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ABSTRACT. We study one of multidimensional inverse scattering problems for quantum
systems in a constant electric field, by utilization of the Enss-Weder time-dependent
method. The main purpose of this paper is to propose some methods of sharpening
key estimates in the analysis, which are much simpler than those in the previous works.
Our methods give an appropriate class of short-range potentials which can be deter-
mined uniquely by scattering operators, that seems natural in terms of direct scattering
problems.

1. Introduction

In this paper, we consider one of inverse scattering problems for quantum
systems in a constant electric field £ € R", by applying the Enss-Weder time-
dependent method. Throughout this paper, we assume that n > 2, and sup-

pose E=¢; =(1,0,...,0). The Hamiltonian H under consideration is given
by

H=Hy+V; Hy=p*/2—E-x=p*/2—x, (1.1)
acting on L*(R"), where x = (x1,x2,...,%,) = (x1,x,) e R" and p=—iV =

(p1, P2y, pu) = (p1,p1). We suppose that the potential V' is the multiplica-
tion operator by the real-valued time-independent function V'(x). Hy is called
the free Stark Hamiltonian, and H is called a Stark Hamiltonian. It is well-
known that Hj is essentially self-adjoint on ¥ (R") (see e.g. Avron-Herbst [5]).
The self-adjoint realization of Hy is also denoted by Hy. Under a certain
appropriate condition on V, the self-adjointness of H can be guaranteed. As
is well-known, if V satisfies a short-range condition under the Stark effect that
|V (x)] < C{x)77 holds for some y, > 1/2, then the wave operators

Wt = s-lim e ~itHo (1.2)
t—+oo
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exist (see e.g. [5]). Here (x> =+/1+x2. Then the scattering operator
S =S(V) is defined by

S=(WHyw-. (1.3)

Roughly speaking, we are interested in the widest class of short-range potentials
which can be determined uniquely by scattering operators. In this paper, via
the Enss-Weder time-dependent method (see Enss-Weder [8]), we will give a
certain appropriate class of short-range potentials which may not necessarily
be the widest one but be very close to it, and is natural also in terms of direct
scattering problems.

In order to state our results precisely, we make some preparations: We
assume that 77(x) is represented as a sum of a very short-range part V'¥*(x), a
short-range part V3(x) and a long-range part V'!(x) under the Stark effect:

V(x) = V(x) + V3(x) + V(x). (1.4)

We say that V¥ e 7" if 7¥$(x) is a real-valued time-independent function
and is decomposed into a sum of a singular part 7*(x) and a regular part
V)S(x), and V) is compactly supported and belongs to L%(R"), where ¢
satisfies that ¢o >n/2 and ¢p > 2, and V,*e C°(R") is bounded in R" and
satisfies

JO V2P (X)F(|x] = R)|[ 4(12)dR < 0. (1.5)
Here F(]x| > R) is the characteristic function of {x € R"||x| = R}. This con-
dition yields

” -1

JO V() F(|x| = R)(1 + Ko) ™[] 512)dR < 0, (1.6)

where
Ko = p?/2=—A)2 (1.7
is the free Schrodinger operator. As is well-known, this is equivalent to
J [V¥(x)(1 + Ko) ' F(|x] = Rl yp2)dR < 0 (1.8)
0
(see e.g. Reed-Simon [15]). Under the condition (1.8), the wave operators
Q% = s-lim e (1.9)

exist, and are asymptotically complete (see e.g. Enss [6]). Here K = Ky + V'**
is a Schrodinger operator with a short-range potential VY. Then the
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scattering operator X =X(V") is defined by
T=(27)'Q". (1.10)

By virtue of the results of [8], we know that the following holds: Let
Vi,Vae Vs If E(V]) = Z(Vz), then V7 = 15.

We say that VS e ¥%(j,,7;) with 5, >1/2 and 7, > 1 if V5(x) is a real-
valued time-independent function, belongs to C!(R") and satisfies

@'V < G, Al <1, (L11)

with some p,, 7, such that j, <y, <1 and J; <y, <147y, In Weder [17]
and Adachi-Maehara [3], y, and y, were represented as y and 1+ o, respec-
tively. However, in this paper, we will use the above notation for the sake
of clarification of our theory. If K is equal to Ko + V"* + V5, then Q7 in (1.9)
do not exist generally, because of the long-range condition y, < 1 for K5. On
the other hand, when H is equal to Hy + V¥ + V'3, by virtue of the short-range
condition y, > 1/2 for Hy, it can be shown that W* in (1.2) exist, and are
asymptotically complete (see e.g. Herbst [11] and Yajima [19]). Hence, we can
introduce S in (1.3) instead of ¥ in (1.10), as the scattering operator. Thus
we mainly consider the case where 7, =1/2. We note that if a < b, then
V% (9g,b) C ¥"3($y,a). The condition y; > 1 is necessary for introducing the
v-dependent Graf-type modifier M¢ (7) = ¢ ioV (stes®/Dds - which was first
introduced in [3]. Hence we assume j; > 1 beforehand.

Finally we say that V' e ¥ (7 9) with j, o > 1/4 if V!(x) is a real-valued
time-independent function, belongs to C?(R") and satisfies

PPV ()] < Gy 2, | <2, (1.12)

with some y;, such that 5, o <yp <1/2. If H is equal to Hy+ VY + Vs + V!,
then W= in (1.2) do not exist generally, because of the long-range condition
yp < 1/2 for Hy. However, by virtue of the condition y, > 1/4, the Dollard-
type modified wave operators
WDi — s-lim eitHefizHoefiféVl(szrelsz/Z)ds (113)
t—+o0

exist, and are asymptotically complete (see e.g. Jensen-Yajima [13], White [18]
and Adachi-Tamura [4]). “/Dl(?D’O)’S are classes of long-range potentials which
are appropriate for the introduction of Wj.

We first consider the short-range case, that is, the case where V'!=0.
As mentioned above, then W in (1.2) exist, and S = S(V) in (1.3) can be
defined. The following result is one of those which we will report on in this
paper:
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THEOREM 1.1. Let V1, Vo€ vV +v75(1/2,5/4). If S(V1) = S(V2), then
V=T

Theorem 1.1 was first proved by Weder [17] for ¥"*° + ¥7%(3/4,1). How-
ever, the short-range parts V%’s with 1/2 <y, < 3/4 cannot be treated by
the argument of [17] unfortunately. Later Nicoleau [14] proved this theorem
under the condition that the short-range parts V*’s belong to C*(R") and
satisfy

(@7 V%) (x)] < Cpxy 7o W (1.14)

with some y, > 1/2, and the additional condition n > 3. [14] is the first work
which treated the case where 1/2 <y, < 3/4 and suggested that the possible
threshold with respect to , is equal to 1/2. Here we note that y; =1+ y,
is supposed in [14]. After that, Adachi-Maehara [3] proved this theorem for
VS 4+ ¥75(1/2,3/2) under the condition not n > 3 but n > 2 (see also Adachi-
Kamada-Kazuno-Toratani [2] as for the case where time-dependent electric
fields are decaying in |7|, and Valencia-Weder [16] as for the many body case in
a constant electric field). In [3], for the sake of relaxing the smoothness con-
dition on V'*'s, the v-dependent Graf-type modifier M3 (1) = e~ oV (ste1s’/2)ds
was introduced instead of the Dollard-type modifier e~ilo? " (Prsteis’/2ds ywhich
was utilized in [14]. Hence, how small 3, of ¥**(1/2,7,) in Theorem 1.1 can
be taken has become a problem to be studied. In Adachi-Fujiwara-Ishida [1],
which treated also the case where the electric fields are time-dependent, y, was
taken as (15 —+/17)/8, which is greater than 5/4, by improving the estimates
in a series of lemmas obtained in [3]. And, recently Ishida [12] stated that 7,
could be taken as 1. In the direct scattering theory under the Stark effect, we
often suppose that smooth short-range potentials V'*’s satisfy

(V) ()] < Cpexy 7o 2 (1.15)

with some y, > 1/2 (see e.g. [13], [18] and [4]). From this viewpoint, one can
expect that the possible threshold with respect to j; is equal to 1/2+1/2 = 1.
But, since in [12] some misapplications of the Holder inequality were made
on key points in the argument unfortunately (for the detail, see Remark 2.1 in
§2), it seems difficult to say that the results of [12] were obtained rigorously.
Nevertheless, [12] does include a nice device for improving the results obtained
in the previous works. In this paper, we utilize the device due to [12] as well
as our methods which sharpen the estimates in a series of useful lemmas in
obtaining the main results. By virtue of these, ¥, in Theorem 1.1 can be taken
as 5/4 at most.

We next consider the long-range case, that is, the case where V'#0.
As mentioned above, since yp, o > 1/4, if Viev, ,')1()7[,70), then the Dollard-type
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modified wave operators Wj exist, and the Dollard-type modified scattering
operator Sp = Sp(VL V¥ + V) = Sp(V; V — V1) is defined by

Sp=(Wg)" Wp. (1.16)
Then we also obtain the following result:

THEOREM 1.2.  Suppose that V'e v;}(3/8) is given. Let Vi, Vye V¥ +
v°%(1/2,5/4). If Sp(V; Vi) = Sp(VY, V), then Vi = Vi, Moreover, any one
of the Dollard-type modified scattering operators Sp determines uniquely the total
potential V.

Theorem 1.2 was first proved by [3] for ¥"**+ ¥7°(1/2,3/2) under the
condition that V! belongs to C?(R") and satisfies

@ V)] < Gyl g <2 (1.17)

with 0 < yp <1/2 and 1 —y, < u <1 (see also [2] as for the case where time-
dependent electric fields are decaying in |f|, and [16] as for the many body
case in a constant electric field). The condition 1 — y, < u, thatis, yp +p > 1
yields the existence of the Graf-type modified wave operators
WGi — slim et p—itHo p=ifgV'(e15*/2)ds (1.18)
t—+oo

(see Zorbas [20] and Graf [9]) as well as the Dollard-type wave operators Wp
without the additional condition y, > 1/4. For V! e“VDl(?D_’O), Wg do not
exist generally because yp 4 1/2 < 1. Hence, the case where V'€ ¥3(jp o) was
not treated in [3]. Later Theorem 1.2 was proved by [1] for ¥ + 'Vs(1/2, 1)
with ; = (29 — v/41)/16, which is greater than (15 —+/17)/8, under the as-
sumption that ' e 7;1(3/8), which is the same as the one in our Theorem 1.2.
And, recently [12] stated 9, could be taken as 1, but, as mentioned above, it
seems difficult to say that the results of [12] were obtained rigorously. We
report that also in Theorem 1.2, $, can be taken as 5/4 at most.

Now we will consider the case where ; is smaller than 5/4, in particular,
7, = 1, which was considered in [12]. To this end, we need the C>-regularity
of V'®’s, which is stronger than the C!-regularity of ¥*’s imposed in Theorems
1.1 and 1.2. We will introduce the following subclasses of ¥"°(1/2,7,):

We say that VS e #5(1/2,%,,7,) with 7, > 1 and j, > 1 if V%(x) is a real-
valued time-independent function, belongs to C?(R") and satisfies

(@7 V) (x)] < Gy, |Bl <2, (1.19)

with some y,, 71, 7, such that 5 = 1/2 <y, <1, 5, <y, <yo+ 1l and j, <y, <
y; + 1. Since we need the condition y, > 1 in our analysis (see §4), we assume
7, = 1 beforehand.
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Now we will state that Theorems 1.1 and 1.2 with replacing 7"%(1/2,5/4)
by 77°(1/2,1,5/4) also hold:

Tueorem 1.3. Let Vi, Vae v +975(1/2,1,5/4). If S(V1) = S(Va),
then V1 = Vs.

THEOREM 1.4. Suppose that V'e v;}(3/8) is given. Let Vi, Vye V¥ +
VS(1/2,1,5/4). If Sp(VY V1) =Sp(V'; V), then Vi =V, Moreover, any
one of the Dollard-type modified scattering operators Sp determines uniquely the
total potential V.

In their proofs, the Dollard-type modifier M} (¢) = e~ ioV (pstes?/2ds | ywhich
is slightly different from e o (Prstes’/2ds introduced in [14], will be sub-
stituted for the v-dependent Graf-type modifier M}, (1) = e~V isters®/2ds yged
in the proofs of Theorems 1.1 and 1.2. M} (¢) has an advantage over M (7)
for Vs of C? by virtue of the Baker-Campbell-Hausdorff formula, although it
may not necessarily do so for V'S of only C'. We will report on it in this
paper.

The plan of this paper is as follows: In §2, we consider the case
where VSev°5(1/2,5/4) and V'=0. In §3, we consider the case where
Vsev$(1/2,5/4) and V'#0. In §4, we consider the case where Ve
v5(1/2,1,5/4).

In the following sections, || - || and (-,-) stand for the L?>-norm and the
L’-inner product, respectively, for the sake of brevity.

2. The case where Ve 7 %(1/2,5/4) and V' =0

Throughout this section, we suppose V' =0. The main purpose of this
section is showing the following reconstruction formula, which yields Theorem
1.1.

THEOREM 2.1. Let & € R" be given such that 0| =1 and |6 -e)| < 1. Put
v=|v|p. Let n>0 be given, and &y, ¥y e L*(R") be such that &, ¥ e
CP(R") with supp @y, supp ¥ C {e R"||é| <n}. Put @, =e™®y and
Y, =e" W, Let VeV and VS e v *(1/2,5/4). Then the following holds:

lim 0|15, p)|., V%)

[v| =00

— Jm (VY (x + 9t) piPo, Vo) — (V' (x + 07) Do, p; Ph)

(0 V) (x4 1) By, ¥y)]dx (2.1)

for 1<j<n.
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We will make preparations for the proof of Theorem 2.1. We first need
the following proposition due to Enss [7] (see Proposition 2.10 of [7]):

PROPOSITION 2.2.  For any f € CJ°(R") with supp f C {x e R"||x| < n} for
some n >0, and any | € N, there exists a constant C; dependent on f only such
that

IF(xe.dt")e ™ f (p = v)F(x € M)|| g2y < Cu(1 47+ 12! (2.2)

for veR", te R and measurable sets M, ' with the property that r =
dist(.4', M + vt) —n|t| > 0. Here F(x e /) stands for the characteristic func-
tion of M.

The following lemma was already obtained in [17] (see also [3]):

LemMA 2.3. Let v and @, be as in Theorem 2.1. Then

Jw V¥ (x)e "y | di = O(|o] ™) (2.3)

holds as |v] — o for VYSe ™.

In the proof of this lemma, the estimate of |vf+ e;7%/2| plays an im-
portant role. Here we recall the argument about the estimate of |vt + e11%/2|
in [3: Putd=|p-e| <1. |vr+er2/2]* =|o]*2+1*/4+v-e1t® can be esti-
mated as

vt + e /2% > [v][2]* + 1)* /4 = Ol |1
= [¢*(I¢] = 20J0])*/4 + (1 = 6*)[ol*[1
> (1 —6%)|v)*|*. (2.4)
(2.4) is used in the proof of Lemma 2.3. Here we note that
ot + e12? /2> = 1] (O]e] — 2[v])* /4 + (1 = 0%)|7|* /4
> (1-02)1*/4 (2.5)
can be also obtained. Based on the above estimates, we conclude that
ot + e112/2] = max{V/'1 — 2|o| 1], (V1 — 0%/2) |1} (2.6)

holds.
The following lemma is an improvement of Lemma 2.2 of [3] and Lemma
3.4 with 4 =0 of [1]. This is one of the keys in this section. Here we note
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that the class 775(1/2,1) of short-range potentials considered in Lemmas 2.4
and 2.5 is wider than the class ¥"%(1/2,5/4) supposed in Theorem 2.1:

LemMA 2.4. Let v and @, be as in Theorem 2.1, and ¢ > 0. Then

"
J I{V5(x) = VS(vt + e112/2) }e ™o, ||dt = O([p|™ =L —20=D+ehy (2 7)
o0

holds as |v| — oo for Ve v5(1/2,1).
Proor. For the sake of brevity, we put
I=|{V(x) = Vvt +et*/2) e ™.
By virtue of the Avron-Herbst formula
e~itHy _ =i’ [6,itx1 p=ip11?/2 ,~itKo (2.8)
(see e.g. [5]) and
emivxpitKgivx _ p=iv’t/2 p—ip-vt p=itKo (2.9)
we have
VS (x)e Mg,
= (e_i’3/6ei’x‘e_i”1’2/2) V(x4 et /2)e o,
= (e""3/6e”x‘e‘ip]’Z/Z)ei”'x(e‘ivz’/ze‘i”‘”’) V(x4 vt + er1*)2)e "Kogpy,

Such a relation has been used also in the proof of Lemma 2.3, which is omitted
in this paper. Then I can be written as

I=|{VS(x+vt+4e1t?/2) — V(vt + e 1*)2) e oy

Taking f e CZ(R") such that 0 < f <1, f&; =@, and supp f C {¢ e R"|
|E] <}, we see that @y = f(p)@y. Now let us take g € C;°(R") such that
0<g=<1,g(y)=1(y| <3) and ¢g(y) =0 (|y| = 4), and introduce

Iﬁi‘,,(x) =V (x+ vt +ert?/2)g((A]v|<ey) " x),

where A; > 0 is a small constant which will be determined below. In the
definition of ﬁi‘_t(x), taking (41|0|<s>) 'x as the argument of g, which was
taken as (o] |¢]) "'x in [3], is one of our devices, and by virtue of this, we
can eliminate the singularity of I7|j‘ ((x) and its derivatives at +=0. Since
751,(0) = Ve(vt + e12?/2) and @y = f(p)®Py, we have

I< ||V (00 ™S (p) Dol + {7 o(x) = V5, ,(0)}e ™o, (2.10)
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where 17‘;71‘ x) = VS(x+ vt +et?/2) — I7|z‘_’t(x). As for the first term of the
inequality (2.10), we estimate it in the same way as in [17]:

1V, (xX)e ™ Kof (p)@o|| < Iy + I + I,

where
I = ([P, () F(1x] = 3ol [t])e ™" f (p)F(|x] < 2ol [¢)) o],
L = ([P () F(1x] = 3ol [t])e ™™ f (p)F(|x] > Za]o] |¢))Poll,
L= ||V ()F (x| < 32]v] [f])e " f (p) @o|.

As for I, by virtue of Proposition 2.2 and ||I7‘i|v,(x)||%(L2) <|1V¥|l s

5 < [Vl (x| = 34

ol [the ™ f (p)F(|x| < Z1o] 1)) gz2) | Dol
< C(1+ Aol o))~
holds for |v| >#/A;. Here we used 0 <1 —g<1. As for ,, we have
L <[Vl 1F (x> Zalol [6) 6> 72 gz <32 @ol|
< C(1+ ol ) .

As for I, by virtue of the definition of V\im(x)» we have I; =0, because
{1 — g((Mv[<e>) "'X)}F(]x| < 341|v| |z]) = 0. Based on the above observations,
we obtain

J 175 (x)e o f (p)y |t < CJ (14 Afol ) 2de = oo ") (2.11)
by an appropriate change of variables. Now we will estimate the second term
of the inequality (2.10) by using the device of [12]. By

1 1
i) = 7,00 = [ 55075 0o = ([ 77, owiao) -,
we have

V5. (x) = V. (0)}e ™| < lxe =" 0o |

(1)

Jl(vr?s )(0x)do

vl ¢
0

< VPl | (x4 pr) ol

< IVP5 iz (lx@oll + [l [Lp@oll).



328 Tadayoshi ApAcHI and Yuta Tsui

Here we used e oxe="Ko = x 4 pr. Dealing with ||xe=" 0@y| directly with-
out using cut-offs is the device of [12]. Now we will watch HVV‘; s
where

(VI3 )(x) = (V) (x + vt + e [2)g((2a|o]<e>) ')

+ VS (x+ ot + e1£2/2) (Vg) ((Zalol<ey) ™' x) (A [ol)<ey)

For a while, suppose || > 1. Then <) =+/1+ 2 <12+ (2 =+/2]t| holds.
Note that x € supp{g(-/(41|v|{t)))} satisfies |x| < 4;|v|[<t>. For such x’s,

x4 vt +eit?)2)? = |x+ vt + )4+ P(x+ot) e
> ([ot| = |x1)* + [11*/4 = 11 (|1 ] + Olo] |1])
> ([o] [t = 42alo[<e9)* +[11* /4 — 1) (4 |o[<e> + S]] 1)
> {(1 = 4vV22)o] 1]} + [1* /4 = |1 (4V241 + )] |11}
holds. If /; is so small that 4v/24; < (1 —J)/4, then
ot + e /2] = ((3+0)/4) 7ol |t + |¢* /4 — (1 + 36)/4)[o] |2
= [t {]e] = (1 +30)/2)[e]}*/4 + (1 = 6%)/2) v |1
> ((1-06%)/2)[o*|1|
holds (cf. (2.4). We also have
e+ ot + e /217 = [112(((1+30) /{23 +6)1)]1| = (3 +0)/4) o)
+(2(1-6%)/3+0))*
> (2(1=6%)/(3+0))|d*
(cf. (2.5)). Hence, by taking A, as (1 —0)/(16v2),
|x + vt + €122 /2| = max{ci|v] |1, ca]t]*} (2.12)

holds for |¢| > 1, where ¢; = y/2(1 —6%)/2 and ¢; = /2(1 —6%)/(3 + ). The
estimate (2.12) yields

et vt e /2] = (erfol o)) "(eale?)' ™ = efey ol lo* (2.13)

for 0 <v <1. Throughout this paper, we will frequently use this interpola-
tion estimate on |x + vt 4 ej#>/2| parameterized by v’s such that 0 <v <1 in
our optimization arguments. Taking account of the boundedness of VV‘f,lj for
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lf] < 1, we see that
IV e < Coll o] 27 77 Co(1 o Jol ™) o] 7 (14 1)~
e ) I O e T
X Jo] " o |”“ o o)
< (1 [o T gy T
= Gyl T o 2R gy T (2.14)

holds for 0 <v;, v, <1 and |v| > 1. Then

.
| 197 sl
— 0
0
<O O

— o0

+ Cylo] D! r (1 + [o] 2/ @72y @) gy
— 00

= O(|o] ) O(|p| B By

= O(lo] ) 1 o)

can be obtained by an appropriate change of variables under the conditions
- 2=v)< -1 and —p,2—m)—-1< -1, ie. vy <2—1/y, and » <2.
Since 2 —1/y; > 1 and

min (7\/1/(27 Vl)) = 71,

0<v <1
we have
* ~1
J IVl e llx@ollde = O(Jo] ) (2.15)

by the optimization argument. In the same way,

j VP 2 | o e
o0
< C3/J (1 + |v|1’3/(2—V3)|t|)—71(2—V3)|l|dl

— 0

0
GO (1 o) 0

o0
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= 0(|U|_2V3/(2_V3)) + 0(|U|1’4/(2—\/4)—1—21/4/(2—1/4))

= O(jp| ) 4 O(Jo] 777

can be obtained by an appropriate change of variables under the conditions
—2—=-v)+l<—land —py(2—vs) —1+1 < —1,ie. v3<2—2/y;, and w4 <
2—1/ypp. Since 0 <2—2/y, <2-=2/(1+yp)) <2/3, 0<2—1/y,<1,

0§1’31<112f;2/yl(_ZV3/(2 - V3)) = _Z(yl - 1),

inf (=1 —vs/(2—v4)) = =2y,

0<vy<2—-1/y,

and —2y, < —2(y; — 1), we have

0
J IVV 1l [l p®ollde = O(Jo] 27~ 0) (2.16)
0

with ¢ > 0, by the optimization argument. (2.15) and (2.16) yield

J V3, (x) = Vi () e ™0yl = O(le] ™) + O(le| 217D7). - (2.17)

Therefore, (2.7) can be shown by (2.11) and (2.17).

REMARK 2.1. Taking (4;]v[<r>)"'x in place of (Zi]v||s])"'x as the argu-
ment of g in the definition of I7|i‘ ,(x) yields the regularity of (Vlﬁi‘ .)(x) also
at t =0. Hence, we do not have to divide the integral region R of ¢ into any
v-dependent neighborhood of 0 and its complement (see below) as in [17], [3],
[1], [12] and so on. This fact makes the optimization argument in the above
proof rather simple.

Here we will review the argument in the proof of Proposition 2.4 of [12]
corresponding to our Lemma 2.4: Let 0 < g; < 1. Taking account of

o0
J Idt = J Idt +J Idt
—o0 Je[<[v] ™ lt[= o] ™

with 7 in the proof of our Lemma 2.4, we have only to estimate the two terms
of the right-hand side separately, as mentioned above. [ can be estimated as
I<I+ jz + I3, where I}’s are defined by replacing I7‘z‘7,(x) in the definition of
I’s by V7(x) = VS(x+vt+et?/2) — Vi(vt + e112/2):

L = (|V3 () F(Ix] = 3o t))e ™" f (p)F (x| < ZJol 1)) @ol],
L= (V3 (x)F(|x] = 3Aio] [t))e ™ f (p)F(1x| > Zu[o] 1)) ®ol,
L= ||V, (x)F (x| < 3ol |d)e ™ f (p) o] .
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I+ 5 < C(1+ o] |2]) ™ yields

J (I + L)dt = O(|o] ™).

LESEINE
On the other hand, I3 < C(1 + Ai|o]|¢]) 7' (1 + |7|) yields

> -1 -1 -1

J o = 00 ol ™) = 01 )
t]<|v

Let 0 <o, < 1. I can be also estimated as I < I, + Is + I, where
I = ||V, () F (x| = 3[e| (e )e™™f (p) F(|x] < [o] |¢])Doll,
Is = ||V3 (x)F (x| = 3[ol [e))e ™" o (p)F (x| > [0]7[2]) @y,
Is = ||V (x)F (x| < 3[o] ™ [t))e ™" f (p) o]

I+ 1Is < C(1+[0|™]1]) " yields
J (I + Is)dt = O(Jv] " 2.
[ = o]~

Here we suppose that |v| is so large that 4v/2|v|”~" < (1 —5)/4 holds. Then
Is < C(1+cifol ) "(1+ 1)) and Is < C(1 + c2|7*) '(1 + |¢7]) hold with ¢
and ¢; in the proof of our Lemma 2.4. These estimates can be obtained
rigorously. In [12], Ishida stated that the Holder inequality yields the estimate
(2.44) in the proof of Proposition 2.4 of [12]

Va /g
| s (J g dt) (J e dz)
>~ >0~ >~

with ¢; > | such that 1/g; +1/¢q> =1 (see also (3.46) in the proof of Proposi-
tion 3.8 of [12]). However, an appropriate application of the Hdlder inequality
yields a trivial estimate

/g 1/q:
J j6 dt < J i6 dt J i6 dt
[f]=[v] " [ = [v] ! [f]=[v] "

only, because Iy = i6l /i x fél /% Therefore we think that the results in Prop-

ositions 2.4 and 3.8 of [12] have not been obtained rigorously yet. Following
our argument, we will use the estimate

Is < Ci(l+e' ey " o " e 7+ Co1+ efrey ol [P 7) 7

for 0 < vy, v < 1. As for vi, —y;(2 —v;) < —y; < —1 holds; while, as for v,,
we need that v, satisfies —y;(2 —v2) +1 < —1, that is, v <2 —2/y,. For the
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sake of simplicity, we assume 2 — 2/y, < 1, that is, y; <2. Then we have the
estimate

J i6 dt = 0(|U|*17l}’1*01{1*(2*\’1)1’1}) + 0(|U|*V2y170|{27(2,‘;2)}'1})
[t = o] 1

— 0(|U|7m(172‘/1)*(1+m)v171) + 0(|U|717|(272;)1)7(1+m)vzy1)'
Taking vi =1 and v, =2 —2/y,, we obtain a finer estimate

J =[] Is dt = O(Jo] 72 Hony  g([p| 71 G2 (o) @2/ tey
=

_ 0(|v|ﬂ)r01(1*m) + 0(‘v|*(271*2)+6)_
Taking o0, such that o7 —20,=-y,—a1(1—y,), that is, o=
I +ta@2-y)}/2

J - I dt = 0(‘U|_71_Jl(1_71)) + 0(|D|—2(71—1)+8)
=

can be obtained. Since one can take o¢; such that —y, —a(1 —y)) <
—(2y; —2)+¢, that is, o1 < (2+¢—1y,)/(y; — 1), we finally obtain

| rae=ogu e,
e =]v] 1

which yields (2.17) in the proof of our Lemma 2.4.
As in [3], we introduce auxiliary wave operators

Q3 = slim ™ US (¢
G,v pllieres G,u( )7

where Ug (1) = e ™0 ME (1) and ME (1) = e~V tas’/2ds - We know that

(
Quf = WALE 1= slim M (0

i t—+oo

exist, by virtue of (2.5). As emphasized in [3], the v-dependent Graf-type
modifier M¢ () commutes with any operators. This fact will be used fre-
quently. Then the following can be obtained as in [3], so we omit the proof:

LeEmMA 2.5. Let v and @, be as in Theorem 2.1, and ¢ > 0. Then

sup [|[(e QS — U ,(1))@,]| = O([p| ™1 720D (2.18)
teR ’ ’

holds as |v] — oo for V¥Se ™ and Ve v 3(1/2,1).
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Now we will show Theorem 2.1:

PRrOOF (Proof of Theorem 2.1). Since the proof is quite similar to the one
of Theorem 2.1 of [3], we give its sketch only.

Suppose that VY e 7™ and V*e 7 %(1/2,5/4). We first note that S is
represented as

S=(WH'w- =15 ,(Q50)'Q%
I3, =I5, = e I srast/2ds,
U U 0
Noting [S, pj] =[S — 15 ,, p; — vjl, (pj — v))Pw = (pjPo), and
i(S = 15,,)P0 = 15,,i(QG, — Q5.,) Qg , P
0 .
- Igj Ug (1) Vie ™MQe @, dr

with V, = V¥S(x) + V3(x) — V3(vt + e1¢*/2), we have

|0|(i[S, pil P, Vo) = 1, {1 (v) + R(v)}

with
1) = bl | 10700000, U (02
— (KU (01, U (0 0),
RO = ol | (€03 — Ug () o) KU (0)

— (e, = Ug (1) Py, VUG ,(1)(p;0),)]dr.
By Lemmas 2.3, 2.4 and 2.5, we have
|R(U)| _ 0(|v‘1+2 max{—l,—z(}'l—l)—H}}) _ 0(|v|max{—l,5—4y|+2s}). (219)

Then we need the condition 5—4y; <0 in order to get limy_,, R(v) =0,
because one can take ¢ > 0 so small that 5 — 4y, +2¢ < 0. This is equivalent
to y, > 5/4.

The rest of the proof is the same as in [17] and [3]. So we omit it.

By virtue of Theorem 2.1 and the Plancherel formula associated with the
Radon transform (see Helgason [10]), Theorem 1.1 can be shown in the same
way as in the proof of Theorem 1.2 of [17] (see also [8]). Thus we omit its
proof.
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3. The case where VSe 7 %(1/2,5/4) and V' #0

The main purpose of this section is showing the following reconstruction
formula, which yields Theorem 1.2. For the sake of brevity, we put

UD(I) _ e_i[HOMD(l‘), MDO) _ e—i_[(ng(ps+els2/2)ds. (31)

THEOREM 3.1. Let € R" be given such that 0| =1 and |9 -e|| < 1. Put
v=|v|p. Let n>0 be given, and ®y,¥yec L*(R") be such that Py, ¥, e
Cy° (R") with supp @y, supp ¥ C {EeR"||¢| <n}. Put d,=e" ®yand ¥, =
e, Let VVe ™, Ve v S(1/2,5/4), and V'e ¥,)(3/8). Then the fol-
lowing holds:

o0

|v| =00

lim {|v|(i[SD,pj]div7 Y,) — J i((6; V") (x) Up(t)®,, Up(1) %)dt}

— o0

_ r (VY (x + 1) pyo, Wo) — (V" (x + b) Do, p; Po)

+i((0;V®)(x + 01) Do, ¥p)]dr (3.2)
for 1 <j<n
We first need the following lemma:

LEMMA 3.2. Let v and ®, be as in Theorem 3.1, and V'e ¥ 1(1/4) with
yp < 1/2. Then, for 0 < vy, va, v3 < 1, there exists a positive constant C such
that

[<x>> Mp (1)@, = [|[<x>>Mp,o(t)Po||

<Cc(1+ |U|*(2VD+1>V1|l|4*(2}'0+1)<2*"1> + |U|*(}’D+1>"2‘l|3*(70+1)(2*"2)
+ |U|—(7n+1/2)v3|l|2—(7n+1/2)(2—v3)) (3.3)

holds as |v] — o, where M o(f) = e~ Mp(1)e™~ = ¢~ilV (pstustes?/2)ds
Proor. First of all, we introduce
f/\lq,z(x) = V(x4 vt + e12/2)g((h o] <)) "'x),
by miplicking the definition of I7|i‘_’t(x) in the proof of Lemma 2.4. Since
supp @ C {¢ e R" ||| <7},
Mp ,(t)Dy = e_i'r”lm"““(ps>dv¢o (3.4)

holds for |v| >#/(34;). Since x =iV,

Lol Ty . e . 4 ~
T J S(VPL ) (ps)ds (3.5)
0
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holds. This yields

el N Tl N
elJl;Vv\l'LJ(pA)dA <x>237ZJ(;V\v\.s(P“)d“

1 (e | WVLJ<>ﬁf

=7+ l(ﬂ s*(A Iﬁi,s)(ps)ds) +2 (J; (VL )( ps)ds) X

+ (J(: s(V 17‘1”5) (ps)ds)z.

Now we will estimate ||VI7|IU‘,,HU; and ||AI7|1U",HL7;. In the same way as in the
proof of Lemma 2.4, for 0 < vy, vy, v3, 14, vs < 1 and |v| > 1,

ot v2v 1/2)(2—v
IVl < Cr(L [o] /G [e]) = 0ot 1/2E2)
 Calol T (1 o PO T (3.6)
and

A7} e < Co(1 -+ o/ )=t

+C |U|m/2 v4)— (1 + |v|‘4/2 v4) )~ (rp+1/2)(2—v4)—1
+ C |v|2\5/ (2—vs)-2 ( + |U|l5/2 vs) M) yp(2—vs)—2 (37)

can be obtained. By noting 1—(y,+1/2)(2—v)>-2y,> -1 and
L= pp(2 =) — 1> =2, > —1,

‘ 0

j%wyx>¢

A(L?)

i
< CIJ (o] @) g) =01 /DE=)
0

+ Cz‘l]|v2/(2_v2)_l Jlt (‘ |12/2 \'z)s)—VD(Z—vZ)—ldS
0
= C}lo|” o+1/2)‘1|t|2 (rp+1/2)(2-"1) + Chlv| 7P~ lMl 7p(2-02)
= Cifo] 72 (Jol el 0P - ol T (o] )

can be obtained. Taking account of
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[1=2yp,3/2=ppl ={2=(rp+1/2)2-v) [0 <y <1}
D[ =2yp, L =pp] ={1=9p(2=w)]|0 < v, <1},
we obtain the estimate
< C'|” (rp+1/2) e (7p+1/2)2-) (3.8)
A(L?)

for 0 <vy <1. Bynoting 2— (yp,+1)2—v3) > -2y, >—1,2—(yp+1/2)-
2—v4)—1=-2y,>—-1and 2—yp(2—vs) =2 > =2y, > —1,

[[ 5771, oo

0

j ST ) (ps)ds

0

B(L?)
< C3r|v|—(yn+l)va|t‘3—(yp+1)(2—v,z) + Cylo|” (rp+1/2)va= ‘|z| (7p+1/2)(2=v4)
+ C5/|v|fyu\’572|,|lfyD(Zst)
= Calol (ol )T Gl (ol ey
+ C3lof 71 (o] ey 0
can be obtained. Taking account of
1= 2.2 = pp] = 3= (rp + D@ =) [0< vy < 1}
D1 =2p,3/2= 7] = (2= (1 + 1/2Q2 - ) [0 < va < 1}
D[ =2yp, 1 =yp]={1=7p(2—v5) |0 <vs <1},

we obtain the estimate

< CN|U| (yp+1) V3|l| (7p+1)(2—-v3) (39)
B(L?)

[ 2@ s

0

for 0 <v3 < 1.
Based on the above observations, the lemma can be proved.

Then the following lemma can be shown as in [3].

LemMa 3.3. Let v and ®, be as in Theorem 3.1, and V'e ¥,(1/4).
Then

| ireuswed - o) (3.10)

holds as |v] — oo for VYSe ™.



On multidimensional inverse scattering under the Stark effect 337

Proor. For the sake of brevity, we put I = ||V"*(x)Up(1)®,||. For sim-
plicity, we suppose y, < 1/2. Since by virtue of the Avron-Herbst formula
(2.8), I can be written as

I=|V¥(x+ vt +e1£/2)e ™o My (1) Do |
= |7 (x + vt + e1£2/2) (1 + Ko) e ™o f (p) Mp o(£)(1 + Ko) Do,

we estimate this in the same way as in the proof of Lemma 2.3, which is
omitted in this paper (cf. the proof of Lemma 2.4).

[V¥(x)Up()@u|| < h + b + L,
where
L= ||V (x + vt + e £2/2)(1 + Kp) '
x F(|x| = 3a[vl [t))e” ™ f (p)F(|x] < 2fo] |t Mp,o(2)(1 + Ko)@ol,
L= |V¥(x+ot+er?/2)(1 4+ Kp) ™'
x F(lx| = 32]vl [t)e™f (p)F(|x| > Aol [#]) Mp,o(1)(1 + Ko)®o |
L= ||V (x+ vt +et?/2)(1 + Kp) '
x F(|x| < 321]o| |e])e™™f (p)Mp,o(1)(1 + Ko) @0
As for I, by virtue of Proposition 2.2 and ||[VYS(x+vt+ e t?/2)-
(1 +K0)_l||.ﬁ(L2) = [V +K0)_l||.oz(L2)>
L < C(1+ qlo] 1)) 2
holds for |v| > #/A;, which yields
o
J Ldi = o(lo] ™).

As for I, by that (2.12) holds for |¢| > 1 and |x| < 34;|v||7] < 441|v|<¢), and
(1.8),

J Ldi = oo ™Y
can be obtained. As for I, by virtue of Lemma 3.2,

L < C(1+ 40| |t|)_2(1 + |U|—(27'n+1)v1|l|4—(2}’n+1)(2—w)

+ ‘U|7(yD+1>"2|t|37(y0+1)(27"2> + |v|7(yD+1/2)V3|[|27(VD+1/2>(27V3>)
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holds for 0 < vy, vp, v3 <1 (cf. I, in the proof of Lemma 2.3). Therefore,

o0
J b dt = 0(|v|—1) + 0(|v|—(270+1)V1—{5—(271)""1)(2—"1)})
o0

+ 0(|U|7(7D+1)"27{47(VD+1)<27V2)})

+ O(Jp] ot/ 1/2)2-1)

_ 0(|U|71) + 0(|U|73+47072(2}1D+1)V|) + 0(|U|72+2yD72())D+1)V2)

+ 0(|U|—2+2VD—Z(VD+I/Z)V3)

can be obtained by an appropriate change of variables under the conditions
24+4-2yp+1)2—-v)< -1, 243-(yp+1)2-m)<—-1 and -2+2—
(yp+1/2)2 =) <=1l ie.vi <2=3/2yp+1),n<2-2/(yp+1)and v3 <
2—1/(yp+1/2). Since 0<2-3/2yp+1)<1/2, 2/5<2=-2/(yp+1)<
2/3,2/3<2—-1/(yp+1/2) <1,and

inf 344y, —22pp + D) = —1— 4
09]<217n3/(2y0+1>( +4yp —2(2yp + ) 7D

inf 242y -2 1 =-2-2
0£v2<21£12/(yb+])( +2yp —2(yp + n2) 7D

Ogv3<2lrll/(yn+|/z)( T2 (yp +1/2)v3) YDs

we obtain

J Ldi = 0(jv] ™).

Based on the above observations, the lemma can be proved.

The following lemma can be also proved in the same way as in the proof
of Lemmas 2.4 and 3.3.

LeMMA 3.4. Let v and ®, be as in Theorem 3.1, ¢ > 0, and V' e v;}(1/4).
Then

Jw I{V3(x) = V3(vt + e11%/2) Y Up(1)®,||dt = O(Jp|™> =1 =20n=Dehy (317

holds as |v| — oo for Ve ¥75(1/2,1).

ProoF. Since the proof is quite similar to the proof of Lemma
2.4, we sketch it: For the sake of brevity, we put I=|{V*(x)—
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VS(vt + e t?/2)} Up(t)®,|. For simplicity, we suppose yp < 1/2. As in the
proof of Lemma 2.4, we estimate / as

I=|{V5(x+ovt+et?)2) — VS(vt+ e;t?/2) e ™o Mp (1) Dy
< |V (x)e ™o f (p) Mp (1) Do |
+ IV () = V3 (0) e ™0 Mp () o . (3.12)

Here we used Mp ,(t)®o = f(p)Mp,,(t)@o. As for the first term of the
inequality (3.12), we estimate it as

1V, (X)e ™ of (p)Mp () ®o|| < I + L + I,
where
L = ||V () F (x| = 3ol [t])e ™™ o (p)F(|x] < Aol [¢)) Mp, () Do,
L =[Py ()F(1x] = 3ol [t)e ™ f (p)F(|x] > 2 lo] [t]) Mp, (1) Dol ,
I = ||V, () F (Ix] < 3210 e))e ™" f (p) M, (1) ®o||.
As for I, by virtue of Proposition 2.2,
L < C(1+ Aol 1))~
holds for |v| >#n/A1. As for L, by virtue of Lemma 3.2,

L < C(l + Al |t|)_2(1 + |U|—(271)+1)"1|t|4—(2”/n+1)(2—"1)

+ ‘U|7(7D+1)V2|t|37(7D+1)(27"2> + |v|7(}'D+1/2)V3|t|27(VD+1/2>(27V3))

holds. As for I3, by the definition of I7|Zm(x), I; = 0 holds. Combining these
estimates with the results in the proof of Lemma 3.3, we obtain

Jic 1V, (X)e ™™ (p) Mip, (1) Bo | dt = O(|v]| ). (3.13)

As for the second term of the inequality (3.12), in the same way as in the proof
of Lemma 2.4, we see that

£V, (%) = V5, (0) e~ ™ 0 Mp o (1) |

< VPl (x4 pt) Mop,o(1) ol

<[IVV.l

o (1l + | ([ 7, Dpoyas) @y
(1ot )

ny ||p¢>o|)
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holds. Here we used (3.4) and (3.5). As for the estimates of
oe] 5 0 _
| w7 e wontan, [ 1v7 e polar
o 700

we already obtained (2.15) and (2.16) in the proof of Lemma 2.4. Hence, we
have only to estimate

dt.

(J(: stV I7|1v.,s)(pS)afs> @y

© ~
| 1w
— 0
To this end, we consider
o0
il :J ( + |v|v1/2 V] |t|) yl 2 V1 ‘U| /D+1/2 V;|t| yD+l/2 (2 V;)dt
— 00

— O(Jo| o1/ lp+1/D@-w)n/2on))

)

S
|

Jw |U|Vz/(2*vz)*1(1+|v|Vz/(Z*Vz)|t|)*“/o(2*V2)*1
— 00

x |v|” (yp+1/2) V4|Z| (p+1/2)(2=vs) g

_ 0(|v|vz/(z—l’z)—1—(7n+1/2)"4—{3—(VD+1/2)(2—1’4)}1’2/(2—"2))

— 0(|v|—l—(VD+1/Z)V4—{2—(”/D+1/2)(2—1'4)}"2/(2—\)2))

3

which can be obtained by an appropriate change of variables under the con-
ditions —y,(2—v))+2—(yp+1/2)2—v3) <=1 and —py2—v) —1+2—
(rp +1/2)(2=va) <=1, ie. ppvi+ (7p +1/2)v3 <2{(y; = 1) + 7p} and pov2 +
(yp +1/2)va <2(po +7p) — 1. Noting

n+Oop+1/2)=2{( —D+wt=52-n—-17>3/2-p-1/220
by 70 <1, yy <147y, and y, < 1/2, we see
v+ Op +1/2)v310 < vy, v3 <13 D 00,2{(y; — 1) +yp}]-

We also note that for v; and v; such that pv+ (yp+1/2)vs =
2€{(n =1+ 7}

+1/2)v3 = {3—=(yp +1/2)(2 = v3)}n1 /(2 — 1)
—(p+1/2)vs = {2 =2pp + (yp + 1/2)v3}

2{(n =D +yp} —(p+1/2)v3
=2{n = +ypt+ (p+1/2)v3

==-2{(y = 1) +yp}
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holds. This yields

inf (—(7p + 1/2)v3 = {3 = (p + 1/2)2 = v)In /2 = )

==2{n - +wp} (3.14)
Noting
Yo+ (p+1/2) ={200 +7p) =1} =3/2=7—yp >0
by yo <1 and y, < 1/2, we see
{vov2+ (7p +1/2)v4 0 < w2, va < 1} 5 [0,2(y0 + yp) — 1].
We also note that for v, and v4 such that yyva + (yp + 1/2)va = 2(y0 + yp) — 1,
—1=Op+1/2va ={2 = (rp + 1/2)(2 = va)}2/(2 = v2)
=—1=Op+1/2va={1 = 2yp + (7p + 1/2)v4}

{2000 +vp) =1} — (pp + 1/2)v4
290 —{2(po +yp) = 1} + (yp + 1/2)14

=—1—{2(po +7p) — 1} = —2(yo + vp)
holds. This yields

inf (=1 = (yp +1/2)va ={2 = (7p + 1/2)(2 = va)}v2/(2 = 2))

V2, V4

=—2(0 + 7p)- (3.15)

(3.14), (3.15) and —2(yg +7p) < —2{(y; = 1) + yp} imply

dt — 0(|U|—2{(V1—1)+VD}+8) (3.16)

(J; S(VVj.) (PS)ds) @,

w© ~
| w7
— 0

with ¢ > 0.

By (3.13), (2.15), (2.16) and (3.16), we obtain (3.11).

The following lemma is the key in this section.

LEMMA 3.5. Let v and ®, be as in Theorem 3.1, ¢ > 0, and V'e ¥, (1/4).
Then

fJuwuww%m—aﬂm»mmwmm:owﬁ%”m> (3.17)

holds as |v] — co.
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Proor. For the sake of brevity, we put
I=|{V'(x) = V!(pt — e1t?/2)} Up (1)@, -
For simplicity, we suppose y, < 1/2. We first note that by virtue of the
Avron-Herbst formula (2.8),

e*”HOi% (Mp(1)) = e ™oV (pt + €112 /2) Mp (1)

=V (p —ert)t + e11?/2)e ™0 My (1)
= V(pt —et?/2)Up(1) (3.18)
holds. In the same way as in the proof of Lemma 3.4, I can be written as
I=|{V(x+er?/2) = Vipt+ ert?/2)Je " Mp(1) @, |
= |V x+ vt +ei2)2) — V(pt 4 vt + e12%/2) ye ™0 M (1) Dy||.

Now we will deal with this by using Iﬁhl",(x) which is introduced in the proof of
Lemma 3.2, and mimicking the argument in the proof of Lemma 3.4. Hence,
we estimate it as

1= |{V (x+vt+et?/2) =V (pt)ye ™ Mp (1) ®o|

—1 —i
< [V (x)e™™f (p) Mp, o (1) Do

V. () = Vi (p1) e ™0 Mp (1) o (3.19)

for |v| =#/(341), where V‘i“t(x) = Vi x+ot+et?)2) — 17‘1W(x). As for the
first term of the inequality (3.19), in the same way as in the proof of Lemma
3.4,

| 17 e )¢, e = 01 (3:20)

can be obtained, because I3 = 0 also in the long-range case. As for the second
term of the inequality (3.19), we first note that by virtue of the Baker-

Campbell-Hausdorft formula, 17‘14 (x) — 17‘14 (pt) can be written as

1
P19 = 7t = (] (974, )(0x-+ (1= 0)p0ido) (5~ po)

+1J1 H(AV )(0x + (1 — 0)pr)do. (3.21)

By virtue of this, we see that
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1(x = pr)e™ 0 Mp o (1) @0 |

H{7h, () = Py () }e ™S Mip o (6)do |
[ 970+ (1 - 0)pryao
B(L2)

1
S ‘
0

o et

)Ox + (1 — 0)pt)do||  |le™™ o M, (1) o]

vl, I
B(L?)

_ 1 _
< VP ll o XM o(1) o | +3 1 1AV o]l 2ol

)

holds. Here we used e 0(x — pr)e=" 0 = x, (3.4) and (3.5). In order to
estimate

< 1978 o (el + | (] 597, ) 1) o

+§|ZI 1AV, - | ol

o0
>
j V7l lxe@o s,
—0
we consider

Ba= [ e g < ool ),

— o0

ha= [ ) e

— O(|U|l’z/(zf\/z)*l*\/z/(z*l’z)) — 0(|U|71)

by (3.6), which can be obtained by an appropriate change of variables under
the conditions —(y, +1/2)(2 —v;) < —1 and —p,(2— ) —1 < —1, ie. v <
2—1/(yp+1/2) and vy <2. Since 2/3<2—1/(yp+1/2) <1,

0§v1<21111/(70+1/2)( n/(2=w)) D>

and =2y, > —1, we obtain
o0 _ -
J IVV o oll o IxPolldr = O(el =) (3.22)
-0

with ¢ > 0. In order to estimate

0 |
J HVVMIHL* dr,
-0

(J; st I7Ilv,s)(JJS)ds> @y
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we consider
o0
by :J (14 [o] /@) =001 D) =G0t/ 201 /22w) gy

— 0

= 0(|v‘_<V1)+1/2)V3—{3—(}’D+1/2)(2—)/3)})11/(2_‘,1))7

2 vy)—1
f) 70

o0
Ba= [ e o e
— o0
||~/ g2 o1/ 2w gy
= 0(|U‘1’2/(271'2)*1*(')’D+l/2)V4*{3*(VD+1/2)(27‘74)}‘,2/(271)2))

— O(|p| Ot 2 Got 2 ()

by (3.6) and (3.8), which can be obtained under the conditions —(y, + 1/2) -

2—v)+ (VD +1/2)2—v3) <—1 and —yp(2—m)—1+2—(yp+1/2)-
)

2—vy) <—1, ie. (yp+1/2)(vi +v3) <4dyp—1 and ypvo+ (yp+1/2)vs <
4y, — 1. Notlng

20pp +1/2) = (dyp—1)=2—-2y, >1>0
by yp < 1/2, we see
{(p +1/2)(vi +v3) [0 <1, v3 <1} D [0,4yp — 1],

We also note that for v; and v3 such that (y,+ 1/2)(vi +v3) =4y, — 1,

—(p +1/2vs = {3 = (rp + 1/2)(2 = v3)}vi /(2 = m1)
—(rp+1/2)v3 ={2=2yp + (yp + 1/2)v3}

(4yp—1) = (yp+1/2)3
2pp+1/2) = (dyp = 1) + (yp + 1/2)v3

—(4yp—1)

holds. This yields

inf (—(yp +1/2)v3 = {3 = (yp +1/2)(2 = v3)}»1 /(2 = m))

V1,V3
= —(4yp — 1). (3.23)
Noting

ot p+1/2)=(@Gyp—1)=3/2-2y,>1/2>0
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by yp < 1/2, we see
{vpva+ (yp +1/2)v4|0 < vy, v4 < 1} D [0,4y, — 1].
We also note that for v, and w4 such that ypvo + (yp + 1/2)vs =4y, — 1,
—1=(p+1/2va —{2= (rp +1/2)2 = va)}»2/(2 = 1)
=—1=(p+1/2va = {1 =2yp+ (yp +1/2)v4}

(4yp—1) = (yp +1/2)v4
2yp = (4yp = 1)+ (yp + 1/2)v4

=-1-(4yp—-1)=—4y

holds. This yields

inf (—1 = (7 + 1/2)vs = {2 = (7 + 1/2)(2 = va)}2/ (2 = 1)

V2, V4

= 4y, (3.24)

(3.23) and (3.24) imply

di = O([p|"W»=D%)  (3.25)

(J; (v I7'v.,s)(pS)afs) @y

* 1
| vr
— o0
with ¢ > 0. In order to estimate
OC 51
| 11apty oo,
— o0

we consider

- o0
L = (14 v

J—00

vi/(2—v |l| (yp+1)(2—w1) |l|dl (|U| 2v1/(2-w) )7

i32: * | ‘\!2/2 v)—1 ( —|—|U v2/(2—v2) |l|) (yp+1/2)(2—v2)— |l‘dl

J—00

_ 0(|U|1’z/ (2-m2)— 1—2Vz/(2—V2)) _ 0(|U|—1—Vz/(2—Vz))’

-
I = | ‘2»3/2 v3)—2 ( +|v|\’3/2 v3) M) 7p(2—v3)— |Z|dl‘

— o0

(|U|2H/2 V;) 272V3/(27V3)) — 0(|U|72)

by (3.7), which can be obtained by an appropriate change of variables under
the conditions —(yp+1)2—v)+1< -1, —(yp+1/2)2—m)—-1+1< -1
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and —yp(2—w)—2+1< -1, ie v <2=2/(yp+1), m<2—=1/(yp+1/2)
and v3 <2. Since 2/5<2-2/(yp+1)<2/3,2/3<2-1/(yp+1/2) <1,

inf 20 /(2—w)) = -2
OSV|<21£12/())D+])( /(2 =w)) YDs

tnt —1=n/2-wm)=-1-2
05"z<21111/(>'p+1/2)( 72/(2=m)) YD

and -2 < —1 -2y, < —2y,, we obtain

J A IA - | Pollde = O(|o]~227) (3.26)

with ¢ > 0. By (3.20), (3.22), (3.25) and (3.26), we finally obtain (3.17) because
of =1 < =2yp < —(4yp —1).

In the same way as in [3], we introduce auxiliary wave operators

s,+ __ : itH yrs
Qpg, =slime UD_’GJ,(Z),
R t—+oo

where U} g (1) = Up()M3 (1) and Mg (1) = e~V (sras’/2ds a5 in g2,
Then we see that

s, __ tyrs,t s,x _ : N
Qp .= Wplgy, I, = ts;h+ror01 Mg (1)

exist. Therefore, by Lemmas 3.3, 3.4 and 3.5, the following lemma can be
obtained as Lemma 2.5. Thus we omit the proof.

LEMMA 3.6. Let v and @, be as in Theorem 3.1, and ¢ > 0. Then

sup [[(e QG , — Up, 6., (0)@,]| = O(|jo| ™20 Dve=(nbwely (3 77)
teR C C

holds as |v] — oo for VVSe ™, Ve v 5(1/2,1), and V'e ¥;}(1/4).
Now we will show Theorem 3.1:

PRrOOF (Proof of Theorem 3.1). Since the proof is quite similar to the one
of Theorem 2.1, we give its sketch only.

Suppose that V¥ e 7™, VSey%(1/2,5/4) and V'e7;)(3/8). We first
note that Sp is represented as

Sp=(Wp) Wy =15 (25 6..) "2 6.0:

I, = I3TI7)" = eIV stas’/2ds
0 N 0 '
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Noting [Sp, pj| = [Sp — 1§ s Dj — vl, (p;j — )@y = (p;Py), and

l(SD - Ié,u)dsv = Iébl(Q;),Eb - Q;EL)*Q;E,Lév

o0
— JS S *1,D —itHyS, —
7IG’DJ Up...(0)" V;"e ™ Qp 6 P di

with
VP = 1Y(x) + VS(x) = Vvt +ert?/2) + VI(x) — Vi(pt — e1£%/2),
we have
|0|(i[Sp, p1Pw, V) = 15, {17 (v) + RP(v)}
with

1°0) = ol | (72U, 6,020, U .(0)17)
- ( V;‘D U[S) G.,v(t)(pw UB G,v(l) (p] YIO)U)]dt’
RO = 1ol [ (€195 . = Up 6. (0) 0, V2V, (012)

_ ((e*itHQB,_G,u - U[S),G7U(t))¢v, VrD Uzs),G,u(t)(pj #),)]dt.
By Lemmas 3.3, 3.4, 3.5 and 3.6, we have
|RD(U)| — O(‘U|1+2 max{*l,72(y171)+£’,(4y071>+8})

_ 0( ‘ U| max{—1,5—4y,+2¢,3-8yp+2¢} ) ) (3 28)

In the same way as in the proof of Theorem 2.1, we need the conditions
5—4y, <0 and 3 — 8y, <0, which are equivalent to y, > 5/4 and y, > 3/8,
in order to get lim_. R”(v) =0.

The rest of the proof is the same as in [17] and [3]. So we omit it.

By virtue of Theorem 3.1, Theorem 1.2 can be shown in the same way as
in the proof of Theorem 1.1. Thus we omit its proof.

4. The case where VS 7%(1/2,1,5/4)

Throughout this section, we suppose Ve ¥ %(1/2,1,1). Then the fol-
lowing reconstruction formulas, which are Theorems 2.1 and 3.1 with replacing
Vsev®(1/2,5/4) by Ve ¥ 3(1/2,1,5/4), can be obtained:
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THEOREM 4.1. Let the notation in this theorem be the same as in Theorem
21. Let Ve ™, Viev3(1/2,1,5/4). Then (2.1) holds for 1 < j <n.

THEOREM 4.2. Let the notation in this theorem be the same as in Theorem
3.0, Let Ve ™, Vse v S(1)2,1,5/4), Vie v;}(3/8). Then (3.2) holds for
I<j<n

In order to prove Theorems 4.1 and 4.2, we will improve a series of
lemmas in §2 and §3, for VSe ¥ %(1/2,1,1). To this end, we will introduce

Ug(l) — o~itHo gy (Z) MS (l) _ efi‘[(;Vs(ps+elsz/2)ds. (41)

n [14], instead of M} (¢), e e oV (pistes®/Dds wag ysed, as mentioned in §1.
The Dollard-type modifier M} () seems more appropriate for the problem
considered in this paper than e 'Jo? (Prstes®/2)ds e first give the following
lemma:

LemMma 4.3, Let v and @, be as in Theorem 4.1, and VS e ¥75(1/2,1,1).
If y, > 3/2, then there exists a positive constant C such that

IKxXD2 My (1)@, = (<2 M, (o] < C (4.2)

holds as |l)‘ — o0, where Mls).v(t) — e—iv.les)(l)emx — e—i]‘(;VS(pHvere]sZ/z)ds' On
the other hand, if y, < 3/2, then, for 0 < vy < 1, there exists a positive constant
C such that

1G> M) @y || = <> M (o] < C(1+[o] 72" 7E7) (4.3)
holds as |v| — oo, where only when y, =3/2, we assume v| # 0 additionally.

ProoF. Since the proof is quite similar to the one of Lemma 3.2, we will
sketch it.
We first note that since supp @y C {& e R"|[¢] < n},

Mj, ()@g = P g (44)

holds for |v| > #/(32;). Hence, as in the proof of Lemma 3.2,

1<x>* M, (1) ol

< [[Kx)* o JrH( s AV S)(ps)ds)(po

(J; S(Vﬂi,s)(m)dsf@o

can be obtained. Now we will estimate ||VV|,HL7 and HAVH,HL,. In
the same way as in the proof of Lemma 3.2, for 0 < vy, vy, v3, vy, v5 < 1

+2H< (VI (p )ds>~xq50
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and |v] > 1,
VIl < G Jof 270y )
+ CZI‘U|1’2/(27V2)71(1 + |U|\72/(27\@)|Z|)7y0(27v2)71 (45)
and
AV ol < C3(1 [of /27 gy 777
+ C‘;|U|V4/(2—V4)—1(1 + |U|V4/(2—V4)|Z|)—V1(2—V4)—1
+ C5/|U|2V5/(27"5)72(1 + |U|V5/(2 Vs |t|) 70(2-vs)—2 (4.6)
can be obtained (cf. (3.6) and (3.7)). Since -2y, + 1 < —1 and -2y, — 1+ 1<

—1 by assumption, the estimate

t
;572 )
can be obtained immediately by (4.5) with vj =v; =0. Since -2y, —1+2 <
—1 and —2y, —2+2 < —1 by assumption, we see that |¢7|* x (the second and
third terms of the right-hand side of (4.6) with v4 = vs = 0) are integrable in R.
Hence, we have only to watch

<C (4.7)
B(L?)

. [1]
zzcgjo (1 + o]/ 5) =g,

If p, >3/2, then —2y, +2 < —1 holds, which implies that there exists C > 0
independent of 7 such that I < C holds, by taking v; = 0. On the other hand,
if y, <3/2, then

i< C3”|v|7""2”3|t|3’”<27“>

can be obtained easily, where only when y, =3/2, we assume v; # 0 addi-
tionally.
Based on the above observations, the lemma can be proved.

By virtue of Lemma 4.3, the following lemma can be obtained in the same
way as in the proof of Lemma 3.3.

LEMMA 4.4. Let v and @, be as in Theorem 4.1, and VS e ¥75(1/2,1,1).
Then

JOC 1V (x) M (1)@, ||dt = O(v] ™) (4.8)

-0

holds as |v] — oo for VYSe ™.
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ProOF. We have only to mention some changes compared to the proof
of Lemma 3.3: We consider the case where y, < 3/2 only. The estimate />
in the proof of Lemma 3.3 has to be replaced by

L < C(1+ Aol o)) (1 [o] 72" 777)

for 0 <v; < 1. Therefore

| mai=ol )+ ogo ey

can be obtained by an appropriate change of variables under the condition
—24+3—92-wm)<—-1,1e vy <2—-2/y,. Since 0<2-2/y, <2/3 and

inf  (—pv — {4— 7,02 - =2
o, (7 = {4 =2 =) 72

we obtain

JOC Lodt=0(v| ™).

—o0
Based on the above observations, the lemma can be proved.
The following lemma can be obtained as in the proof of Lemma 3.5:
LemMA 4.5. Let v and @, be as in Theorem 4.1, ¢>0, and V*e
v3(1/2,1,1).  Then

J“ I{V3(x) = V3(pt — e1? [2) Y U3 ()@, |de = O(Jo| ™71 —2027 0%y (4.9)

holds as |v| — oo.

Proor. We have only to mention some changes compared to the proof
of Lemma 3.5: We consider the case where p, < 3/2 only. For the sake of
brevity, we put I = |[{V3(x) — VS(pt — e122/2)} U3 (t)®,||. I can be estimated
as

I=|{V3(x+ovt+et*)2) — V(pt+uvt+ el12/2)}e*”K°Mg_’U(t)d3o||
< ([P, (e oS (p) M (1) o

+{V () = V3 (p0)ye oM, (1) (4.10)

for |v] = n/(341). As for the first term of the inequality (4.10), the estimate

| 17 e sty @l = 0ol @.11)
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can be obtained as in the proof of Lemma 3.5. On the other hand, as for the
second term of the inequality (4.10), we see that

{75 (x) = V5, (pt) e ™0 M3y ()|

<nvvhmy0u¢w+ﬂ( vm)@@m)éo

)

1 _
3 AV -l Poll
< VPRl + Gl AV .-

holds, by virtue of the Baker-Campbell-Hausdorff formula. Here we used
(4.7). The estimate

| cwdea= ol (4.12)

can be obtained in the same way as in the proof of Lemma 2.4 (cf. (2.15)).
In order to estimate

J Colt| AV .

we consider

o
iz,l = (1+ |U|1’1/(2*\’1)|l|)*")’z(2ﬂ'1)Mdl (|U|72n/ (2— 11))’

J—0o0

o0
Lo=| [o™/%727 (1 4 o] D)) G gay

— 0

_ O(| |12/2 12) 1721/2/(27}’2)) — O(|U|717V2/(27l’2))

b

[e¢]
i273 — ‘ |2V3/ 2 V3) ( + |U|V3/ 2 1;)|t|) 2 H ‘Z|dt

— 0

_ O(|Ul2v;/(27V3)7272\73/(271’3)) _ 0(|U|72)

by (4.6), which can be obtained by an appropriate change of variables under
the conditions —y,(2—v;)+1< -1, =p;(2—=w) =1+ 1< =1 and —p,(2—v;3) —
24 1< —=1ie vp<2=2/p,, va<2—1/y;and v <2. Since 0 <2 —2/y, <
2/3,2—1/y; > 1,

09,12“2,2/},2( /(2 =) (72— 1),
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and —2(y, — 1) > —1, we have

J AT ]l [ Bollde = O(Jo|272717%) (4.13)
.

with ¢ > 0. By (4.11), (4.12) and (4.13), (4.9) can be obtained.
By modifying the argument in [14], we introduce auxiliary wave operators

Q%% = slim ™ U3 (¢
p = slm p(1)

with H = Hy+ VY + V5. Then we see that

s,* s+ St o1 s _—i[¥P VS (psters?/2)ds
QpF =WrIyT, IyE =slim M) =e Jo

exist. Therefore, by Lemmas 4.4 and 4.5, the following lemma can be
obtained as an improvement of Lemma 2.5. Thus we omit the proof.

LEMMA 4.6. Let v and &, be as in Theorem 4.1 and ¢ > 0. Then

sup (e Q} ™ — US (1)@, = O(Jp] ™1 202705 (4.14)
teR

holds as |v] — oo for VY e v™ and Ve v5(1/2,1,1).
Now we will show Theorem 4.1:

PrOOF (Proof of Theorem 4.1). Since the proof is quite similar to the one
of Theorem 2.1, we give its sketch only.

Suppose that V'Y€ ¥"¥ and Ve ¥%(1/2,1,5/4). We first note that S is
represented as

S= (W)W =I5 @59y 1)
Unlike /33, I;* do not commute with Qp*. Putting
IIS) _ I[S)Jr(lls),*)* _ efilfmes(szrmsz/Z)ds
and noting [S, p;] =[S — I}, p; — vj], (pj —v))®@, = (pjPo), and
S — I)0, = 1510} — Q)05 (157)" 9,

0
13t [ U0 Ve (15" 0u)

— o0

with
Vip=VY(x)+ VS(x) — V¥(pt — e1t?/2),

)

y oy * —iv- S,k * L iv-x i[E2 VS (ps+osters®/2)ds
(Is Y =e "Iy T) e =e'l ! !
D,y D
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we have
IS, P10, #0) = Io(o) + Rn(o)
with
1o(0) = 1ol [ [0 Up(0p(15)" @), U0 (157)" ),
~ (Mo Up((U,) @), U pi 151 o), Jar
Ro(e) = bl [ {25 — U315 o). Vo UB(0(U5) #0))

— (e7MQp" = Up(0)((Ip,,) " ®o),, Vo Up(0)(pi(I5 ;)" o), Jet.

Here we used that p; commutes with (/;7)". By Lemmas 4.4, 4.5 and 4.6,
we have

|RD(U)| _ 0(|U|1+2max{71.72(y271)+s}) _ 0(|U|max{71,574y2+26}). (415)

Here we used supp 7 |[(I5,) @] = supp Z (@] and supp F[(I5,)" ¥] =
supp 7 [%). Then we need the condition 5—4y, <0 in order to get
limy,_,, Rp(v) =0. Using the Avron-Herbst formula (2.8) and (2.9), Ip(v)
is rewritten as

o0

Ip(v) = |U|J [(Vipe ™M, (0I5 )" Po, e ™ M, (0)(I5 )" o)

—o0
— (Vipe ™M}, (1)(Ip.,) o, e ™M, (1) pi(Ly,)" Poldt
with
Vip=VV(x+vt+eit?)2) + Vi(x + vt +e1£%/2) — Vi(pt + vt + e11%/2).
Since
[(VS(x 4 vt 4 e1£2/2) — V(pt + vt + e1£*/2), p;] = i(&; V) (x + vt + e1£%/2)

and —y, < —1, Ip(v) is rewritten as
o .
(o) = o | (70 w1+ 0 /20 (015" @,
e MM, (1)U )" o)
— (VS +ot+ et /2)e "M, (0(15,)" P,

e M, (1)pi(I5 )" Wo)]dt
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o0
el J (@ V) (x + vt + e12/2)e My, (1)(I57) o,

— 0

e "M}, (1)) Po)dt

with
Ip,o(7) = (V¥ (x + bt + ex(¢/|o])*/2)e VR (2/|o])py(I5,) " B,
e KM (/o)) (I57)" o)
— (P (x + dr+ e (t/[o])*/2)e MG (2] lo) (T ,) B,
e R MG (210 (T 1) o)
+i((0V7°) (x + bt + e (¢/|o])? /2)e VMG (2 |0l)(T5)" B,
e DR (2/ |0 Ty ,)" Po)-
Here we note that

s-lim(753)" = 1d. (4.16)

[o]—o0
In fact, for |¢] < and |v| = 5/(441),
|5+ vs + e1s? /2] > max{c1|v] |s], ¢2|s]*}

holds by (2.12). This yields that V'S(&s + vs + e1s%/2) is integrable on R uni-
formly in |v| because of yy >1/2, and that limy,_.. V3(&s+uvs+ers?/2) =0
for any s # 0. Hence, the Lebesgue dominated convergence theorem yields

too
lim J VS(Es+ vs+ e152/2)ds = 0,

lol=c Jo
which implies (4.16). We also note
s-lim e IR ALY (2/1v]) =

[v| =00

which can be shown easily. Since in the proof of Lemma 2.3, |/p ,(7)| can be
estimated as

lIp.o()] < CLIV () (1 + Ko) ™ F (x| = dalel) gy

+ A+ )P+ A+ )T,
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whose right-hand side is |v|-independent and integrable on R. Therefore we
obtain

lim Ip(v) = J% (VY (x + 07) pjDo, Po) — (VV(x + 1) Do, p; Po)

[v]— o0 —w
+i((0;V?®)(x + 01) Do, ¥p)|dt
by the Lebesgue dominated convergence theorem. This yields the theorem.

As for Theorem 4.2, we need the following lemmas, which are the ver-
sions of Lemmas 3.2, 3.3, 3.4, 3.5 and 3.6 in the case where V* e 7" 5(1/2,1,1).
Since their proofs are yielded by the above observations, we omit them: We
will introduce

Up p(t) = e "M}, (1), M}, p(t) = Mp(0)M(0). (4.17)
Here we note that Mp(f) does commute with M} (7).

LeEmMA 4.7. Let v and @, be as in Theorem 4.2, VS e ¥ 5(1/2,1,1), and
Vie v (1/4) with yp < 1/2. If y, > 3/2, then, for 0 < vy, vy, v3 <1, there
exists a positive constant C such that

[ M p(0@0l] = [<xY*M3, (1) o
<C(1+ |U|*(2VD+1)V1 |Z|47(2y1)+1)(2—v1)
+ |U|7(yD+1)V2|t|3*(70+1)(27v2)

+ |U|7(yD+1/2)v3|t|27(70+1/2>(27"3)) (4.18)

holds as |v| — co, where M}, , (t) = e "M} ,(t)e™™ . On the other hand, if
vy < 3/2, then, for 0 < vy, vo, v3, v4 < 1, there exists a positive constant C such
that

[P Mp, ()@ = [[<x>> M}, (DDo]|
< C(l + |U|7(2}’D+1)V1 |t‘47(2}/D+1)(27\’|)
+ |U|*(VD+1)1’2|Z|37(7o+1)(2*vz)

o]0/ g2 Oprt /D)

+ [o 7| ) (4.19)

holds as |v] — oo, where only when y, =3/2, we assume v\ # 0 additionally.
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LemMA 4.8. Let v and @, be as in Theorem 4.2, Ve "/75(1/2, 1,1), and
Viev}(1/4). Then

| e s = ol ) (4:20)

holds as |v| — oo for VVSe ™",

LEMMA 4.9. Let v and ®, be as in Theorem 4.2, ¢ >0, Ve 75(1/2,1,1),
and V'e ¥;(1/4).  Then

jw V() — V3ot — a1 2)} U} (1),

_ 0(|U|max{71, —2(p3—1)+e, 72{()1171)4')’0}4»8}) (421)

holds as |v| — 0.

LemMa 4.10. Let v and @, be as in Theorem 4.2, ¢ >0, Ve V~S(1/2, 1,1),
and V'e ¥;)(1/4).  Then

J {V(x) = V(pt — e1£?/2)} U, p(0)®,|ldr = O([o] ">~ V*)  (4.22)
holds as |v| — oo.

Here we introduce auxiliary wave operators

s,+ 3 itH rrs
Q7 = s-lim "™ Uy, (1)
’ t—+o0 ’

with H = Hy+ V¥ + V54 V. Then we see that

st _ poagst St o1 s
Qp'p=Wplp~, In~ = ,S;hfg Mp(1)

exist.

LemMA 4.11. Let v and &, be as in Theorem 4.2, and ¢ > 0. Then

sup [|(e™"Qp 7, — Up, p(0) ||
teR

_ O(|v|max{71772()’271)"’[“772{(7171>+VD}+5¢7(4}'D71)+£}) (4.23)
holds as |v] — oo for VVsev™, Ve 5(1/2,1,1), and V'e ¥;(1/4).

Based on Lemmas 4.8, 4.9, 4.10 and 4.11, Theorem 4.2 can be shown by
the additional conditions

72> 5/4, 7+ yp > 5/4, 7p >3/8 (4.24)
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in the same way as in the proof of Theorem 3.1. So we omit its proof. Here
we note that y; +y, > 5/4 is satsified even when y; > 1 and y, > 1/4.

(1]

[2]

Acknowledgement

The authors are grateful to the reviewer for many valuable comments.

References

T. Adachi, Y. Fujiwara and A. Ishida, On multidimensional inverse scattering in time-
dependent electric fields, Inverse Problems 29 (2013), 085012.

T. Adachi, T. Kamada, M. Kazuno and K. Toratani, On multidimensional inverse scat-
tering in an external electric field asymptotically zero in time, Inverse Problems 27 (2011),
065006.

T. Adachi and K. Maehara, On multidimensional inverse scattering for Stark Hamiltonians,
J. Math. Phys. 48 (2007), 042101.

T. Adachi and H. Tamura, Asymptotic Completeness for Long-Range Many-Particle
Systems with Stark Effect, II, Comm. Math. Phys. 174 (1996), 537-559.

J. E. Avron and 1. W. Herbst, Spectral and scattering theory of Schrodinger operators
related to the Stark effect, Comm. Math. Phys. 52 (1977), 239-254.

V. Enss, Asymptotic completeness for quantum mechanical potential scattering, I. Short
range potentials, Comm. Math. Phys. 61 (1978), 285-291.

V. Enss, Propagation properties of quantum scattering states, J. Funct. Anal. 52 (1983),
219-251.

V. Enss and R. Weder, The geometrical approach to multidimensional inverse scattering,
J. Math. Phys. 36 (1995), 3902-3921.

G. M. Graf, A remark on long-range Stark scattering, Helv. Phys. Acta 64 (1991), 1167—
1174.

S. Helgason, Groups and geometric analysis, Academic Press, 1984.

I. W. Herbst, Unitary equivalence of Stark Hamiltonians, Math. Z. 155 (1977), 55—
70.

A. Ishida, Inverse scattering in the Stark effect, Inverse Problems 35 (2019), 105010.

A. Jensen and K. Yajima, On the long-range scattering for Stark Hamiltonians, J. Reine
Angew. Math. 420 (1991), 179-193.

F. Nicoleau, Inverse scattering for Stark Hamiltonians with short-range potentials, Asymp.
Anal. 35 (2003), 349-359.

M. Reed and B. Simon, Methods of Modern Mathematical Physics III, Scattering theory,
Academic Press, 1979.

G. D. Valencia and R. Weder, High-velocity estimates and inverse scattering for quantum
N-body systems with Stark effect, J. Math. Phys. 53 (2012), 102105.

R. Weder, Multidimensional inverse scattering in an electric field, J. Funct. Anal. 139
(1996), 441-465.

D. White, Modified wave operators and Stark Hamiltonians, Duke Math. J. 68 (1992),
83-100.

K. Yajima, Spectral and scattering theory for Schrédinger operators with Stark effect,
J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), 377-390.



358 Tadayoshi ApAcHI and Yuta Tsui

[20] J. Zorbas, Scattering theory for Stark Hamiltonians involving long-range potentials,
J. Math. Phys. 19 (1978), 577-580.

Tadayoshi Adachi
Division of Mathematical and Information Sciences
Graduate School of Human and Environmental Studies
Kyoto University
Yoshida-Nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
E-mail: adachi@math.h.kyoto-u.ac.jp

Yuta Tsujii
Division of Mathematical and Information Sciences
Graduate School of Human and Environmental Studies
Kyoto University
Yoshida-Nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
E-mail: tsujii. yuuta. 86 c@st.kyoto-u.ac.jp



