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Abstract. We discuss some relationships among congruence formulae modulo two

for the Euler characteristic of a closed surface M 2 and stable maps f : M 2 ! Rn

ð1a na 4Þ.

1. Introduction

Let M 2 be a closed surface and f : M 2 ! Rn a stable map. We have

known several congruence formulae modulo two for the Euler characteristic

wðM 2Þ and the singularity/self-intersection sets of f . We denote by Sð f Þ and
Ið f Þ (HM 2) the sets of singularities and self-intersections of f respectively.

We consider some relationships among the congruence formulae (1)–(9) below

in case of 1a na 4. Note that any stable map for nb 5 is an embedding and

hence Sð f Þ ¼ Ið f Þ ¼q (cf. [20]).

Throughout this paper we work in the smooth category. For a finite set

S, we denote by jSj the number of elements in S. For a closed surface M 2, a

circle L immersed in M 2 is said to be of A-type (or of M-type) if the normal

bundle of an immersion l : S1 !M 2 with L ¼ lðS1Þ which does not factor

through a non-trivial covering map of S1 is trivial (resp. non-trivial). Given

a union U of immersed circles in M 2, we denote by kUk the number of circles

of M-type in U .

1-dimensional case. Any stable map f : M 2 ! R1 is a Morse function

and Sð f Þ is the set of critical points of f . The following congruence is

obtained as a corollary of the Morse equality (cf. [15]).

wðM 2Þ1 jSð f Þj ðmod 2Þ: ð1Þ

2-dimensional case. For a stable map f : M 2 ! R2, the singularity set

Sð f Þ of f forms a disjoint union of embedded circles in M 2. Then we have

the following congruence.

wðM 2Þ1 kSð f Þk ðmod 2Þ: ð2Þ
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The singularity set Sð f Þ consists of fold singularities and cusp singu-

larities (cf. [22]). We denote by Cð f Þ the subset of Sð f Þ consisting of cusp

singularities of f . Note that Cð f Þ is finite. Then we have the following

congruence (cf. [10, 14, 19]).

wðM 2Þ1 jCð f Þj ðmod 2Þ: ð3Þ

The congruences (2) and (3) are immediate consequences of the following

well-known facts:

( i ) the Poincaré duals of the homology classes ½Sð f Þ� A H1ðM 2;Z2Þ and
½Cð f Þ� A H0ðM 2;Z2Þ represented by Sð f Þ and Cð f Þ coincide with the

first and the second Stiefel-Whitney classes w1ðM 2Þ A H 1ðM 2;Z2Þ and
w2ðM 2Þ A H 2ðM 2;Z2Þ respectively, and

(ii) hw1ðM 2ÞUw1ðM 2Þ; ½M 2�i1hw2ðM 2Þ; ½M 2�i1 wðM 2Þ ðmod 2Þ,where
U denotes the cup product and ½M 2� A H2ðM 2;Z2Þ is the fundamental

class.

See [19], for example. Note that kUk1 uU u ðmod 2Þ for any finite union U

of immersed circles in M 2, where u A H 1ðM 2;Z2Þ denotes the Poincaré dual of

the homology class ½U � A H1ðM 2;Z2Þ represented by U ; for it is not di‰cult

to see that kUk has the same parity as the self-intersection number of ½U �.
Combined case in 2- and 3-dimensions. We consider stable maps f :

M 2 ! R2 and g : M 2 ! R3 such that f ¼ p � g for a projection p : R3 ! R2.

R3

g

�����
�!???yp

M 2 ���!f R2

Throughout this paper, we assume that the projection p is generic with

respect to g in the sense of [6, § 1.5]. The singularity set SðgÞ of g consists

of Whitney umbrella points, and the self-intersection set IðgÞ is a union of

immersed circles and open arcs in M 2 such that the closure IðgÞ in M 2 is the

union IðgÞUSðgÞ (cf. [21]). By our assumption, we have that Sð f Þ intersects
IðgÞ transversely in M 2 and misses the self-intersections of IðgÞ. It is well-

known that

(iii) the Poincaré dual of the homology class ½IðgÞ� A H1ðM 2;Z2Þ
represented by IðgÞ coincides with the first Stiefel-Whitney class

w1ðM 2Þ A H 1ðM 2;Z2Þ.
See [8]. Hence, we have the following congruence by the algebraic facts (i)–

(iii) immediately.

wðM 2Þ1 jSð f ÞV IðgÞj ðmod 2Þ: ð4Þ
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Note that the congruence (4) holds for any stable maps f : M 2 ! R2 and

g : M 2 ! R3 without the restriction f ¼ p � g for a projection p : R3 ! R2 as

long as Sð f Þ and IðgÞ are in general position.

The singularity set Sð f Þ of f is mapped into R2 by f as a union of

immersed circles with cusps. Also, by our assumption, IðgÞ is mapped into

R2 by f as a union of immersed arcs and circles. We denote by Wð f ; gÞ the
set of points in R2 where f ðIðgÞÞ is tangent to f ðSð f ÞÞ. Then we have the

following congruence.

Theorem 1.1. Let M 2 be a closed surface. For any stable maps

f : M 2 ! R2 and g : M 2 ! R3 such that f ¼ p � g for a generic projection

p : R3 ! R2, we have

wðM 2Þ1 jWð f ; gÞj ðmod 2Þ: ð5Þ

3-dimensional case. Let f : M 2 ! R3 be a stable map. The closure

Ið f Þ of the self-intersection set of f is regarded as a union of immersed circles

in M 2. The following congruence is obtained from the facts (ii) and (iii)

immediately.

wðM 2Þ1 kIð f Þk ðmod 2Þ: ð6Þ

We denote by Dð f Þ the multiple point set of f ; that is, Dð f Þ ¼ f ðIð f ÞÞ.
Then the closure Dð f Þ is regarded as a union of immersed arcs and circles

in R3 which are called double curves. Note that the intersections of double

curves are non-tangential triple points and that the two ends of each arc-

component correspond to Whitney umbrella points. There are two types of

arc-components in Dð f Þ called A-type and M-type, and there are three types

of circle-components in Dð f Þ called A-type, M-type, and N-type. Their def-

initions are given in Section 4 (see Figure 8). We denote by jjjDð f Þjjj the total

number of double curves (arc- and circle-components) of M-type in Dð f Þ.
Then we have the following congruence.

Theorem 1.2. Let M 2 be a closed surface. For any stable map

f : M 2 ! R3, we have

wðM 2Þ1 jjjDð f Þjjj ðmod 2Þ: ð7Þ

We denote by Tð f Þ the subset of Dð f Þ consisting of triple points of f .

Note that Tð f Þ is finite. For each point P A f ðSð f ÞÞ, we take a point P 0

close to P in R3n f ðM 2Þ outside the Whitney umbrella (see Figure 10). Let

P 01 ; . . . ;P
0
k be the points in R3n f ðM 2Þ constructed as above associated with all

the points P1; . . . ;Pk in f ðSð f ÞÞ. The linking number of f , denoted by lð f Þ, is
defined by Szűcs [17] to be the mod 2 linking number of the set fP 01 ; . . . ;P 0kg
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and f ðM 2Þ. Since the number k is even, lð f Þ is well-defined. Szűcs gen-

eralizes Bancho¤’s congruence [3] for the case that f is an immersion (that is,

Sð f Þ ¼q) as follows.

wðM 2Þ1 jTð f Þj þ lð f Þ ðmod 2Þ: ð8Þ

4-dimensional case. Any stable map f : M 2 ! R4 is an immersion with

transverse double points (cf. [20]). Hence, Dð f Þ ¼ f ðIð f ÞÞ is the set of such

double points and Sð f Þ ¼q. Recall that the normal Euler number of f ,

denoted by eð f Þ, is defined to be the intersection number of f ðM 2Þ and its

transverse push-o¤, where we ignore the intersections corresponding to the

self-intersection points of f ðM 2Þ (cf. [20]). Refer also to [4, 5, 16]. The fol-

lowing congruence is known as a generalization of Whitney’s congruence for

the case that f is an embedding, that is, Dð f Þ ¼q (cf. [20]).

wðM 2Þ1 jDð f Þj þ eð f Þ
2

ðmod 2Þ: ð9Þ

This is an immediate consequence of the congruence formula proved

by Mahowald [12] and Lannes [9] as follows. Let f : Mn ! R2n be a

stable map, where Mn is a closed n-manifold and nb 2 is even. They

proved that w1ðMnÞU wn�1ðMnÞ A HnðMn;Z2Þ ¼ Z2 has the same parity as

jDð f Þj þ eð f Þ=2, where wiðMnÞ A HiðMn;Z2Þ denotes the i-th dual Stiefel-

Whitney class of Mn. Saeki and Sakuma gave a geometric proof of this

congruence in [16]. The congruence (9) is also obtained from Yamada’s con-

gruence [23] as follows. Let f : M 2 ! N 4 be a stable map such that N 4 is

an oriented 4-manifold. He defined a Z4-quadratic map q : H2ðN 4;Z2Þ ! Z4

and proved that qð½M 2�Þ is congruent to eð f Þ þ 2wðM 2Þ þ 2jDð f Þj modulo 4,

where ½M 2� A H2ðN 4;Z2Þ denotes the homology class represented by f ðM 2Þ in
N 4. See also [1, 2, 11].

The first aim of this paper is to give geometric proofs of the congruences

(2) and (6) without using the facts (i)–(iii) (Lemmas 2.1 and 2.2). The second

aim is to give geometric relationships among the congruences (1)–(9) as the

following scheme shows, where the numbers attached to the arrows indicate the

propositions which connect the congruences.

ð2Þ  !2:3 ð4Þ  !2:3 ð6Þ
4:1

x?y 4:3

x?y x?y5:1

ð1Þ  !
3:1
ð3Þ  !

4:2
ð5Þ  !

4:4
ð7Þ  !

6:1
ð9Þx?y5:2

ð8Þ
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2. Immersed circles in a closed surface

Let M 2 be a closed surface and U ¼6m

i¼1 Li a union of immersed

circles L1; . . . ;Lm in M 2 with transverse double points. We say that Li is of

A-type (or of M-type) if the normal bundle of an immersion li : S
1 !M 2 with

Li ¼ liðS1Þ which does not factor through a non-trivial covering map of S1 is

trivial (resp. non-trivial). Equivalently, Li is of A-type (or of M-type) if and

only if a regular neighborhood of Li in M 2 is the image of a non-factorizable

immersion of an annulus (or a Möbius band). We denote by kUk the number

of Li’s of M-type in fL1; . . . ;Lmg.
The union U is regarded as a 4-valent graph with hoops embedded in M 2,

where a hoop means a circle-edge with no vertex. Consider the condition (])

for U as follows.

(]) The connected components of M 2nU can be oriented so that

adjacent components along U have incompatible orientations.

More precisely, let R1; . . . ;Rn be the connected components of M 2nU . The

condition (]) says that each Ri is orientable and can be oriented so that if

the closures Ri and Rj have a common edge e of U , then the orientation of

e induced from Ri coincides with that induced from Rj .

We give geometric proofs of the congruences (2) and (6). For the

purpose, it is su‰cient to prove the following two lemmas.

Lemma 2.1. Let M 2 be a closed surface and U ¼6m

i¼1 Li a union of

immersed circles L1; . . . ;Lm in M 2 with transverse double points. Suppose

that U satisfies the condition (]). Then we have

wðM 2Þ1 kUk ðmod 2Þ:

Lemma 2.2. For both cases (i) and (ii) below, U satisfies the condition (]).

( i ) U ¼ Sð f Þ for a stable map f : M 2 ! R2.

(ii) U ¼ Ið f Þ for a stable map f : M 2 ! R3.

Note that since f is stable, U ¼ Sð f Þ in Lemma 2.2(i) is a disjoint

union of embedded circles in M 2, and U ¼ Ið f Þ in (ii) is a union of immersed

circles in M 2 with transverse double points. Hence, the congruences (2) and

(6) follow from Lemmas 2.1 and 2.2 immediately.

Proof of Lemma 2.1. We denote by cðUÞ the number of double

points of U . Let NU be a regular neighborhood of U in M 2. Since U

is a deformation retract of NU , the Euler characteristic wðNUÞ is equal to
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cðUÞ � 2cðUÞ ¼ �cðUÞ. Furthermore, since M 2nNU is a union of orientable

compact surfaces by the condition (]), its Euler characteristic has the same

parity as the number of boundary circles of NU . We denote this number by

dðUÞ. Then we have

wðM 2Þ ¼ wðNUÞ þ wðM 2nNUÞ � wðNU VM 2nNU Þ1 cðUÞ þ dðUÞ ðmod 2Þ;

and it is su‰cient to prove

kUk1 cðUÞ þ dðUÞ ðmod 2Þ:

We prove this congruence by induction on the number cðUÞ. If

cðUÞ ¼ 0, then L1; . . . ;Lm are disjointly embedded in M 2, and hence, we

have kUk1 dðUÞ ðmod 2Þ; for Li is of A-type (or of M-type) if and only if

its regular neighborhood is an annulus (resp. a Möbius band) embedded in

M 2. Consider the case cðUÞb 1. We take a double point of U and splice

the intersecting two arcs at the point. Then we obtain a new union U 0 of

immersed circles such that cðU 0Þ ¼ cðUÞ � 1, see Figure 1. It is not di‰cult

to see that kU 0k ¼ kUk or kUkG 2. Since the boundary circles of NU can

be oriented from the orientation of M 2nNðUÞ given by the condition (]), it

holds that dðU 0Þ ¼ dðUÞG 1. Since U 0 also satisfies (]), we have

kUk1 kU 0k1 cðU 0Þ þ dðU 0Þ1 cðUÞ þ dðUÞ ðmod 2Þ

by applying our induction hypothesis to U 0. This completes the proof. r

Proof of Lemma 2.2. (i) Since f jM 2nU : M 2nU ! R2 is an immersion,

M 2nU can be given the orientation induced from a fixed orientation of R2.

This orientation of M 2nU satisfies the condition (]).

(ii) Since H2ðR3;Z2Þ ¼ 0, the connected components of R3n f ðM 2Þ admit

a checkerboard coloring by black and white. We fix such a checkerboard

coloring for R3n f ðM 2Þ and an orientation of R3. Then we orient M 2nU so

that the normal vector to each component of f ðM 2nUÞ, which presents the

orientation, points into the adjacent black region. This orientation of M 2nU
satisfies the condition (]). r

Fig. 1
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By Lemma 2.2, the following proposition relates the congruences (2) and

(4), and (4) and (6).

Proposition 2.3. For a closed surface M 2, let U and ~UU be unions of

immersed circles in M 2. Suppose that ~UU satisfies the condition (]) and that

U V ~UU consists of transverse double points. Then we have

kUk � jU V ~UU j ðmod 2Þ:

Proof. We give an orientation to M 2n ~UU as in the condition (]) such that

the regions of M 2n ~UU have incompatible orientations on both sides of ~UU . Let

L1; . . . ;Lm be the immersed circles of U . We take a regular neighborhood

of Li which is an annulus (or a Möbius band) immersed in M 2 provided that

Li is of A-type (resp. of M-type). See Figure 2, where the dotted curve

represents Li and the thick lines represent ~UU transverse to Li. In the figure,

we also indicate the fixed orientation of M 2n ~UU by shading the regions.

Observing the orientation, we see that jLi V ~UU j1 1 ðmod 2Þ if and only if Li is

of M-type. Hence, we have

jU V ~UU j ¼
Xm
i¼1
jLi V ~UU j � kUk ðmod 2Þ: r

By Lemmas 2.1, 2.2 and Proposition 2.3, we see that the congruence

(4) holds for any stable maps f : M 2 ! R2 and g : M 2 ! R3 without the

assumption that f and g are related by a projection p : R3 ! R2 as f ¼ p � g
as long as Sð f Þ and IðgÞ are in general position.

3. Critical points on a circle

In this section, we consider stable maps f : M 2 ! R1 and g : M 2 ! R2

such that f ¼ p � g for a generic projection p : R2 ! R1. In this case, f is

Fig. 2
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a Morse function with the critical point set Sð f Þ, and the singularity set SðgÞ of
g consists of fold singularities and cusp singularities as shown in Figure 3.

Then we have Sð f ÞHSðgÞ. The subset of SðgÞ consisting of cusp singular-

ities of g is denoted by CðgÞ. Note that Sð f ÞHSðgÞnCðgÞ by our genericity

hypothesis.

For any stable map f : M 2 ! R1, there are a stable map g : M 2 ! R2

and a generic projection p : R2 ! R1 such that f ¼ p � g. Conversely, for

any stable map g : M 2 ! R2, there is a generic projection p : R2 ! R1 such

that f ¼ p � g : M 2 ! R1 is a stable map (cf. [13]). Hence, the following

proposition connects the congruences (1) and (3).

Proposition 3.1. For a closed surface M 2, let f : M 2 ! R1 and

g : M 2 ! R2 be stable maps such that f ¼ p � g for a generic projection

p : R2 ! R1. Let SðgÞ ¼6m

i¼1 Li be the union of embedded circles L1; . . . ;Lm

in M 2. For each Li, we have

jLi VSð f Þj1 jLi VCðgÞj ðmod 2Þ:

Hence, we have jSð f Þj � jCðgÞj ðmod 2Þ.
Proof. It is easy to see that the critical points of the map

pjgðSðgÞÞ � gjSðgÞ : SðgÞ ! R1 form the union Sð f ÞUCðgÞ. Figure 4 shows

such an example, where gðSð f ÞÞ is marked by � and gðCðgÞÞ is marked by

�. Since the number of critical points of pjgðSðgÞÞ � gjSðgÞ on each circle Li is

even, we have the first congruence. By taking the sum of these congruences

for L1; . . . ;Lm, we have the second congruence. r

Fig. 3

Fig. 4
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4. Neighborhoods and colors of fold curves

In this section, we consider stable maps f : M 2 ! R2 and g : M 2 ! R3

such that f ¼ p � g for a projection p : R3 ! R2. We assume that the pro-

jection p is generic with respect to g in the sense of [6]. The singularity set

SðgÞ of g consists of Whitney umbrella points whose number is always even.

Then we have Cð f ÞHSð f Þ and SðgÞHSð f Þ. By our assumption, we have

that SðgÞHSð f ÞnCð f Þ (cf. [6]).

For any stable map f : M 2 ! R2, there are a stable map g : M 2 ! R3

and a generic projection p : R3 ! R2 such that f ¼ p � g. Conversely, for any

stable map g : M 2 ! R3, there is a generic projection p : R3 ! R2 such that

f ¼ p � g : M 2 ! R2 is a stable map (cf. [13]). For the lifting problem of f

to an immersion g, refer to [7, 14].

By dividing the circles of Sð f Þ into four classes with respect to the parity

of the numbers of cusp singularities and Whitney umbrella points on the circles,

we have the following proposition which connects the congruences (2) and (3).

Proposition 4.1. For a closed surface M 2, let f : M 2 ! R2 and

g : M 2 ! R3 be stable maps such that f ¼ p � g for a generic projection

p : R3 ! R2. Let a, b, and c denote the numbers of L’s such that L is an

embedded circle of Sð f Þ satisfying the condition as shown in Table 1. Then

we have

kSð f Þk ¼ aþ b;

jCð f Þj1 aþ c ðmod 2Þ;
jSðgÞj1 bþ c1 0 ðmod 2Þ:

8><
>:

Hence, we have kSð f Þk1 jCð f Þj ðmod 2Þ for any stable map f : M 2 ! R2.

We remark that the symbol ‘‘�’’ in Table 1 means there may exist such

L’s satisfying the condition but the number is not used in the proposition.

Proof of Proposition 4.1. Recall that the singularity set Sð f Þ of f is

a disjoint union of embedded circles in M 2. Let L be a connected component

of Sð f Þ. By observing a regular neighborhood of gðLÞ in gðM 2ÞHR3, it

Table 1

jLVSðgÞj
LHSð f Þ

even odd

jLVCð f Þj
even � b

odd a c
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is easy to see that L is of M-type (that is, L has a Möbius band neighbor-

hood in M 2) if and only if the sum of the numbers of cusp singularities and

Whitney umbrella points on L is odd. See Figure 5. Hence, we have the first

equality. The second and the third congruences follow from the definition

immediately. Since b1 c ðmod 2Þ, we have kSð f Þk1 aþ b1 aþ c1 jCð f Þj
ðmod 2Þ. r

Let IðgÞHM 2 and DðgÞHR3 denote the self-intersection set and

the multiple point set of g : M 2 ! R3 respectively; that is, IðgÞ ¼ fx A M 2 j
g�1ðgðxÞÞ0 fxgg and DðgÞ ¼ gðIðgÞÞ. Then pðDðgÞÞ is regarded as a union of

immersed arcs and circles in R2 such that the ends of arc-components belong

to f ðSðgÞÞ. By our genericity hypothesis, we have that the intersections of

f ðSð f ÞÞ and pðDðgÞÞ are (i) transverse double points, (ii) points at which an

arc-component of pðDðgÞÞ ends on f ðSð f ÞÞ transversely, or (iii) points at which
pðDðgÞÞ is tangent to f ðSð f ÞÞ (cf. [6, 13]). See Figure 6, where the thin and

thick curves in R2 represent pðDðgÞÞ and f ðSð f ÞÞ respectively.

We denote by Wð f ; gÞ the set of points of type (iii) where pðDðgÞÞ is

tangent to f ðSð f ÞÞ. The following proposition connects the congruences (3)

and (5).

Proposition 4.2. For a closed surface M 2, let f : M 2 ! R2 and

g : M 2 ! R3 be stable maps such that f ¼ p � g for a generic projection

Fig. 5

Fig. 6
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p : R3 ! R2. Let Sð f Þ ¼6m

i¼1 Li be the union of embedded circles L1; . . . ;Lm

in M 2. For each Li, we have

jLi VCð f Þj1 j f ðLiÞVWð f ; gÞj ðmod 2Þ:

Hence, we have jCð f Þj1 jWð f ; gÞj ðmod 2Þ.

Proof. We fix a checkerboard coloring for the components of

R3ngðM 2Þ (see the proof of Proposition 2.2(ii)). Then each curve f ðLiÞ
outside the points in f ðCð f ÞÞUWð f ; gÞU f ðSðgÞÞ can be colored black and

white as shown in the upper half of Figure 7. Such colors along f ðLiÞ change
alternately on both sides of the points in f ðCð f ÞÞUWð f ; gÞ and do not

change at the points in f ðSðgÞÞ, see the bottom of the figure. Hence the

number of points in f ðCð f ÞÞUWð f ; gÞ on f ðLiÞ is even, and we have the first

congruence. By taking the sum of these congruences for L1; . . . ;Lm, we have

jCð f Þj1 jWð f ; gÞj ðmod 2Þ. r

The closure IðgÞHM 2 is regarded as a union of immersed circles in M 2.

By our genericity assumption, we have that Sð f Þ and IðgÞ intersect transversely
on M 2 (cf. [6]). The following proposition connects the congruences (4) and

(5).

Proposition 4.3. For a closed surface M 2, let f : M 2 ! R2 and

g : M 2 ! R3 be stable maps such that f ¼ p � g for a generic projection

Fig. 7
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p : R3 ! R2. Let Sð f Þ ¼6m

i¼1 Li be the union of embedded circles L1; . . . ;Lm

in M 2. For each Li, we have

jLi V IðgÞj � jLi VSðgÞj ¼ j f ðLiÞVWð f ; gÞj:

Hence, we have jSð f ÞV IðgÞj1 jWð f ; gÞj ðmod 2Þ.

Proof. For each point x A Li V IðgÞ, we have either that x belongs to

SðgÞ or that f ðxÞ belongs to Wð f ; gÞ. See Figure 6 again. Hence, we have

the first equality. By taking the sum of these equalities for L1; . . . ;Lm, we

have jSð f ÞV IðgÞj � jSðgÞj ¼ jWð f ; gÞj. Since jSðgÞj is always even, we have

the second congruence. r

The closure DðgÞ of the multiple point set DðgÞ ¼ gðIðgÞÞ of a stable

map g : M 2 ! R3 is regarded as a union of immersed arcs and circles in R3

which are called double curves. An arc-component K of DðgÞ is said to be

of A-/M-type if when we walk along K from one end outside the Whitney

umbrella, we reach the other end outside/inside the umbrella respectively. A

circle-component K of DðgÞ is said to be of A-/M-/N-type if a neighbor-

hood of K presents zero-/quarter-/half-twist modulo full-twist respectively.

Equivalently, K is of A-/M-/N-type if when we walk along K while keeping

one of the four quadrants of R3ngðM 2Þ around K , we return to the same/

adjacent/diagonal quadrant compared with the starting quadrant respectively.

See Figure 8. We denote by jjjDðgÞjjj the total number of double curves (arc-

and circle-components) of M-type in DðgÞ.
The following proposition connects the congruences (5) and (7).

Fig. 8
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Proposition 4.4. For a closed surface M 2, let f : M 2 ! R2 and

g : M 2 ! R3 be stable maps such that f ¼ p � g for a generic projection

p : R3 ! R2. Let DðgÞ ¼6n

j¼1 Kj be the union of double curves K1; . . . ;Kn of

DðgÞ. For each Kj, we have jpðKjÞVWð f ; gÞj1 1 ðmod 2Þ if and only if Kj

is of M-type. Hence, we have jWð f ; gÞj1 jjjDðgÞjjj ðmod 2Þ.

Proof. There are four quadrants of R3ngðM 2Þ around a double curve

Kj. We divide them into two types (type I and II) with respect to the

projection direction of p as shown in the left half of Figure 9; that is, each

quadrant of type I is mapped by p on both sides of the projected curve pðKjÞ in
R2, and each quadrant of type II is mapped on one side of pðKjÞ.

We first consider the case that Kj is an arc-component of DðgÞ. We start

from one end of Kj outside the Whitney umbrella which is a quadrant of type

I, see Figure 6(ii). On the way to the other end of Kj, when we pass through

a point corresponding to Wð f ; gÞ, the type of the quadrant where we walk

must change. See the right half of Figure 9, where the projection direction of

p is taken to be perpendicular to the paper. Hence, the following three are

equivalent to each other.

( i ) Kj is of A-type (or of M-type).

( ii ) We reach the other end of Kj in a quadrant of type I (resp. II).

(iii) There are even (resp. odd) number of points corresponding to

Wð f ; gÞ on Kj .

Similarly, in case that Kj is a circle-component of DðgÞ, we see that Kj

is of A-/N-type (or M-type) if and only if there are an even (resp. odd)

number of points corresponding to pðKjÞVWð f ; gÞ. In both cases, we have

jpðKjÞVWð f ; gÞj1 1 ðmod 2Þ if and only if Kj is of M-type. Hence, we have

jWð f ; gÞj ¼
Xn

j¼1
jpðKjÞVWð f ; gÞj1 jjjDðgÞjjj ðmod 2Þ: r

Fig. 9
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We remark that for a circle-component K of DðgÞ we cannot distinguish

between A-type and N-type only by the even number jpðKÞVWð f ; gÞj in
general.

5. Multiple point set and triple points

In this section, we consider a stable map f : M 2 ! R3. The following

proposition connects the congruences (6) and (7).

Proposition 5.1. For a closed surface M 2, let f : M 2 ! R3 be a stable

map. Let p, q, and r denote the numbers of K’s such that K is a double curve

(arc- or circle-component) of Dð f Þ satisfying the condition as shown in Table

2. Then we have

kIð f Þk ¼ pþ qþ 2r;

jjjDð f Þjjj ¼ pþ q:

(

Hence, we have kIð f Þk1 jjjDð f Þjjj ðmod 2Þ.

We remark that the symbols ‘‘�’’ in Table 2 mean there may exist such K ’s

satisfying the conditions but the numbers are not used in the proposition.

Proof of Proposition 5.1. An immersed circle of M-type in Ið f ÞHM 2

is mapped into an arc-component of M-type, a circle-component of M-type, or

a circle-component of N-type in Dð f ÞHR3. Conversely, there is a unique

circle of M-type in Ið f Þ which is mapped into a given arc- or circle-component

of M-type in Dð f Þ, and there is a pair of immersed circles of M-type in

Ið f Þ which are mapped into the same circle-component of N-type in Dð f Þ.
Hence, we have the first equality. The second equality is exactly the definition

of jjjDð f Þjjj. It follows from these equalities that kIð f Þk1 jjjDð f Þjjj ðmod 2Þ
immediately. r

We denote by Tð f Þ the subset of Dð f Þ consisting of triple points of f .

Note that Tð f Þ is finite.

Recall that the singularity set Sð f Þ of a stable map f : M 2 ! R3 consists

of Whitney umbrella points. Put f ðSð f ÞÞ ¼ fP1; . . . ;Pkg. We take a point

Table 2

arc-component circle-component
KHDð f Þ

A-type M-type A-type M-type N-type

number � p � q r
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P 0i close to Pi missing f ðM 2Þ which is located outside the Whitney umbrella

around Pi. See Figure 10. Szűcs [17] defines the linking number lð f Þ of f to

be the linking number of fP 01 ; . . . ;P 0kg and f ðM 2Þ modulo 2. Since k is even,

lð f Þ is well-defined. Equivalently, for a fixed checkerboard coloring for the

regions of R3n f ðM 2Þ, let b (or o) denote the number of P 0i ’s such that P 0i is

located in a black (resp. white) region. Then we have lð f Þ1 b1o ðmod 2Þ.

The following proposition connects the congruences (7) and (8).

Proposition 5.2. For a closed surface M 2, let f : M 2 ! R3 be a stable

map. Let s, t, u and q denote the numbers of K’s such that K is a double curve

(arc- or circle-component) of Dð f Þ satisfying the condition as shown in Table

3. Then we have

jTð f Þj1 sþ uþ q ðmod 2Þ;
lð f Þ1 sþ t ðmod 2Þ:

�

Hence, we have jjjDð f Þjjj1 jTð f Þj þ lð f Þ ðmod 2Þ.

We remark that the symbols ‘‘�’’ in Table 3 mean there may exist such K ’s

satisfying the conditions and that the symbols ‘‘—’’ mean there never exist such

K ’s.

Proof of Proposition 5.2. We fix a checkerboard coloring for the

regions of R3n f ðM 2Þ. The colors around a double curve change alternately

when we pass through a triple point. Hence, the number of triple points on

Fig. 10

Table 3

arc-component circle-component
KHDð f Þ

A-type M-type A-/N-type M-type

jK VTð f Þj
even � t � —

odd s u — q
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a circle-component K of Dð f Þ is even (or odd) if and only if K is of A-/N-

type (resp. of M-type). See the upper half of Figure 11. Thus we have the

first congruence.

Let Pi and Pj be the two boundary points of an arc-component K

of Dð f Þ. Then the linking number of fP 0i ;P 0jg and f ðM 2Þ is congruent to

1 modulo 2 if and only if K is of A-type and jK VTð f Þj is odd, or K is of

M-type and jK VTð f Þj is even. See the lower half of Figure 11. Hence, we

have the second congruence.

By taking the sum of these congruences, we have jTð f Þj þ lð f Þ1
tþ uþ q ¼ jjjDð f Þjjj ðmod 2Þ. r

6. Diagrams of immersed surfaces in 4-space

In this section, we consider stable maps f : M 2 ! R3 and g : M 2 ! R4

such that f ¼ p � g for a generic projection p : R4 ! R3. Then g is an

immersion with transverse double points, and hence, DðgÞ ¼ gðIðgÞÞ consists of

such double points. We denote by eðgÞ the normal Euler number of g.

We use a (broken surface) diagram to describe an immersed surface

gðM 2ÞHR4 (cf. [5]). Along each double curve of Dð f ÞHR3 we indicate the

over-under information with respect to the projection direction of p : R4 ! R3

by breaking the ‘lower’ of the two intersecting sheets. See the first from the

left in Figure 12. Any double point in DðgÞ is mapped by p into Dð f ÞnTð f Þ

Fig. 11
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by our genericity assumption. The over-under relations along a double curve

are opposite to each other on the two sides of a projected double point, and are

the same on both sides of a triple point on the curve. See the second and the

third figures from the left in Figure 12, where the dot � represents a projected

double point in pðDðgÞÞ. We define the sign for each Whitney umbrella point

in f ðSð f ÞÞ as shown in the first and the second figures from the right (cf. [5,

16]).

For any stable map f : M 2 ! R3, there are a stable map g : M 2 ! R4

and a generic projection p : R4 ! R3 such that f ¼ p � g. Conversely, for any

stable map g : M 2 ! R4, there is a generic projection p : R4 ! R3 such that

f ¼ p � g : M 2 ! R3 is a stable map (cf. [13]). Hence, the following propo-

sition connects the congruences (7) and (9). Refer to [16, 18].

Proposition 6.1. For a closed surface M 2, let f : M 2 ! R3 and

g : M 2 ! R4 be stable maps such that f ¼ p � g for a generic projection

p : R4 ! R3. Let x, y, z and q denote the numbers of K’s such that K is

a double curve (arc- or circle-component) of Dð f Þ satisfying the condition as

shown in Table 4. Then we have

jDðgÞj1 xþ zþ q ðmod 2Þ;
eðgÞ
2

1 xþ y ðmod 2Þ:

8><
>:

Hence, we have jjjDð f Þjjj1 jDðgÞj þ eðgÞ=2 ðmod 2Þ.

Fig. 12

Table 4

arc-component circle-component
KHDð f Þ

A-type M-type A-/N-type M-type

jK V pðDðgÞÞj
even � y � —

odd x z — q
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We remark that the symbols ‘‘�’’ in Table 4 mean there may exist such K ’s

satisfying the conditions and that the symbols ‘‘—’’ mean there never exist such

K ’s.

Proof of Proposition 6.1. Recall that the over-under information

along a double curve interchanges (or is invariant) when we pass through a

point in pðDðgÞÞ (resp. Tð f Þ). Hence, a circle-component K of Dð f Þ has an

odd number of points in pðDðgÞÞ if and only if K is of M-type. See the top

of Figure 13. Thus we have the first congruence. Similarly, the two ends of

an arc-component K of Dð f Þ have the same sign if and only if K is of A-

type and jK V pðDðgÞÞj1 1 ðmod 2Þ, or K is of M-type and jK V pðDðgÞÞj1 0

ðmod 2Þ. See the bottoms of Figure 13, where we only show the case that

the ends have positive signs. Since the normal Euler number eðgÞ is equal

to the sum of signs of all the points of f ðSð f ÞÞ (cf. [4, 5, 16]), we have the

second congruence. By taking the sum of these congruences, we have jDðgÞjþ
eðgÞ=21 yþ zþ q ¼ jjjDð f Þjjj ðmod 2Þ. r
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