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Abstract. For a non-negative integer k, R. L. E. Schwarzenberger defined in [7] an

integer bðkÞb 0 which we call the Schwarzenberger number of k. Let z be a k-

dimensional F -vector bundle over the real projective n-space RPn, where F is either the

real number field R or the complex number field C. Then bðkÞ is closely related to the

problem to find the dimension m with mb n which has the property that z is stably

equivalent to a sum of k F -line bundles if z is stably extendible to RPm. The problem

for F ¼ R has been studied in [7], [5] and [4], and that for F ¼ C has been studied in [6]

and [4]. In this note we obtain further results on the problem and determine bounds

for the Schwarzenberger numbers bðkÞ.

1. Introduction

Throughout this note, F denotes either the real number field R or the

complex number field C, and N is the set of all non-negative integers. Let

X be a space and A its subspace. A k-dimensional F -vector bundle z over

A is said to be extendible (respectively stably extendible) to X , if there is a

k-dimensional F -vector bundle over X whose restriction to A is equivalent

(respectively stably equivalent) to z, that is, if z is equivalent (respectively stably

equivalent) to the induced bundle i�h of a k-dimensional F -vector bundle h

over X under the inclusion map i : A ! X (cf. [7, p. 20], [8, p. 191] and [3,

p. 273]).

For a positive integer i, write i ¼ ð2aþ 1Þ2nðiÞ, where a A N, and for k A N

define an integer bðkÞ A N by

bðkÞ ¼ minfi � nðiÞ � 1 j k < ig
which we call the Schwarzenberger number of k.

Let z be a k-dimensional F -vector bundle over the real projective n-space

RPn where k > 0. We study the problem to find the dimension m with mb n

which has the property that z is stably equivalent to a sum of k F -line bundles

if z is stably extendible to RPm.
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Let fðnÞ denote the number of integers s with 0 < sa n and s1 0; 1; 2 or

4 mod 8. For F ¼ R, we have

Theorem 1. Let z be a k-dimensional R-vector bundle over RPn, where

k > 0, and consider the following four conditions.

(1) z is stably extendible to RPm for every mb n.

(2) z is stably extendible to RPm, where mb n, mb 2k � 1 and fðmÞb
fðnÞ þ bðkÞ.

(3) z is stably extendible to RPm, where m ¼ 2fðnÞ � 1.

(4) z is stably equivalent to a sum of k R-line bundles.

Then all the four conditions are equivalent. Moreover, when k ¼ 1 or n ¼ 1; 3

or 7, the conditions always hold.

Let ½x� denote the largest integer q with qa x. For F ¼ C, we have

Theorem 2. Let z be a k-dimensional C-vector bundle over RPn, where

k > 0, and consider the following four conditions.

(1) z is stably extendible to RPm for every mb n.

(2) z is stably extendible to RPm, where mb n, mb 4k � 1 and fðmÞb
½n=2� þ bð2kÞ þ 1.

(3) z is stably extendible to RPm, where m ¼ 2½n=2�þ1 � 1.

(4) z is stably equivalent to a sum of k C-line bundles.

Then all the four conditions are equivalent. Moreover, when k ¼ 1 or n ¼ 1; 2

or 3, the conditions always hold.

Concerning bounds for the Schwarzenberger numbers bðkÞ, we obtain

Theorem 3. Let k be a positive integer, let aðkÞ denote the number of the

non-zero terms of the 2-adic expansion of k, and let bðkÞ denote the Schwar-

zenberger number of k. Then the inequalities k � aðkÞa bðkÞa k hold.

This note is arranged as follows. We study some properties of bðkÞ in

Section 2. We prove Theorems 1 and 2 in Section 3, and prove Theorem 3 in

Section 4.

2. Some properties of b(k)

Lemma 2.1. Let k be a positive integer and t be any integer with k < 2 t.

Then bðkÞ ¼ minfi � nðiÞ � 1 j k < ia 2 tg.

Proof. Clearly it su‰ces to prove that

minfi � nðiÞ � 1 j 2 t < igbminfi � nðiÞ � 1 j k < ia 2 tg:

Comparing 2 t � nð2 tÞ � 1 with i � nðiÞ � 1 for i ¼ a2 t þ b, where ab 1 and

0 < b < 2 t, and with i � nðiÞ � 1 for i ¼ a2 t, where a > 1, we have
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a2 t þ b� nða2 t þ bÞ � 1� f2 t � nð2 tÞ � 1g

¼ ða� 1Þ2 t þ b� nðbÞ � 1þ tþ 1 > 0;

and

a2 t � nða2 tÞ � 1� f2 t � nð2 tÞ � 1g ¼ ða� 1Þ2 t � nðaÞ > a� 1� nðaÞb 0;

since

j � nð jÞ � 1 ¼ ð2xþ 1Þ2y � nðð2xþ 1Þ2yÞ � 1b 2y � y� 1b 0;

where j ¼ ð2xþ 1Þ2y ðx; y A NÞ. We therefore obtain the desired inequality.

r

Remark. It seems to us that in line 11 of [7, p. 21], the last inequality

i < 2 t should be replaced by the inequality ia 2 t. In fact, minfi � nðiÞ � 1 j
k < i < 2 tg is not necessarily equal to bðkÞ (for example, if ðk; tÞ ¼ ð6; 3Þ,
minfi � nðiÞ � 1 j k < i < 2 tg ¼ 6 and bðkÞ ¼ 4), the first inequality in line 11 of

[7, p. 21] holds also for i ¼ 2 t and minfi � nðiÞ � 1 j k < ia 2 tg is equal to bðkÞ
by Lemma 2.1.

Lemma 2.2. bð2rÞ ¼ 2r for rb 2, bð2Þ ¼ 1 and bð1Þ ¼ 0.

Proof. We prove the first equality. Suppose rb 2. Since bð2rÞa 2r

(cf. [7, Examples]), it su‰ces to prove that minfi � nðiÞ � 1 j 2r < ia 2 rþ1gb 2r

by Lemma 2.1. If i ¼ 2r þ b, where 0 < b < 2r, we have i � nðiÞ � 1 ¼ 2r þ
b� nðbÞ � 1b 2r, and if i ¼ 2 rþ1, we have i � nðiÞ � 1 ¼ 2rþ1 � ðrþ 1Þ � 1b 2r

for rb 2. Hence we obtain the desired inequality. The other equalities are

easily verified. r

Corollary 2.3. bð0Þ ¼ 0, and bðkÞ > 0 for k > 1.

Proof. By definition, jb k implies bð jÞb bðkÞ. Hence the results fol-

low from Lemma 2.2. r

Lemma 2.4. Let j ¼ 1; 2; 3 or 4 and let k ¼ 2r � j, where rb 0 for j ¼ 1,

rb 1 for j ¼ 2, and rb 3 for j ¼ 3 or 4. Then

bðkÞ ¼ 2r � r� 1:

Moreover,

bð2r � 5Þ ¼ 2r � r� 1 for rb 6; bð2r � 5Þ ¼ 2r � 7 for 3a ra 5:

Proof. By definition and by Lemma 2.2, we have

bð2 r � 1Þ ¼ minf2r � nð2rÞ � 1; bð2rÞg ¼ minf2r � r� 1; 2r � dg

¼ 2r � r� 1;
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where d ¼ 0 if rb 2 and d ¼ 1 if r ¼ 0 or 1. By the result above, we have, for

rb 1,

bð2 r � 2Þ ¼ minf2r � 1� nð2 r � 1Þ � 1; bð2 r � 1Þg

¼ minf2r � 2; 2r � r� 1g ¼ 2r � r� 1:

Similarly, we have, for rb 3,

bð2 r � 3Þ ¼ minf2r � 2� nð2 r � 2Þ � 1; bð2 r � 2Þg

¼ minf2r � 4; 2r � r� 1g ¼ 2r � r� 1;

bð2 r � 4Þ ¼ minf2r � 3� nð2 r � 3Þ � 1; bð2 r � 3Þg

¼ minf2r � 4; 2r � r� 1g ¼ 2r � r� 1:

Moreover,

bð2 r � 5Þ ¼ minf2r � 4� nð2r � 4Þ � 1; bð2 r � 4Þg

¼ minf2r � 7; 2r � r� 1g

¼ 2r � r� 1 for rb 6; ¼ 2r � 7 for 3a ra 5: r

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Clearly (1) implies (2) and (3). In [7, Theorem 3]

R. L. E. Schwarzenberger proved that (2) implies (4) (cf. Remark in Section 2).

In the original result of Schwarzenberger, the R-vector bundle z is assumed to

be extendible, but his result is also valid if we only assume that z is stably

extendible instead of extendible (cf. [3, Section 1]). We proved in [4, Theorem

3.1(i)] that (3) implies (4) for n0 1; 3; 7, and in [4, Theorem 3.2] that (4) is

equivalent to (1). We therefore proved the theorem for the case n0 1; 3; 7.

When n ¼ 1; 3 or 7, it su‰ces to prove (4). In fact, (4) for n ¼ 1; 3 or 7

follows from [4, Theorem 3.1 (ii)]. The latter part for k ¼ 1 is clear (cf. [4,

Theorem 3.2]). r

Remark. If k > 1, then bðkÞ > 0 by Corollary 2.3 and so the inequality

fðmÞb fðnÞ þ bðkÞ implies the inequality m > n.

Proof of Theorem 2. Clearly (1) implies (2) and (3). We proved in [6,

Theorem 2.2 and Remark] that (3) implies (4) for n > 3, and in [4, Theorem

3.2] that (4) is equivalent to (1). Hence for the proof for the case n > 3, it

su‰ces to prove that (2) implies (4). Though the proof is parallel to that of

[7, Theorem 3], for completeness we prove that (2) implies (4) below.
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Assume that (2) holds for z. Then there is a k-dimensional C-vector

bundle h over RPm such that i�h is stably equivalent to z, where i : RPn !
RPm is the standard inclusion. According to [1, Theorem 7.3], we have, for

some integer q with 0a q < 2½m=2�, h� k ¼ qcðxm � 1Þ in the reduced K-group
~KKðRPmÞ, and so

z� k ¼ i�h� k ¼ qcði�xm � 1Þ ¼ qcðxn � 1Þ

in ~KKðRPnÞ, where xN is the canonical R-line bundle over RPN and c denotes

the complexification. Let r denote the forgetful map. Then

rh� 2k ¼ rcqðxm � 1Þ ¼ 2qðxm � 1Þ;

since rc ¼ 2. In the terminology of [2, Section 2], the element 2qðxm � 1Þ has

geometrical dimension not exceeding 2k. If qa k, then z is stably equivalent

to a sum of k C-line bundles. If q > k, then, by [1, Theorem 7.4] and [2,

Proposition 2.3], for all i > 2k,

g ið2qðxm � 1ÞÞ ¼ C2q; iðxm � 1Þ i ¼ ð�1Þ i�12 i�1C2q; iðxm � 1Þ ¼ 0;

where g i is the Grothendiek operator and Cj; i is the binomial coe‰cient

j!=ðð j � iÞ!i!Þ, and so, by [1, Theorem 7.4],

i � 1þ nðC2q; iÞb fðmÞ for all i with 2k < ia 2q:

Since rh is stably equivalent to 2qxm, the total Stiefel-Whitney class wðrhÞ
of rh is ð1þ xmÞ2q, where xm is the generator of H 1ðRPm;Z2Þ. On the other

hand, by [7, Theorem 2],

wðrhÞ ¼ wðsxm l ð2k � sÞÞ ¼ ð1þ xmÞs for some s with 0a sa 2k;

since mb 4k � 1, where l denotes the Whitney sum. Hence

2q ¼ ð2aþ 1Þ2 t þ s for some a A N and t A N with m < 2 t:

It follows from the inequalities 3am < 2 t that tb 2. So s is even and

0a s=2a k. Now,

nðCð2aþ1Þ2 tþs; iÞ ¼ nðC2 tþs; iÞa nðC2 t; iÞ for all i with s < ia 2 t;

and nðC2 t; iÞ ¼ t� nðiÞ. Therefore

i � 1þ t� nðiÞb fðmÞ for all i with 2k < ia 2 t;

and so t� 1b fðmÞ � bð2kÞ � 1b ½n=2� by Lemma 2.1 and by the assumption.

Therefore z� k ¼ ðs=2Þcðxn � 1Þ, since cðxn � 1Þ is of order 2½n=2� by [1, The-

orem 7.3]. Hence z is stably equivalent to a sum of k C-line bundles and so

(4) holds. Thus we have completed the proof of the former part.
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To prove the theorem for the case n ¼ 1; 2 or 3, it su‰ces to prove (4)

(cf. [4, Theorem 3.2]). By [1, Theorem 7.3] there is an integer l such that

z� k ¼ ðk þ lÞcðxn � 1Þ, where 0a k þ l < 2½n=2�. If l > 0, ½n=2� < k þ l by [6,

Theorem 2.1]. This contradicts the inequality k þ l < 2½n=2� if n ¼ 1; 2 or 3.

Hence la 0, and so (4) holds. The latter part for k ¼ 1 is clear (cf. [4, The-

orem 3.2]). r

Remark. For k > 0, bð2kÞ > 0 by Corollary 2.3 and so the inequality

fðmÞb ½n=2� þ bð2kÞ þ 1 implies the inequality m > n.

4. Proof of Theorem 3

Lemma 4.1. For 0 < i < 2 r, að2r � i � 1Þ ¼ að2r � iÞ þ nðiÞ � 1.

Proof. Let nðiÞ ¼ s. Then nð2r � iÞ ¼ s and 2r � i ¼ ð2aþ 1Þ2s, for

some a A N. Hence 2r � i � 1 ¼ a2 sþ1 þ 2s�1 þ 2s�2 þ � � � þ 2þ 1 and so

að2r � i � 1Þ ¼ aða2sþ1 þ 2 s�1Þ þ s� 1 ¼ aða2sþ1 þ 2 sÞ þ s� 1 ¼ að2r � iÞ þ nðiÞ
� 1. r

Theorem 3 is a consequence of the following result.

Theorem 4.2. Let k be a positive integer. Then we have the following.

( i ) If k0 2r � 1 and k0 2r � 2, k � aðkÞ < bðkÞa k � e, where e ¼ 0 for

k even and e ¼ 1 for k odd.

(ii) If k ¼ 2r � 1 or k ¼ 2 r � 2, bðkÞ ¼ k � aðkÞ.

Proof. (i) The inequality bðkÞa k � e follows from [7, Examples].

By Lemma 2.2, clearly the inequality k � aðkÞ < bðkÞ holds for k ¼ 2r for

rb 2. We prove the inequality k � aðkÞ < bðkÞ for k0 2r � 1 and k0 2r � 2

by a downward induction on k ¼ 2 r � i, where rb 3 and 3a i < 2r�1. If

i ¼ 3, by Lemma 2.4, bð2r � 3Þ ¼ 2r � r� 1. On the other hand, að2r � 3Þ ¼
r� 1, and so k � aðkÞ < bðkÞ holds for k ¼ 2r � 3.

Suppose that the inequality k � aðkÞ < bðkÞ holds for k ¼ 2r � i, where

4a i þ 1 < 2 r�1. Since bð2r � i � 1Þ ¼ minf2r � i � nð2r � iÞ � 1; bð2r � iÞg,
bð2r � i � 1Þ ¼ 2r � i � nð2r � iÞ � 1 or bð2r � i � 1Þ ¼ bð2r � iÞ.

If bð2r � i � 1Þ ¼ 2r � i � nð2r � iÞ � 1, we have, by Lemma 4.1,

bð2 r � i � 1Þ � f2r � i � 1� að2r � i � 1Þg

¼ 2r � i � nð2r � iÞ � 1� f2r � i � 1� ðað2r � iÞ þ nðiÞ � 1Þg

¼ að2r � iÞ � 1 > 0;

since að2 r � iÞ > 1 for 3a i < 2r�1. If bð2 r � i � 1Þ ¼ bð2r � iÞ, we have, by

Lemma 4.1 and by the inductive assumption,

Teiichi Kobayashi and Toshio Yoshida376



bð2r � i � 1Þ � f2r � i � 1� að2 r � i � 1Þg

¼ bð2r � iÞ � f2r � i � 1� ðað2r � iÞ þ nðiÞ � 1Þg

¼ bð2r � iÞ � f2r � i � að2r � iÞg þ nðiÞ > 0:

So the inequality k � aðkÞ < bðkÞ holds for k ¼ 2r � i � 1.

(ii) Note that if k ¼ 2r � 1 or k ¼ 2r � 2, r ¼ aðkÞ or r ¼ aðkÞ þ 1,

respectively. By Lemma 2.4, if k ¼ 2r � 1, bðkÞ ¼ 2r � r� 1 ¼ k � aðkÞ, and
if k ¼ 2r � 2, bðkÞ ¼ 2r � r� 1 ¼ k � aðkÞ. r
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