp(px — q/x)dx = 2 (%)a/zKa(z\/;Tq).

0
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Lemma 3 (Equation (2.15.5.4), Prudnikov et al, 1986, volume 2). For
p>0and v>-—-n—1,

0 v 2 2
v+2n+1 2 , - nlc C . c
Jo X" exp(—px?) L (ex)dx _—2v+1pn+v+l exp(@>Ln (— %)

Lemma 4 (Equation (2.19.3.2), Prudnikov et al, 1986, volume 2). For
p>0 and o> 0,

‘°° r . 2
J x* L exp(—px) L (ex)dx = ') plo—ion=1) (1 — —C>.

0 ! p* " P

The properties of the above special functions can be found in Prudnikov
et al. (1986) and Gradshteyn and Ryzhik (2000).

2. McKay’s bivariate gamma distribution

Theorem 1 derives the pdf of U= XY when X and Y are distributed
according to (1).

THEOREM 1. If X and Y are jointly distributed according to (1) then

aPtiyd-1 — +q 1 —p d’u
_ A ong(, =49\ g _Ptal | a—p au
Ju(u) 2F(p)F(q){u <q, B >1 2 +

—qg—1 3—-p—q 33 - 2
_au(p—qﬂ)/zB(q’%)le( p q;§7 +g p;au>

24p—q l+p—q d®
+21+ﬂ-q<au>ﬂ—"r<q—pm(l—q; N ‘%%)} (3)

SJor 0 <u < co.
Proor. From (1), the joint pdf of (X,U) = (X,XY) becomes

f(x,u) = F(Z;J;{(q)qul(u —x)) 7 exp(—au/x). (4)

Thus, the pdf of U can be written as

where
Vi 1
J(u) = J P70 (= x?)9 exp(—au/x)dx.
0
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Substituting w = 1/x, the integral J(u) can be rewritten as

J(u) = u?™! J w4 (w? = 1/u)4™" exp(—auw)dw. (6)
1/u

Direct application of Lemma 1 shows that (6) can be calculated as

g _ — +q 1 q—p a‘u
J(u) =21yt y-ai2g(, P4\ g1 P T9.2 4P 24U
(1) u {” & i 7 iyl Ty

2

2 2 2 2 4

2 —q 1 — 2
+21+p-4<au>P-qr<q—p>1Fz<1—q; tLog tE ‘IT>} ™

The result of the theorem follows by combining (5) and (7). A

Using special properties of the hypergeometric functions, one can derive
elementary forms for the pdf in (3). This is illustrated in the remark below.

ReMARK 1. If X and Y are jointly distributed according to (1) and if ¢ = 1
then
aZpup—l

for 0 <u < 0.

Now, we derive the moments of U = XY when X and Y are distributed
according to (1).
REMARK 2. If X and Y are jointly distributed according to (1) then

I'(p+n)I(p+q+2n)

B = aI'(p)I'(p+q+n)

for n>1.

ProOF. Follows by writing E(U") = E(X"Y")=E((X/Y)"Y?) and
using the fact X/Y and Y are independent. Note X /Y has the beta dis-
tribution with shape parameters p and g while Y has the gamma distribution
with scale parameter ¢ and shape parameter p+¢q. A

3. Kibble’s bivariate gamma distribution

Theorem 2 derives the pdf of P= XY when X and Y are distributed
according to (2).
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THEOREM 2. If X and Y are jointly distributed according to (2) then

2p=1)/2 2\/pp 2\p
fP(p) = F(O()(l _p)p(“fl)/z IO(71 (E)KO (1—_p) (8)

Jor 0 < p < o0.

Proor. From (2), the joint pdf of (X,P)= (X,XY) becomes

- P12 p+x? 2ypp
SO P) = (T = gy exp{‘x(l —p)}l“(l —p)' ?

Thus, the pdf of P can be written as

(a=1)/2
10) = b (T22) ). (10)

l—p
where
© 1 p +X2 }
J :J — ex { dx.
() 3 P TS
Direct application of Lemma 2 shows that J(p) can be calculated as
2
J(p) = 2K°<1 f’;) (1)

The result of the theorem follows by combining (10) and (11). A

Using special properties of the Bessel function of the first kind, one can
derive elementary forms for the pdf in (8). This is illustrated in the remark
below.

REMARK 3. If X and Y are jointly distributed according to (2) and if
o >3/2 is a half integer then

B 2¢/2ple=1)/2 2./p
Jr(p) = VL (2)(1 _p)p(al)/Z\/EK()(] —p)

O e G D e V)
2+ D=2/ + |2 — 1] - 3/2)!

=0

[(2lo—1]—1)/4] (_1)«/'(2]'4— lo — 1| — 1/2)! }
—q

T @)Y = 1 - 1/2)22)7

where z = 2,/pp/(1 — p), a = cos(n(20. — 3) /4 — z), and b = sin(n(20. — 3) /4 — z).
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Now, we derive the moments of P = XY when X and Y are distributed
according to (2). We need the following lemma.

LemMmA 5. If X and Y are jointly distributed according to (2) then

E(xmyny = M ?))(1 =) pla-tmen) G +P)
I'(o —p

for m>1 and n>1.

PrOOF. One can express

E(Xm Yn) _ Jm xm+ o—1)/ exp _ L
I'(o)(1 D72 ) l—p
“ 2
w [y exp< ) (lx/xypp> dyd
0 —

_ m+(o—1)/ . X
T p<«1/2L" ‘”‘p< l—p)

o0 2 2. /xp
X J w2t exp (— s ) 1,1 ( xpw) dwdx
0 1—p 1—p

_ n!(}(;cf)n J: ! exp(—x) L ( ﬂp) dx, (12)

which follows after setting w = ,/y and applying Lemma 3. The integral in
(12) can be calculated by direct application of Lemma 4 to yield

J xm+a71 exp(—x)Lf,H <_ li)dx: (m—|—0()P<1 Lm—n <1LZ) (13)
. — —

The result of the lemma follows by combining (12) and (13). A

The moments of P = XY are now simple consequences of this lemma as
illustrated in the following remark.

REMARK 4. If X and Y are jointly distributed according to (2) then

E(Pn) _ I’l'r(n —;_'O((Zf)l - /7) P,(;xfl,O) (iy;) (14)

for n>1.

Proor. Follows by writing E(P") = E(X"Y") and applying Lemma 5
with m=n. A
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Using special properties of the Jacobi polynomials, one can derive ele-
mentary forms for (14) for particular values of n. This is shown in the remark
below.

REMARK 5. If X and Y are jointly distributed according to (2) then
E(P) = (a4 )1,

E(P?) = a1 + a)(2 + 4op + o + dp + 2p?),
E(P?) = a1 4 o)(2 + ) (18p + 20 + 27ap + 36p* + 180p?
+ 302 +90%p + 6p> + o),
E(P*) = a1+ a)(2 + o) (3 + 2)(96p + 60 + 1760p + 432p*
+ 360ap® + 1102 + 960 p + 7202 p* + 960p>

+ 166°p + 288p* 4 60 + 24p* 4 o*).
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