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ABSTRACT. For a non-negative integer k, R. L. E. Schwarzenberger defined in [7] an
integer f(k) >0 which we call the Schwarzenberger number of k. Let { be a k-
dimensional F-vector bundle over the real projective n-space RP", where F is either the
real number field R or the complex number field C. Then (k) is closely related to the
problem to find the dimension m with m > n which has the property that { is stably
equivalent to a sum of k F-line bundles if { is stably extendible to RP™. The problem
for F = R has been studied in [7], [5] and [4], and that for F = C has been studied in [6]
and [4]. In this note we obtain further results on the problem and determine bounds
for the Schwarzenberger numbers f(k).

1. Introduction

Throughout this note, F denotes either the real number field R or the
complex number field C, and N is the set of all non-negative integers. Let
X be a space and A4 its subspace. A k-dimensional F-vector bundle { over
A is said to be extendible (respectively stably extendible) to X, if there is a
k-dimensional F-vector bundle over X whose restriction to A4 is equivalent
(respectively stably equivalent) to {, that is, if { is equivalent (respectively stably
equivalent) to the induced bundle i*5 of a k-dimensional F-vector bundle #
over X under the inclusion map i: 4 — X (cf. [7, p. 20], [8, p. 191] and [3,
p. 273)).

For a positive integer i, write i = (2a + 1)2""), where a € N, and for k e N
define an integer f(k) e N by

plk) =min{i —v(i) — 1|k < i}
which we call the Schwarzenberger number of k.

Let { be a k-dimensional F-vector bundle over the real projective n-space
RP" where k > 0. We study the problem to find the dimension m with m > n
which has the property that { is stably equivalent to a sum of k F-line bundles
if { is stably extendible to RP™.
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Let ¢(n) denote the number of integers s with 0 < s <n and s =0,1,2 or
4 mod 8. For F =R, we have

THEOREM 1. Let { be a k-dimensional R-vector bundle over RP", where
k >0, and consider the following four conditions.

(1) ( is stably extendible to RP™ for every m > n.

(2) ( is stably extendible to RP™, where m >n, m > 2k — 1 and ¢(m) >

$n) + Blk).

(3) ¢ is stably extendible to RP™, where m =290 — 1.

(4) ( is stably equivalent to a sum of k R-line bundles.
Then all the four conditions are equivalent. Moreover, when k=1 or n=1,3
or 7, the conditions always hold.

Let [x] denote the largest integer ¢ with ¢ < x. For F = C, we have

THEOREM 2. Let { be a k-dimensional C-vector bundle over RP", where
k >0, and consider the following four conditions.

(1) (¢ is stably extendible to RP™ for every m > n.

(2) C is stably extendible to RP™, where m >n, m >4k — 1 and ¢(m) >

/2] + p(2k) + 1.

(3) ( is stably extendible to RP™, where m = 2I"/2+1 1,

(4) ( is stably equivalent to a sum of k C-line bundles.
Then all the four conditions are equivalent. Moreover, when k =1 or n=1,2
or 3, the conditions always hold.

Concerning bounds for the Schwarzenberger numbers f(k), we obtain

THEOREM 3. Let k be a positive integer, let a(k) denote the number of the
non-zero terms of the 2-adic expansion of k, and let p(k) denote the Schwar-
zenberger number of k. Then the inequalities k — a(k) < (k) <k hold.

This note is arranged as follows. We study some properties of f(k) in
Section 2. We prove Theorems 1 and 2 in Section 3, and prove Theorem 3 in
Section 4.

2. Some properties of f(k)

LemMMaA 2.1.  Let k be a positive integer and t be any integer with k < 2.
Then B(k) =min{i —v(i) — 1 |k <i<2'}.

Proor. Clearly it suffices to prove that
min{i —v(i) — 1|2" < i} >min{i —v(i) — 1 |k <i<2'}.

Comparing 2/ —v(2") — 1 with i—v(i) — 1 for i=a2"+ b, where a > 1 and
0<b<?2' and with i —v(i) — 1 for i = a2', where a > 1, we have
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a2’ +b—v(@" +b)—1-{2"—v(2") -1}
=(a—12"+b—v(b)—1+1t+1>0,
and
a2 —v(@2)—-1-2"—v2") =1} =(a—1)2" —v(a) >a—1—v(a) >0,
since
J—v()—1=02x+1)2Y —v((2x+1)2") - 122" —y—-12>0,

where j = (2x+1)2” (x,y € N). We therefore obtain the desired inequality.

O

REMARK. It seems to us that in line 11 of [7, p. 21], the last inequality
i < 2" should be replaced by the inequality /i <2’. In fact, min{i — v(i) — 1|
k <i<2'} is not necessarily equal to f(k) (for example, if (k,7) = (6,3),
min{i —v(i) — 1|k <i <2’} =6 and f(k) = 4), the first inequality in line 11 of
[7, p. 21] holds also for i =27 and min{i — v(i) — 1 | k < i < 2"} is equal to S(k)
by Lemma 2.1.

Lemma 2.2. B(2")=2" for r =2, f(2) =1 and (1) =0.

ProOF. We prove the first equality. Suppose r > 2. Since f(2") <2’
(cf. [7, Examples)), it suffices to prove that min{i — v(i) — 1]2" <i <21} > 2"
by Lemma 2.1. If i=2"+4b, where 0 < b < 2", we have i —v(i) —1=2"+
b—v(b)—1=2" and if i =2 we have i —v(i) — 1 =2""' — (r+1) -1 >2"
for r > 2. Hence we obtain the desired inequality. The other equalities are
easily verified. O

CorOLLARY 2.3. f(0) =0, and p(k) >0 for k> 1.

PrOOF. By definition, j > k implies f(j) > (k). Hence the results fol-
low from Lemma 2.2. O

LemMmA 2.4, Let j=1,2,3 or 4 and let k =2" — j, where r >0 for j=1,
r>1for j=2,and r =3 for j=3 or 4. Then

plk)y=2"—r—1.
Moreover,
pR2r=5=2"-r—1 for r=6, pR2I—=5)=2"-7 for 3<r<S5.
ProoOF. By definition and by Lemma 2.2, we have
P27 —1) =min{2" —v(2") - 1,(2")} = min{2" —r —1,2" — 5}
=2"—r—1,
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where 0 =0if r>2andd=11if r=0 or 1. By the result above, we have, for
r=1,
2T =2)=min{2" -1 —v(2" - 1) - 1,2" - 1)}
=min{2"—=2,2"—r—-1}=2"-r—-1.
Similarly, we have, for r > 3,
P27 =3)=min{2" -2 —-v(2"-2) - 1,5(2" - 2)}
=min{2" —4,2"—r—-1}=2"-r—1,
P27 —4)=min{2" -3 —v(2"-3) - 1,5(2" - 3)}
=min{2" —4,2"—r—-1}=2"-r—-1.
Moreover,
PR —5)=min{2" —4—v(2"—4) - 1,2 " —4)}
=min{2" - 7,2"—r—1}
=2"—r—1 for r>6, =2"-7 for 3<r<s. O

3. Proofs of Theorems 1 and 2

ProoF oF THEOREM 1. Clearly (1) implies (2) and (3). In [7, Theorem 3]
R. L. E. Schwarzenberger proved that (2) implies (4) (cf. Remark in Section 2).
In the original result of Schwarzenberger, the R-vector bundle { is assumed to
be extendible, but his result is also valid if we only assume that { is stably
extendible instead of extendible (cf. [3, Section 1]). We proved in [4, Theorem
3.1(i)] that (3) implies (4) for n # 1,3,7, and in [4, Theorem 3.2] that (4) is
equivalent to (1). We therefore proved the theorem for the case n # 1,3,7.

When n = 1,3 or 7, it suffices to prove (4). In fact, (4) for n=1,3 or 7
follows from [4, Theorem 3.1 (ii)]. The latter part for k£ =1 is clear (cf. [4,
Theorem 3.2)). O

ReEMark. If k> 1, then (k) > 0 by Corollary 2.3 and so the inequality
¢(m) = ¢(n) + f(k) implies the inequality m > n.

PrOOF OF THEOREM 2. Clearly (1) implies (2) and (3). We proved in [6,
Theorem 2.2 and Remark] that (3) implies (4) for n > 3, and in [4, Theorem
3.2] that (4) is equivalent to (1). Hence for the proof for the case n > 3, it
suffices to prove that (2) implies (4). Though the proof is parallel to that of
[7, Theorem 3], for completeness we prove that (2) implies (4) below.
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Assume that (2) holds for {. Then there is a k-dimensional C-vector
bundle # over RP™ such that i*x is stably equivalent to {, where i: RP" —
RP™ is the standard inclusion. According to [1, Theorem 7.3], we have, for
some integer ¢ with 0 < g < 20"/? y — k = gc(&,, — 1) in the reduced K-group

K(RP™), and so
(—k=i'n—k=qc(i*¢y — 1) = qe(&, - 1)

in K(RP"), where ¢y is the canonical R-line bundle over RP" and ¢ denotes
the complexification. Let » denote the forgetful map. Then

m—= 2k = VCq(ém - 1) = 2q(ém - 1)7

since rc =2. In the terminology of [2, Section 2], the element 2¢(&,, — 1) has
geometrical dimension not exceeding 2k. If ¢ < k, then ( is stably equivalent
to a sum of k& C-line bundles. If ¢ > k, then, by [1, Theorem 7.4] and [2,
Proposition 2.3], for all i > 2k,

VI(2Q(ém - 1)) = CZq,i(ém - 1)l = (_1)i712i71C2q,i(ém - 1) = 07

where »’ is the Grothendiek operator and Cj; is the binomial coefficient
J1/((j— 0!, and so, by [1, Theorem 7.4],

i—14v(Coy,i) = p(m) for all i with 2k < i < 2q.

Since ry is stably equivalent to 2¢¢,,, the total Stiefel-Whitney class w(r7)
of ry is (1 4 x,,)*, where x,, is the generator of H'(RP™;Z,). On the other
hand, by [7, Theorem 2],

w(rn) = w(sé, ® 2k —s)) = (1 +x,,)°  for some s with 0 <s < 2k,
since m > 4k — 1, where @ denotes the Whitney sum. Hence
2g=(2a+1)2"+s  for some ae N and te N with m < 2.

It follows from the inequalities 3 < m < 2’ that t > 2. So s is even and
0<s/2<k. Now,

V(C(2u+1)2’+s,i) = V(C2’+s,i) < V(CZ’,I') for all i with s <i < 2t,
and v(Cyr ;) =t —v(i). Therefore
i—1+t—v(i)>¢(m)  for all i with 2k <i <2/,

and so t — 1 > ¢(m) — f(2k) — 1 = [n/2] by Lemma 2.1 and by the assumption.
Therefore { — k = (s/2)c(&, — 1), since ¢(&, — 1) is of order 2"/2 by [1, The-
orem 7.3]. Hence ( is stably equivalent to a sum of & C-line bundles and so
(4) holds. Thus we have completed the proof of the former part.
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To prove the theorem for the case n = 1,2 or 3, it suffices to prove (4)
(cf. [4, Theorem 3.2]). By [1, Theorem 7.3] there is an integer / such that
(—k=(k+De(&, —1), where 0 <k +1 <24 If 1 >0, [n/2] < k+1 by [6,
Theorem 2.1]. This contradicts the inequality k +/ < 2" if n=1,2 or 3.
Hence / < 0, and so (4) holds. The latter part for k =1 is clear (cf. [4, The-
orem 3.2]). [

ReMark. For k>0, f(2k) >0 by Corollary 2.3 and so the inequality
#(m) = [n/2] + p(2k) + 1 implies the inequality m > n.

4. Proof of Theorem 3
Lemma 4.1. For 0<i<2", a2"—i—1)=a(2"—i)+v(i)— 1.

Proor. Let v(i)=s. Then v(2"—i)=s and 2" —i= (2a+1)2%, for
some aeN. Hence 2" —i—1=a2"1+25142524...4241 and so
2" —i— 1) =a(@ ' 4+ 25 s — 1 =@ +2%) +5— 1 = a2" — i) + v(i)
~1. [

Theorem 3 is a consequence of the following result.

THEOREM 4.2. Let k be a positive integer. Then we have the following.

(1) Ifk#2"—1andk #2" -2, k—a(k) < (k) <k — & where ¢ =0 for
k even and ¢ =1 for k odd.

(i) If k=2"-1o0r k=2"-2, (k) =k —a(k).

Proof. (i) The inequality f(k) < k — ¢ follows from [7, Examples].

By Lemma 2.2, clearly the inequality k — a(k) < f(k) holds for k = 2" for
r>2. We prove the inequality k — a(k) < (k) for k #2" —1 and k #2" -2
by a downward induction on k=2"—i, where r>3 and 3<i<2"!. If
i=3, by Lemma 2.4, f(2"—3)=2"—r—1. On the other hand, «(2" —3) =
r—1, and so k —a(k) < f(k) holds for k =2"—3.

Suppose that the inequality k — (k) < f(k) holds for k =2"—1i, where
4<i+1<27 Since pR"—i—1)=min{2"—i—v(2"—i)—1,82" —i)},
PRI —i—1)=2"—i—v(2"=i)—1 or 2" —i—1)=p2"—i).

If p2"—i—1)=2"—i—v(2"—1i)—1, we have, by Lemma 4.1,

BRI —i—1)— {2 —i—1—oa2 —i—1)}
=2 iy =) = 1 = {27 — i1 — (2" — i) + (i) — 1)}
=2 —i)—1>0,

since o(2" —i) > 1 for 3<i<2'. If 2" —i—1) = B(2" — i), we have, by
Lemma 4.1 and by the inductive assumption,
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BRI —i—1)—{2 —i—1—oa2 —i—1)}
=B — i) — {27 —i—1— (a(2" — i)+ v(i) — 1)}
=B —i)— {2 —i—a2" — i)} +v(i) > 0.

So the inequality k — a(k) < f(k) holds for k=2"—i—1.

(i) Note that if k=2"—-1 or k=2"-2, r=a(k) or r=ualk)+1,
respectively. By Lemma 2.4, if k=2"—-1, p(k)=2"—r— 1=k —a(k), and
if k=2"-2, plk)=2"—r—1=k —a(k). O
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