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Existence of BV flow via elliptic regularization
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Abstract. We investigate a mean curvature flow obtained via elliptic regularization,

and prove that it is not only a Brakke flow, but additionally a generalized BV flow

proposed by Stuvard and Tonegawa. In particular, we show that the change in volume

of the evolving phase can be expressed in terms of the generalized mean curvature of the

Brakke flow.

1. Introduction

Arising as the natural L2-gradient flow of the area functional, the mean

curvature flow (henceforth referred to as MCF) is arguably one of the most

fundamental geometric flows. The unknown of MCF is a one-parameter

family fMtgtb0 of surfaces in the Euclidean space (or more generally some

Riemannian manifold) such that the normal velocity vector V of Mt equals its

mean curvature vector h at each point for every time, i.e.,

V ¼ h on Mt: ð1:1Þ

When given a compact smooth surface M0, a unique smooth solution exists for

a finite time until singularities such as shrinkage and neck pinching occur.

Numerous frameworks of generalized solutions of MCF that allow singular-

ities have been proposed and studied: we mention, among others, the Brakke

flow [2], level set flow [3, 6], BV flow [13, 11, 12], L2 flow [15, 1], generalized

BV flow [19]. These weak solutions have been investigated by numerous

researchers in the last 40 years or so from varying viewpoints.

The aim of the present paper is to show that the flow arising from elliptic

regularization [9] is a generalized BV flow in addition to being a Brakke flow.

A generalized BV flow consists of a pair of phase function and Brakke flow,

in many ways reminiscent to Ilmanen’s enhanced motion described in [9], but

the one which relates the volume change of phase and the Brakke flow in an
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explicit manner. When an ðn� 1Þ-dimension smooth MCF fMtgtb0 is the

boundary of open sets fEtgtb0, the following equality holds naturally for all

f A C1
c ðRn �RþÞ:

d

dt

ð
Et

fðx; tÞdx ¼
ð
Et

qtfðx; tÞdxþ
ð
Mt

fðx; tÞhðx; tÞ � nMt
ðxÞdHn�1ðxÞ: ð1:2Þ

Here, hð�; tÞ is the mean curvature of Mt and nMt
is the unit outer normal

vector of Mt. The notion of BV flow utilizes this equality to characterize the

motion law, roughly speaking: a family of sets of finite perimeter fEtgtb0 is a

BV flow if the reduced boundary Mt :¼ q�Et has generalized mean curvature

vector hð�; tÞ satisfying (1.2). The underlying assumption of the BV flow is

that the generalized mean curvature vector is derived from q�Et. The gener-

alized BV flow is proposed by Stuvard and Tonegawa [19] so that the flow can

allow possible integer multiplicities ðb 2Þ for the underlying Brakke flow while

still keeping the equality (1.2) for sets of finite perimeter. When the higher

multiplicity portion of the Brakke flow has null measure, the generalized BV

flow corresponds to a BV flow. Additionally having this equality (1.2) has a

certain conceptual advantage for the Brakke flow in that some non-uniqueness

and stability issues of Brakke flow can be resolved: Fischer et al. [7] showed

that a BV flow with smooth initial datum necessarily coincides with the smooth

MCF until the time when some singularity appears. There are some condi-

tional existence results for BV flows such as [13, 11, 12] under an assumption

that the approximate solutions converge to the limit without loss of surface

energy. In the present paper, we prove without any condition that the solution

arising from elliptic regularization is a generalized BV solution with possible

higher integer multiplicities on the side of Brakke flow.

We next briefly mention closely related works on the MCF using elliptic

regularization. Ilmanen’s elliptic regularization [9] gives a Brakke flow by first

minimizing weighted area functional with a parameter. The solution of this

minimization is a translative soliton and smooth (except for a small set of

singularity of codimension 7), and by letting the parameter converge to 0, one

obtains a Brakke flow as a limit of the smooth flows. One advantage of this

method is that one can apply White’s local regularity theorem for this Brakke

flow arising from the elliptic regularization [23]. Elliptic regularization has also

been studied for constructing MCFs with the Neumann boundary conditions by

Edelen [4] and Dirichlet boundary conditions by White [25]. In addition, by

Schulze and White [16], this method is utilized to construct a MCF with a

triple junction by setting up an appropriate minimizing problem within the class

of flat chains.

The key element of the present paper is an estimate of L2 boundedness

of approximate velocity for elliptic regularization. The idea is to find the
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convergence of the velocity vector representing the motion of phase boundaries

using the concept of measure function pairs by Hutchinson [8]. The existence

of velocity leads to absolute continuity of phase boundary measure in space-

time with respect to the weight measure of the Brakke flow. More precisely, if

fmtg is the Brakke flow, and fEtg is the family of sets of finite perimeter driven

by mt, we may obtain djqSjf dmtdt, where S ¼ fðx; tÞ j x A Etg is the space-time

track of fEtg, and jqSj is the total variation measure of the characteristic

function of S in space-time. Once this is done, we may recover the formula

(1.2) using a suitable version of co-area formula from geometric measure

theory.

The paper is organized as follows. In Section 2, we set our notation and

explain the main result. In Section 3, we review an outline of elliptic regula-

rization. In Section 4, we construct the approximate velocity and show that

the existence of velocity leads to a generalized BV flow, and then we prove that

the limit of the translative soliton is indeed a generalized BV flow.

2. Preliminaries and main results

2.1. Basic notation. We shall use the same notation for the most part

adopted in [19, Section 2]. In particular, the ambient space we will be work-

ing in is the Euclidean space Rn or its open subset U , and Rþ will denote the

interval ½0;yÞ. The coordinates ðx; tÞ are set in the product space Rn �R,

and t will be thought of and referred to as ‘‘time’’. We will denote p and q

the projections of Rn �R onto its factor, so that pðx; tÞ ¼ x and qðx; tÞ ¼ t.

If A � Rn is (Borel) measurable, LnðAÞ will denote the Lebesgue measure of

A, whereas HkðAÞ denotes the k-dimensional Hausdor¤ measure of A. When

x A Rn and r > 0, BrðxÞ denotes the closed ball centered at x with radius r.

More generally, if k is an integer, then Bk
r ðxÞ will denote closed balls in Rk.

The symbols ‘, ‘ 0, D, and ‘2 denote the spatial gradient and the full gradient

in Rn �R, Laplacian, and Hessian, respectively. The symbol qt will denote

the time derivative.

A positive Radon measure m on Rn (or ‘‘space-time’’ Rnþ1) is always also

regarded as a positive linear functional on the space C0
c ðRnÞ of continuous and

compactly supported functions, with pairing denoted mðfÞ for f A C 0
c ðRnÞ.

The restriction of m to a Borel set A is denoted m
OA, so that ðm

OAÞðEÞ :¼
mðA \ EÞ for any E � Rn. The support of m is denoted supp m, and it is the

closed set defined by

supp m :¼ fx A Rn j mðBrðxÞÞ > 0 for all r > 0g:

For 1a pay, the space of p-integrable functions with respect to m is denoted

LpðmÞ. If m ¼ Ln, LpðLnÞ is simply written LpðRnÞ. For a signed or vector-
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valued measure m, jmj denotes its total variation. For two Radon measures m

and m, when the measure m is absolutely continuous with respect to m, we write

mf m. We say that a function f A L1ðRnÞ has a bounded variation, written

f A BVðRnÞ, if

sup

ð
Rn

f div X dx

����X A C1
c ðRn;RnÞ; kXkC 0 a 1

� �
< y:

If f A BVðRnÞ, then there exists an Rn-valued Radon measure (which we will

call the measure derivative of f denoted by ‘f ) satisfying

ð
Rn

f div X dx ¼ �
ð
Rn

X � d‘f for all X A C1
c ðRn;RnÞ:

For a set E � Rn, wE is the characteristic function of E, defined by wE ¼ 1 if

x A E and wE ¼ 0 otherwise. We say that E has a finite perimeter if wE A
BVðRnÞ. When E is a set of finite perimeter, then the measure derivative ‘wE
is the associated Gauss-Green measure, and its total variation j‘wE j is the

perimeter measure; by De Giorgi’s structure theorem, j‘wE j ¼ Hn�1
Oq

�E , where

q�E is the reduced boundary of E, and ‘wE ¼ �nE j‘wE j ¼ �nEH
n�1

Oq
�E ,

where nE is the outer pointing unit normal vector field to q�E.

A subset M � Rn is countably k-rectifiable if it admits a covering

M � Z [
[
i AN

fiðRkÞ

where HkðZÞ ¼ 0 and fi : Rk ! Rn is Lipschitz. If M is countably

k-rectifiable, Hk-measurable and HkðMÞ < y, M has a measure-theoretic

tangent plane called approximate tangent plane for Hk-a.e. x A M ([17,

Theorem 11.6]), denoted by TxM. We may simply refer to it as the tangent

plane at x A M without fear of confusion. A Radon measure m is said to be

k-rectifiable if there are a countably k-rectifiable, Hk-measurable set M and

a positive function y A L1ðHk
OMÞ such that m ¼ yHk

OM . This function y is

called multiplicity of m. The approximate tangent plane of M in this case

(which exists m-a.e.) is denoted by Txm. When y is an integer for m-a.e., m is

said to be integral. The first variation dm : C1
c ðRn;RnÞ ! R of a rectifiable

Radon measure m is defined by

dmðX Þ ¼
ð
Rn

divTxm X dm;

where PTxm is the orthogonal projection from Rn to Txm, and divTxm X ¼
trðPTxm‘X Þ. For an open set U � Rn, the total variation jdmjðUÞ of m is
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defined by

jdmjðUÞ ¼ supfdmðX Þ jX A C1
c ðU ;RnÞ; kXkC 0 a 1g:

If the total variation jdmjð ~UUÞ is finite for any bounded subset ~UU of U , then dm

is called locally bounded, and we can regard jdmj as a measure. If jdmjf m,

then the Radon–Nikodým derivative (times �1) is called the generalized mean

curvature vector h of m, and we have

dmðXÞ ¼ �
ð
Rn

X � h dm for all X A C1
c ðRn;RnÞ:

If m is integral, then h and Txm are orthogonal for m-a.e. by Brakke’s perpendi-

cularity theorem [2, Chapter 5].

2.2. Weak notions of mean curvature flow and main result. In this subsection,

we introduce some weak solutions to the MCF. We briefly define and com-

ment upon the three of interest in the present paper: We begin with the notion

of Brakke flow introduced by Brakke [2].

Definition 2.1. A family of Radon measures fmtgt ARþ in Rn is an

ðn� 1Þ-dimensional Brakke flow if the following four conditions are satisfied:

(1): For a.e. t A Rþ, mt is integral and dmt is locally bounded and ab-

solutely continuous with respect to mt (thus the generalized mean

curvature exists for a.e. t, denoted by h).

(2): For all s > 0 and all compact set K � Rn, supt A ½0; s� mtðKÞ < y.

(3): The generalized mean curvature h satisfies h A L2ðdmtdtÞ.
(4): For all 0a t1 < t2 < y and all test functions f A C 1

c ðRn �Rþ;RþÞ,

mt2ðfð�; t2ÞÞ � mt1ðfð�; t1ÞÞ

a

ð t2
t1

ð
Rn

ð‘fðx; tÞ � fðx; tÞhðx; tÞÞ � hðx; tÞ þ qtfðx; tÞdmtðxÞdt: ð2:1Þ

The inequality (2.1) is motivated by the following identity,

ð
Mt

fðx; tÞdHn�1

����
t2

t¼t1

¼
ð t2
t1

ð
Mt

ð‘f� fhÞ � V þ qtf dHn�1dt; ð2:2Þ

where Mt is an ðn� 1Þ-dimensional smooth surface, h is the mean curvature

vector, and V is the normal velocity vector of Mt. In particular, if fMtgt A ½0;TÞ
is a smooth MCF (hence V ¼ h), setting mt :¼ Hn�1

OMt
defines a Brakke flow

for which (2.1) is satisfied with the equality. Conversely, if mt ¼ Hn�1
OMt

with

smooth Mt satisfies (2.1), then one can prove that fMtgt A ½0;TÞ is a classical
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solution to the MCF. The notion of Brakke flow is equivalently (and orig-

inally in [2]) formulated in the framework of varifolds, but we use the above

formulation using Radon measures, mainly for convenience.

The following definition of L2 flow (modified slightly for our purpose) was

given by Mugnai and Röger [15].

Definition 2.2 (L2 flow). A family of Radon measures fmtgt ARþ in Rn is

an ðn� 1Þ-dimensional L2 flow if it satisfies (1)–(2) in Definition 2.1 as well as

the following:

(a): The generalized mean curvature hð�; tÞ (which exists for a.e. t A Rþ

by (1)) satisfies hð�; tÞ A L2ðmt;RnÞ, and dm :¼ dmtdt is a Radon mea-

sure on Rn �Rþ.

(b): There exists a vector field V A L2ðm;RnÞ and a constant C ¼ CðmtÞ >
0 such that

(b 01): Vðx; tÞ ? Txmt for m-a.e. ðx; tÞ A Rn �Rþ,

(b 02): For every test functions f A C1
c ðRn � ð0;yÞÞ, it holdsðy

0

ð
Rn

qtfðx; tÞ þ ‘fðx; tÞ � Vðx; tÞdmtðxÞdt
����

����aCkfkC 0 : ð2:3Þ

The vector field V satisfying (2.3) is called the generalized velocity vector

in the sense of L2 flow. This definition interprets equality (2.2) as a functional

expression of the area change.

Finally, we introduce the concept of generalized BV flow suggested by

Stuvard and Tonegawa [19].

Definition 2.3 (Generalized BV flow). Let fmtgt ARþ and fEtgt ARþ be

families of Radon measures and sets of finite perimeter, respectively. The pair

ðfmtgt ARþ ; fEtgt ARþÞ is a generalized BV flow if all of the following hold:

( i ): fmtgt ARþ is a Brakke flow.

( ii ): For all t A Rþ, j‘wEt
ja mt.

(iii): For all 0a t1 < t2 < y and all test functions f A C1
c ðRn �RþÞ,ð

Et

fðx; tÞdx
����
t2

t¼t1

¼
ð t2
t1

ð
Et

qtfðx; tÞdxdt

þ
ð t2
t1

ð
q �Et

fðx; tÞhðx; tÞ � nEt
ðxÞdHn�1ðxÞdt: ð2:4Þ

If mt and Et satisfy the above definition, we say ‘‘V ¼ h’’ in the sense of

generalized BV flow. This definition expresses that the interface q�Et is driven

by the mean curvature of mt. If mt ¼ j‘wEt
j for a.e. t, the characterization (2.4)

coincides with the notion of BV flow considered by Luckhaus–Sturzenhecker in

[13] since the mean curvature of q�Et is naturally defined to be hð�; tÞ in this
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case. On the other hand, while the original BV flow is characterized only by

(2.4), here mt is additionally a Brakke flow to which one can apply White’s local

regularity theorem [23] (see [10, 21, 18] for more general regularity theorems for

Brakke flow).

Remark 2.4. The relationship between the Brakke flow fmtgt ARþ and the

sets of finite perimeter fEtgt ARþ in the generalized BV flow appears unclear

from the definition.

(1): If the initial datum E0 satisfies the following assumption

sup
0<r<r0;x ARn

j‘wE0
jðBrðxÞÞ

on�1rn�1
a 1þ oðr0Þ;

where on�1 ¼ Ln�1ðBn�1
1 Þ, then there exists T > 0 such that

mt ¼ j‘wEt
j for a.e. t A ½0;T �. One can see this fact by examining

the time variation of the surface density using Huisken’s monoto-

nicity formula and demonstrating that a rapid increase in density

does not occur for a short time interval (for more details, see [20,

Proposition 8.6] for example).

(2): In general, the perimeter measure of the phase function j‘wEt
j and

the Brakke flow mt may be di¤erent Radon measures. This dis-

crepancy arises from the fact that convergence of the surface mea-

sures is lower semi-continuous when the MCF is constructed by

approximation. It is not known that this discrepancy does not occur

in the elliptic regularization.

Remark 2.5. Note that one can prove that Brakke flow is an L2 flow of

V ¼ h in general, but the opposite implication may not hold in general. The

following is a simple counterexample. Define

Et ¼
q ð0a t < 1Þ
fx A Rn j jxj2 a 1� 2ðn� 1Þðt� 1Þg 1a ta 1þ 1

2ðn�1Þ

� �
;

(

and consider mt :¼ Hn�1
OqEt

. One can show that it defines an L2 flow with

V ¼ h but it is not a Brakke flow.

The following claim is the essence of the main result of the present paper.

Theorem 2.6. Suppose that E0 � Rn is a set of finite perimeter and con-

sider the initial value problem of MCF starting from q�E0. Then, the elliptic

regularization of Ilmanen [9] produces a generalized BV flow of V ¼ h. Namely,

in addition to a Brakke flow fmtgt ARþ with m0 ¼ Hn�1
Oq

�E0
(whose existence

was proved in [9]), there exists a family of sets of finite perimeter fEtgt ARþ such

that ðfmtgt ARþ ; fEtgt ARþÞ is a generalized BV flow.
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In the present paper, we discuss the case where the flow is considered

in Rn. Since the analysis is local in nature, the same characterization holds

equally (with appropriate modifications) for flows in [4, 16, 25].

3. Review on the existence of Brakke flow via elliptic regularization

In this section, we briefly review Ilmanen’s proof on the existence of

Brakke flow in [9] for the convenience of the reader (see also a lecture note

on MCF by White [24]).

3.1. Translative functional and Euler-Lagrange equation. The method of

construction in [9] uses the framework of rectifiable current and for general

codimensional case. Since we are concerned only with the hypersurface case,

we work with surfaces realized as boundaries of sets of finite perimeter. In the

following, the time variable is temporarily denoted as z. Let e > 0 be fixed.

The symbol enþ1 will denote the standard basis pointing the time direction, i.e.,

enþ1 ¼ ð0; . . . ; 0; 1Þ A Rnþ1. We define the following functional for a set of

finite perimeter S � Rnþ1:

I eðSÞ :¼ 1

e

ð
Rnþ1

exp � z

e

� �
dj‘ 0wSjðx; zÞ: ð3:1Þ

We will say that a stationary point S e of I e is a translative soliton of the MCF

with velocity �ð1=eÞenþ1. The name ‘‘translative soliton’’ is based on the fact

that the translation of S e in the time direction S e � ðt=eÞenþ1 results in a MCF,

as in the grim reaper type MCF. We consider a set of finite perimeter

E0 � Rn as an initial datum and find a stationary point S e for I e by minimi-

zation. The existence of a minimizer follows from the compactness theorem

of set of finite perimeter (see [9, Section 3.2]).

Lemma 3.1. Let E0 � Rn be a set of finite perimeter. Then there exists

a set of finite perimeter S e � Rn �R such that

(1): S e � Rn �Rþ and fz ¼ 0g \ q�S e ¼ E0,

(2): I eðS eÞaHn�1ðq�E0Þ,
(3): S e is a minimizer for I e among the sets ~SS � Rn �Rþ with fz ¼ 0g \

q� ~SS ¼ E0.

Definition 3.2. We define Sz ¼ fx A Rn j ðx; zÞ A Sg, that is, Sz is the

horizontal slice of S at height z.

The well-known regularity theory of geometric measure theory shows that

the support of j‘ 0wS e j in fz > 0g is a smooth hypersurface except for a closed
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set of codimension 7 ([17]). For such S e, we calculate the first variation of I e

and obtain the following equations (see [9, Section 2.6]).

Lemma 3.3. Let S e be as in Lemma 3.1 and let he denote the mean

curvature of q�S e (computed as a submanifold in Rn � ð0;yÞ). Then we have

all of the following for j‘ 0wS e j-a.e. in fz > 0g:
(1): ehe þ PTðx; zÞðq �S eÞ?ðenþ1Þ ¼ 0,

(2): jh eja 1=e,

(3): PTðx; zÞðq �S eÞ?ðheÞ ¼ he,

(4): e2jhej2 þ jPTðx; zÞðq �S eÞðenþ1Þj2 ¼ 1.

By considering the integration of this equation in the time direction, we

obtain the following (see [9, Section 4.5]).

Lemma 3.4. For every 0a z1 < z2,ð
q �S e

z2

jPTðx; z2Þðq
�S eÞðenþ1ÞjdHn�1ðxÞ þ

ð
q�S e\ðRn�ðz1; z2ÞÞ

ejh ej2dHnðx; zÞ

¼
ð
q�S e

z1

jPTðx; z1Þðq
�S eÞðenþ1ÞjdHn�1ðxÞ: ð3:2Þ

In particular, for any e > 0,

max

(
sup
z>0

ð
q �S e

z

jPTðx; zÞðq�S eÞðenþ1ÞjdHn�1ðxÞ;

ð
q �S e\ðRn�ð0;yÞÞ

ejhej2dHnðx; zÞ
)
aHn�1ðq�E0Þ: ð3:3Þ

Now consider E e ¼ keðS eÞ in which S e is shrunk by the map keðx; zÞ ¼
ðx; ezÞ in the z direction. Since ke is the contraction map by e to z, the

determinant of Jacobian matrix of ke on q�S e is ðjPTðx; zÞðq �S eÞð‘ 0pðx; zÞÞj2 þ
e2jPTðx; zÞðq �S eÞ?ðenþ1Þj2Þ1=2. Therefore, by Lemma 3.4, we have the following

for the mass of q�S e and q�E e (see [9, Section 5.1 and 5.3]).

Lemma 3.5. For any open interval A ¼ ða; bÞ � Rþ, we obtain

j‘ 0wS e jðRn � AÞa ðL1ðAÞ þ eÞHn�1ðq�E0Þ; ð3:4Þ

j‘ 0wE e jðRn � AÞa ðL1ðAÞ þ e2 þ ðL1ðAÞ þ e2Þ1=2ÞHn�1ðq�E0Þ: ð3:5Þ

In particular, the result holds for any L1-measurable set A � Rþ by approx-

imation.
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For this S e, we define the following notation:

s�t=eðx; zÞ :¼ x; z� t

e

� �
; S eðtÞ :¼ s�t=eðS eÞ; me

t :¼ j‘ 0wS eðtÞj: ð3:6Þ

This me
t is a Brakke flow on the ðx; zÞ components of W e :¼ fðx; z; tÞ A ðRn �RÞ

� ½0;yÞ j z > �t=eg. Since the Brakke flow me
t satisfies me

t ðRn � ðz1; z2ÞÞa
ððz2 � z1Þ þ eÞHn�1ðq�E0Þ by (3.4), we can apply the compactness theorem

for Brakke flow to me
t [9, Section 7.1]. Thus taking a further subsequence from

me
t , there exists a Brakke flow fmtgtb0 on the ðx; zÞ components of W :¼ ðRn �

R� ð0;yÞÞ [ ðRn � ð0;yÞ � f0gÞ such that me
t converges to mt as Radon

measure. Since mt is invariant to translations in the z direction, we have the

following from the product lemma [9, Lemma 8.5]. See [9, Section 8] for the

details of the above discussion.

Lemma 3.6. Let y A C2
c ðR;RþÞ with

Ð
R yðzÞdz ¼ 1 and supp y � ð0;yÞ

be fixed. We define a Radon measure mt on f A C0
c ðRn;RþÞ by

mtðfÞ :¼ mtðyfÞ;

then mt is independent of y and the following hold:

(1): mt ¼ mt nL1 except for countable tb 0,

(2): fmtgtb0 is a Brakke flow on Rn.

When applying the compactness theorem of Brakke flow, we take a further

subsequence using the compactness of set of finite perimeter: there exists a set

of finite perimeter E � Rn �Rþ such that

wE e ! wE in L1
locðRn �RþÞ;

j‘ 0wE jðfÞa lim inf
e!þ0

j‘ 0wE e jðfÞ for all f A C0
c ðRn �Rþ;RþÞ:

Since S eðtÞ is the translation of S e by �t=e in the z direction, and E e is the

contraction by e in the z direction as defined above, one can check the

following:

S eðtÞz ¼ S e
zþt=e ¼ E e

tþez; ð3:7Þ

where S eðtÞz, S e
zþt=e and E e

tþez are the horizontal slices as in Definition 3.2.

4. A generalized BV flow: Proof of Theorem 2.6

The key to the proof is to construct an approximate velocity and obtain a

suitable L2 estimate for a convergence of the velocity.
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4.1. Existence of measure-theoretic velocities. In this subsection, even after

taking a subsequence, we use the same notation e for simplicity. In estab-

lishing (2.3), the main tool is the co-area formula applied to S e. It is a

formula describing the rate of change of the volume of Et, and the ob-

stacle to obtain this is the possible presence of a portion where q�S e is ‘‘close

to being horizontal’’, that is, we want to make sure that the domain

fjPTðx; zÞðq�S eÞðenþ1Þja 1� e1=2g vanishes when passing to the limit e ! þ0.

According to Lemma 3.3(4), if jPTðx; zÞðq �S eÞðenþ1Þja1� e1=2, we have 1=e3=2a

jh ej2ða 1=e2Þ. Using this fact and the L2 boundedness of h e (Lemma 3.4),

we can prove that the domain fjPTðx; zÞðq �S eÞðenþ1Þja 1� e1=2g is vanishing as

e ! þ0.

Lemma 4.1. For S e of Section 3.1, we define

Se;k :¼ ðx; zÞ A q�S e

���� jPTðx; zÞðq �S eÞðenþ1Þj2 a 1� 1

k

� �
:

Then if 1 < ka e�1=2, we have lime!þ0j‘ 0wS e jðSe;kÞ ¼ 0.

Proof. Let 1 < ka e�1=2 be fixed. From Lemma 3.3(1) and

1 ¼ jPTðx; zÞðq�S eÞðenþ1Þj2 þ jPTðx; zÞðq �S eÞ?ðenþ1Þj2;

we have

j‘ 0wS e jðSe;kÞ ¼ j‘ 0wS e j ðx; zÞ A q�S e

���� 1

ke2
a jh ej2

� �� �
:

Thus, by using Markov’s inequality and the L2 boundedness of he (3.4), we

compute

j‘ 0wS e jðSe;kÞ ¼ j‘ 0wS e jðf1a ke2jhej2gÞ

a ke

ð
Rn�R

ejhej2dj‘ 0wS e ja e1=2Hn�1ðq�E0Þ: ð4:1Þ

By taking e ! þ0, we obtain lime!þ0j‘ 0wS e jðSe;kÞ ¼ 0. r

The following two lemmas relate mt and Et so that these fit in the frame-

work of generalized BV flow.

Lemma 4.2. Taking a further subsequence if necessary, we have

dj‘wE e
t
jdt * dmtdt as Radon measure.

Remark 4.3. By Remark 2.4(2), dj‘wEt
jdt and dmtdt may not coincide in

general.
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Proof. By (3.5) and the co-area formula (see, for example, [5, Theorem

3.10] or [14, Theorem 13.1]), we obtain

ð t2
t1

ð
Rn

dj‘wE e
t
jdta j‘ 0wE e jðRn � ðt1; t2ÞÞ

a ððt2 � t1Þ þ e2 þ ððt2 � t1Þ þ e2Þ1=2ÞHn�1ðq�E0Þ ð4:2Þ

for all 0a t1 < t2 < y. Thus, by the compactness theorem of Radon mea-

sure, dj‘wE e
t
jdt converges to some Radon measure.

Next, we fix f A C0
c ðRn �RþÞ and zb 0. Parallel translating with re-

spect to time, for su‰ciently small e > 0, we have

ðy
0

ð
Rn

f dj‘wE e
t
jdt�

ðy
0

ð
Rn

f dj‘wE e
tþez

jdt
����

����
a

ðy
0

ð
Rn

jfðx; t� ezÞ � fðx; tÞjdj‘wE e
t
jdt

a sup
ðx; tÞ ARn�Rþ

jfðx; t� ezÞ � fðx; tÞj j‘ 0wE e jðKÞ; ð4:3Þ

where K is a su‰ciently large compact set for f and we used the co-area

formula. Therefore, by letting e ! þ0 in the above, we can deduce

lim
e!þ0

ðy
0

ð
Rn

f dj‘wE e
t
jdt ¼ lim

e!þ0

ðy
0

ð
Rn

f dj‘wE e
tþez

jdt: ð4:4Þ

Finally, we prove dj‘wE e
t
jdt * dmtdt as Radon measure. Let f A

C0
c ðRn �RþÞ, and let y A C 2

c ðR;RþÞ with
Ð
R yðzÞdz ¼ 1 and supp y � ð0;yÞ

be arbitrary. To use the co-area formula for q�S eðtÞ, we translateÐy
0

Ð
Rn f dmtdt as

ðy
0

ð
Rn

f dmtdt

¼ lim
e!þ0

ðy
0

ð
Rnþ1

yðzÞfðx; tÞdme
t ðx; zÞdt

¼ lim
e!þ0

�ðy
0

ð
Rnþ1

yðzÞfðx; tÞð1� jPTðx; zÞðq �S eðtÞÞðenþ1ÞjÞdj‘ 0wS eðtÞjðx; zÞdt

þ
ðy
0

ð
Rnþ1

yðzÞfðx; tÞjPTðx; zÞðq �S eðtÞÞðenþ1Þjdj‘ 0wS eðtÞjðx; zÞdt
�
: ð4:5Þ

Since jPTðx; zÞðq �S eÞðenþ1Þj2A1 from Lemma 4.1, setting Ae and Be by
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Ae :¼
ðy
0

ð
Rnþ1

yðzÞfðx; tÞð1� jPTðx; zÞðq �S eðtÞÞðenþ1ÞjÞdj‘ 0wS eðtÞjðx; zÞdt;

Be :¼
ðy
0

ð
Rnþ1

yðzÞfðx; tÞjPTðx; zÞðq �S eðtÞÞðenþ1Þjdj‘ 0wS eðtÞjðx; zÞdt;

we can predict Ae ! 0 and BeA
Ðy
0

Ð
Rn f dj‘wE e

t
jdt.

For Be, by the co-area formula and (3.7), we obtain

lim
e!þ0

Be ¼ lim
e!þ0

ðy
0

ð
Rnþ1

yf dj‘wS e
t=eþz

jdzdt

¼ lim
e!þ0

ðy
0

ð
Rnþ1

yf dj‘wE e
tþez

jdzdt

¼ lim
e!þ0

ðy
0

ð
Rn

f dj‘wE e
t
jdt: ð4:6Þ

Here, we also used Fubini’s theorem to change the order of integration with

respect to z and t, (4.4) and
Ð
R yðzÞdz ¼ 1 for the second line to the third line.

Now we consider Ae. For Se;k of Lemma 4.1, 1� jPTðx; zÞðq �S eÞðenþ1Þj2 <
1=k is satisfied for all ðx; zÞ A q�S enSe;k. Hence, by using the co-area formula,

the mass boundedness of q�Sz (3.3) and
Ð
R yðzÞdz ¼ 1, we calculate as

ðy
0

ð
Rnþ1

jyfjws�t=eðq�S enSe; kÞð1� jPTðx; zÞðq�S eðtÞÞðenþ1Þj2Þdj‘ 0wS eðtÞjdt

a

ðy
0

ð
Rnþ1

jyfjws�t=eðq �S enSe; kÞ
1

k

jPTðx; zÞðq �S eðtÞÞðenþ1Þj2

1� 1
k

dj‘ 0wS eðtÞjdt

a
L1ðKÞ supjfj

k � 1

ð
R

ð
Rn

yjPTðx; zÞðq �S eÞðenþ1Þjdj‘wS e
z
jdz

a
L1ðKÞ supjfj

k � 1
Hn�1ðq�E0Þ;

where K is a su‰ciently large bounded interval for f. Therefore, by using

Lemma 4.1 for k ¼ e�1=2, we obtain

jAeja
ðy
0

ð
Rnþ1

jyfjðw
s�t=eðSe; e�1=2 Þ þ w

s�t=eðq �S enSe; e�1=2 ÞÞ

� ð1� jPTðx; zÞðq �S eðtÞÞðenþ1Þj2Þdj‘ 0wS eðtÞjdt

a

ðy
0

ð
Rnþ1

jyfjw
s�t=eðSe; e�1=2 Þdj‘

0wS eðtÞjdt
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þ
ðy
0

ð
Rnþ1

jyfjw
s�t=eðq �S enSe; e�1=2 Þ

� ð1� jPTðx; zÞðq �S eðtÞÞðenþ1Þj2Þdj‘ 0wS eðtÞjdt

aCðy; f;E0Þ
ð
Rnþ1

w
Se; e�1=2 dj‘ 0wS e j þ

1

e�1=2 � 1

� �

aCðy; f;E0Þðj‘ 0wS e jðSe; e�1=2Þ þ e1=2Þ; ð4:7Þ

where Cðy; f;E0Þ is a constant that depends only on y, f and the initial value

E0. By Lemma 4.1, we obtain lime!þ0 Ae ¼ 0. Thanks to (4.5)–(4.7), we

have dj‘wE e
t
jdt * dmtdt as Radon measure. r

Lemma 4.4. Taking a further subsequence if necessary, we have j‘wEt
jðfÞa

mtðfÞ for all f A C0
c ðRn;RþÞ and for a.e. tb 0.

Proof. From Section 3.1, wE e ! wE in L1
locðRn �RþÞ. Let z > 0

be arbitrary. Since the parallel translation is continuous in L1, we have

wE eþezenþ1
! wE in L1

locðRn �RþÞ. Taking a further subsequence from

fE e þ ezenþ1g, wE eðx; tþ ezÞ converges to wEðx; tÞ for Lnþ1-a.e. ðx; tÞ A
Rn �Rþ, and by Fubini, wE e

tþez
! wEt

in L1
locðRnÞ for a.e. tb 0. Thus we

obtain j‘wEt
jðfÞa lim inf e!þ0j‘wE e

tþez
jðfÞ for all f A C0

c ðRn;RþÞ and a.e. tb 0

by the lower semi-continuity of variation measure. Let f A C0
c ðRn;RþÞ and

y A C 2
c ðR;RþÞ with

Ð
R yðzÞdz ¼ 1, supp y � ð0;yÞ be arbitrary. Then we

obtain

mtðfÞ ¼ mtðyfÞ ¼ lim
e!þ0

ð
Rnþ1

yf dj‘ 0wS eðtÞj

b lim inf
e!þ0

ð
Rnþ1

yfjPTðx; zÞðq �SðtÞÞðenþ1Þjdj‘ 0wS eðtÞj

¼ lim inf
e!þ0

ð
R
y

ð
Rn

f dj‘wS eðtÞz jdz

¼ lim inf
e!þ0

ð
R
y

ð
Rn

f dj‘wS e
zþt=e

jdz

¼ lim inf
e!þ0

ð
R
y

ð
Rn

f dj‘wE e
tþez

jdz

b

ð
R
y lim inf

e!þ0
j‘wE e

tþez
jðfÞdzb j‘wEt

jðfÞ ð4:8Þ

where we used the co-area formula, Fatou’s Lemma, the lower semi-continuity

of j‘wEt
j,
Ð
R yðzÞdz ¼ 1 and (3.7). r
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Finally, we construct an approximate velocity to show that dj‘ 0wE jf
dmtdt. If the co-area formula is available, we obtainð

E

qtf dxdt ¼
ð
q �E

fqðnEÞdHn ¼
ðy
0

ð
q �Et

f
qðnEÞ
jpðnEÞj

dHn�1dt ð4:9Þ

for all f A C1
c ðRn � ð0;yÞÞ. Since we have that the domain fjpðnS eÞjA0g

where the co-area formula is not applicable goes to measure 0 from Lemma

4.1 and jpðnS eÞj ¼ jPTðx; zÞðq�SÞðenþ1Þj, we may construct the approximate velocity

based on (4.9).

Proposition 4.5. Taking a further subsequence if necessary, there exists

V A L2ðdmtdtÞ such thatð
E

qtf dxdt ¼ �
ðy
0

ð
Rn

fV dmtdt; ð4:10Þ

for all f A C1
c ðRn � ð0;yÞÞ.

Proof. To use Lemma 4.1, we assume that e > 0 is su‰ciently small.

Let f A C1
c ðRn � ð0;yÞÞ be arbitrary. We define the approximate velocity of

E e by

Veðx; tÞ :¼ �wkeðq �S enSe; 2Þ
qðnE eÞ
jpðnE eÞj ðx; tÞ

¼
� qðnE e Þ

jpðnE e Þj ðx; tÞ ððx; tÞ A keðq�S enSe;2ÞÞ
0 ððx; tÞ A keðSe;2ÞÞ:

(

(Note that p and q are the projections of Rn �R onto its factor, so that

pðx; tÞ ¼ x and qðx; tÞ ¼ t.) Since the map ke shrinks z-variable by e, the

following holds as the relationship between the unit normal vectors of S e and

E e:

qðnS eÞ
jpðnS eÞj ðx; zÞ ¼ e

qðnE eÞ
jpðnE eÞj ðx; tÞ; t ¼ ez: ð4:11Þ

Furthermore, since the area element of ke is e and t ¼ ez, we haveð
E e

qtf dxdt ¼
ð
S e

qzf dxdz: ð4:12Þ

A simple geometric argument shows jpðnS eÞj ¼ jPTðx; zÞðq �S eÞðenþ1Þj, and by the

definition of Se;2, we may deduce 1=2 < jpðnS eÞj2 on q�S enSe;2. Thus, by the

co-area formula and (4.12), we obtain
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ð
E e

qtf dxdt ¼
ð
S e

qzf dxdz

¼
ð
Rn�ð0;yÞ

ðwSe; 2 þ wq �S enSe; 2ÞfqðnS eÞdj‘ 0wS e j

¼
ð
Rn�ð0;yÞ

wSe; 2fqðnS eÞdj‘ 0wS e j

þ
ðy
0

ð
Rn

fwq�S enSe; 2

qðnS eÞ
jpðnS eÞj dj‘wS e

z
jdz

¼
ð
Rn�ð0;yÞ

wSe; 2fqðnS eÞdj‘ 0wS e j �
ðy
0

ð
Rn

fVe dj‘wE e
t
jdt: ð4:13Þ

From Lemma 4.1, we see that

lim
e!þ0

ð
Rn�ð0;yÞ

wSe; 2fqðnS eÞdj‘ 0wS e j ¼ 0: ð4:14Þ

Next, we prove the following with respect to the second term:

ðy
0

ð
Rn

jVej2dj‘wE e
t
jdtaC < y; ð4:15Þ

where C is a constant that depends only on Hn�1ðq�E0Þ. By (4.11), we see

that

ðy
0

ð
Rn

jVej2dj‘wE e
t
jdt ¼

ðy
0

ð
Rn

1

e
wq �S enSe; 2

qðnS eÞ
jpðnS eÞj

� �2
e dj‘wS e

z
jdz

¼ 1

e

ðy
0

ð
Rn

wq �S enSe; 2

qðnS eÞ
jpðnS eÞj

� �2
dj‘wS e

z
jdz:

From 1=2 < jpðnS eÞj2 on q�S enSe;2 and Lemma 3.3(1), we obtain

wq �S enSe; 2

qðnS eÞ
jpðnS eÞj

� �2
a 2e2jhej2:

Thus, by (3.3), we have

1

e

ðy
0

ð
Rn

wq �S enSe; 2

qðnS eÞ
jpðnS eÞj

� �2
dj‘wS e

z
jdz

a 2

ðy
0

ð
Rn

ejh ej2dj‘wS e
z
jdza 2Hn�1ðq�E0Þ;
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and thus (4.15) is proved. As Lemma 4.2 and (4.15) are valid, we can apply

Theorem A.3 to ðdj‘wE e
t
jdt;VeÞ. Therefore, taking a further subsequence if

necessary, we obtain a function V A L2ðdmtdtÞ such that

lim
e!þ0

ðy
0

ð
Rn

fVe dj‘wE e
t
jdt ¼

ðy
0

ð
Rn

fV dmtdt ð4:16Þ

for all f A C1
c ðRn � ð0;yÞÞ. By (4.14), (4.16) and wE e ! wE in L1

locðRn �RÞ,
we obtainð

E

qtf dxdt ¼ lim
e!þ0

ð
E e

qtf dxdt

¼ lim
e!þ0

�
ðy
0

ð
Rn

fVe dj‘wE e
t
jdt

� �
¼ �

ðy
0

ð
Rn

fV dmtdt;

for all f A C1
c ðRn � ð0;yÞÞ. This completes the proof. r

Lemma 4.6. There exists G � Rþ with L1ðRþnGÞ ¼ 0 such that wEt
is

1=2-Hölder continuous in L1ðRnÞ norm with respect to t on G.

Proof. Let G � Rþ be a set such that t A G is a Lebesgue point of

function ffðsÞ :¼
Ð
Es
f dx for any f A C1

c ðRnÞ. By choosing a countable dense

set of functions in C1
c ðRnÞ and using a standard result in measure theory,

one can prove that such G is a full-measure set in Rþ. Let t1, t2 ðt1 < t2Þ be

arbitrary points in G, and consider a smooth approximation h of w½t1; t2�. Use

fðxÞhðtÞ in (4.10) and let h ! w½t1; t2� to obtain

�
ð
Et2

f dxþ
ð
Et1

f dx ¼ �
ð t2
t1

ð
Rn

fV dmtdt:

By approximation, we may replace f by wEt1
and obtain

jLnðEt1Þ �LnðEt2 \ Et1Þja
ð t2
t1

mtðEt1Þdt
� �1=2

kVkL2ðdmtdtÞ

a ðt2 � t1Þ1=2Hn�1ðq�E0Þ1=2kVkL2ðdmtdtÞ; ð4:17Þ

where we also used mtðRnÞa m0ðRnÞ ¼ Hn�1ðq�E0Þ. This inequality is due to

the energy decreasing property of Brakke flow which follows from (2.1). The

left-hand side of (4.17) is LnðEt1nEt2Þ. One can obtain the similar estimate for

LnðEt2nEt1Þ by considering wEt2
. This proves the claim. r

Remark 4.7. By Lemma 4.6, if necessary, we may re-define E so that wEt

is 1=2-Hölder continuous in L1ðRnÞ on Rþ. We also point out that, one can
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re-define the Brakke flow fmtgt ARþ so that it is left-continuous at all t A Rþ.

This is because, for any f A C2
c ðRnÞ, mtðfÞ � CðfÞt is a monotone decreasing

function of t for a suitable C > 0, and is discontinuous on a countable set at

most (see for example [22, Proposition 3.3]). At these discontinuous points,

one may re-define mt (by approaching from the left) so that it is left-continuous

while keeping (2.1). Now the claim of Lemma 4.4 is for a.e. tb 0, while

Definition 2.3(ii) is for all tb 0. Let ~GG be the set of points where the con-

clusion of Lemma 4.4 holds, which is a full-measure set of Rþ. For any

t B ~GG, we may choose a sequence ftig � ~GG approaching from left to t. Since

wEti
! wEt

in L1ðRnÞ, we have for any f A C0
c ðRn;RþÞ

j‘wEt
jðfÞa lim inf

i!y
j‘wEti

jðfÞa lim inf
i!y

mtiðfÞ ¼ mtðfÞ:

Here the first inequality is due to the lower semi-continuous property, the

second is due to ti A ~GG, and the last is the left-continuity of mt. Thus we have

the desired property Definition 2.3(ii).

Even if a family of perimeter measures fj‘wEt
jgtb0 is a Brakke flow, the

pair ðfj‘wEt
jgtb0; fEtgtb0Þ may not be a genenralized BV flow. For example,

define

Et ¼
fx A Rn j jxj2 a 1� 2ðn� 1Þtg 0a t < 1

4ðn�1Þ

� �
;

q 1
4ðn�1Þ a t
� �

;

8<
:

this is a simple counterexample, that is, the formula (2.4) fails at t ¼
1=ð4ðn� 1ÞÞ. We can expect such a phenomenon where the formula (2.4)

does not hold to occur due to a discontinuity to time direction in the measure-

theoretic sense. The existence of the velocity ensures that the discontinuity

does not occur.

Proposition 4.8. For fmtgtb0 and fEtgtb0 of Section 3.1, we have

dj‘ 0wE jf dmtdt.

Proof. From Proposition 4.5,

‘ 0wEðx; tÞ ¼ ð‘wEt
dt;Vðx; tÞdmtdtÞ

is satisfied in the sense of vector-valued measure. Thus, from Lemma 4.4, we

obtain dj‘ 0wE jf dmtdt. r

Remark 4.9. Setting dm ¼ dj‘wEt
jdt and E ¼ fðx; tÞ j t > 0; x A Etg, where

Et is as in the above counterexample, then one can obtain that dj‘ 0wE jf dmtdt
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is not satisfied by the following calculation:

ðsupp mÞ ¼
[

0<ta1=ð4ðn�1ÞÞ
fjxj2 ¼ 1� 2ðn� 1Þtg � ftg;

ðsuppj‘ 0wE jÞ ¼
[

0<ta1=ð4ðn�1ÞÞ
fjxj2 ¼ 1� 2ðn� 1Þtg � ftg

[ fx A Rn j jxj2 a 1=2g � f1=ð4ðn� 1ÞÞg:

4.2. Basic properties of L2 flow and set of finite perimeter. In this subsection,

we state the properties of L2 flow and set of (locally) finite perimeter. The

proof of Theorem 2.6 will follow from those properties. The arguments in

this subsection are mostly contained in [15, 19] and we include this for the

convenience of the reader.

Proposition 4.10. Let fmtgt ARþ and E be as in Section 3.1 and let dm ¼
dmtdt. Then m

Oq
�E is a rectifiable Radon measure and we have the following

for Hn-a.e. ðx; tÞ A q�E \ ft > 0g:
(1): the tangent space Tðx; tÞm exists, and Tðx; tÞm ¼ Tðx; tÞðq�EÞ,

(2):
hðx; tÞ

1

� �
A Tðx; tÞm,

(3): x A q�Et, and Txmt ¼ Txðq�EtÞ,
(4): pðnEðx; tÞÞ0 0, and nEt

ðxÞ ¼ jpðnEðx; tÞÞj�1pðnEðx; tÞÞ,
(5): Txðq�EtÞ � f0g is linear subspace of Tðx; tÞm.

The crucial step of the proof of Theorem 2.6 is to prove the above

proposition, for which the L2 flow property of mt plays a pivotal role, and this

proposition is proved in detail by [19, Lemma 4.7]. In this paper, we will give

a brief outline of the proof of Proposition 4.10.

First, the following are simple propositions of L2 flow by [15, Proposition

3.3] and [19, Theorem 4.3].

Proposition 4.11. Let fmtgt ARþ and V be an L2 flow in Definition 2.2,

and let m be the space-time measure dm ¼ dmtdt. Then,

Vðx; tÞ
1

� �
A Tðx; tÞm ð4:18Þ

at m-a.e. ðx; tÞ A Rn �Rþ wherever the tangent space Tðx; tÞm exists.

Proposition 4.12. The Brakke flow fmtgt ARþ in Definition 2.1 with

m0ðRnÞ < y is an L2 flow with the velocity V ¼ h in Definition 2.2. Namely,
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there exists C ¼ CðmtÞ > 0 such thatðy
0

ð
Rn

qtfðx; tÞ þ ‘fðx; tÞ � hðx; tÞdmtðxÞdt
����

����aCkfkC 0 ; ð4:19Þ

for all f A C1
c ðRn � ð0;yÞÞ.

Next, before the proof of Proposition 4.10, we will need some conse-

quences of Huisken’s monotonicity formula for MCF. Now we briefly state

the consequences necessary to prove the main result. See [22, Section 3.2] for

discussion below in detail. First, we set some notation. For ðy; sÞ A Rn �Rþ,

we define the backward heat kernel rð y; sÞ by

rðy; sÞðx; tÞ :¼
1

ð4pðs� tÞÞðn�1Þ=2 exp � jx� yj2

4ðs� tÞ

 !
;

for all 0a t < s and x A Rn, as well as the truncated kernel

r̂rr
ðy; sÞðx; tÞ :¼ h

x� y

r

� �
rðy; sÞðx; tÞ;

where r > 0 and h A Cy
c ðB2ð0Þ;RþÞ is a suitable cut-o¤ function such that

h1 1 on B1ð0Þ, 0a ha 1, j‘hja 2 and k‘2hka 4. The following is a variant

of Huisken’s monotonicity formula for MCF (for example, see [22, Section 3.2]

in detail).

Lemma 4.13. Let fmtgt ARþ is a Brakke flow in Definition 2.1. Then there

exists cðnÞ > 0 with the following property. For every 0a t1 < t2 < s < y,

y A Rn and r > 0, it holds that

mtðr̂r r
ðy; sÞðx; tÞÞ

����
t2

t¼t1

a cðnÞ t2 � t1

r2
sup

t A ½t1; t2�

mtðB2rÞ
rn�1

: ð4:20Þ

As a consequence, Lemma 4.13 and a local mass bound (Definition 2.1(2))

indicate the following, which provides the upper bound of mass density ratio

([22, Proposition 3.5]).

Lemma 4.14. Let fmtgt ARþ is a Brakke flow in Definition 2.1, and let

dm ¼ dmtdt. For any d > 0, x0 A Rn and R > 0, there exists cðd; n;RÞ > 0 with

the following property. For any t A ½d;yÞ and BrðyÞ � BRðx0Þ, we have

mtðBrðyÞÞ
rn�1

a cðd; n;RÞ sup
s A ½0; t�

msðB3Rðx0ÞÞ:

In particular, Y�nðm; ðx; tÞÞ < y for all ðx; tÞ A Rn � ð0;yÞ holds.
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For the proof of Proposition 4.10, we need the following general facts on

sets of finite perimeter ([14, Theorem 18.11]).

Lemma 4.15. If E � Rn �R is a set of locally finite perimeter, then the

horizontal section Et ¼ fx A Rn j ðx; tÞ A Eg as in Definition 3.2 is a set of locally

finite perimeter in Rn for a.e. t A R, and the following properties hold:

(1): Hn�1ðq�EtDðq�EÞtÞ ¼ 0,

(2): pðnEðx; tÞÞ0 0 for Hn�1-a.e. x A ðq�EÞt,
(3): ‘wEt

¼ jpðnEðx; tÞÞj�1
pðnEðx; tÞÞHn�1

Oðq �EÞt .

Proof (Proof of Proposition 4.10). First of all, we will prove that m
Oq

�E

is a rectifiable Radon measure. It is not di‰cult to see that mfHn. Indeed,

let A � Rn �R be a set with HnðAÞ ¼ 0, and let the set Dk :¼ fðx; tÞ A
Rn �Rþ jY�nðm; ðx; tÞÞa kg for each k A N. By [17, Theorem 3.2], we have

mðA \DkÞa 2nkHnðA \DkÞ ¼ 0

for all k A N. Furthermore, by the upper bound of mass density ratio (Lemma

4.14), we see that mðAn
Sy

k¼1 DkÞ ¼ 0. Thus we obtain mðAÞ ¼ 0, that is,

mfHn holds. Since mfHn, j‘ 0wE j ¼ Hn
Oq

�E and Proposition 4.8, we see

that

m
Oq

�E f j‘ 0wE j; j‘ 0wE jf m
Oq

�E :

By Radon–Nikodým theorem, there exists a function f ¼ ðdm
Oq

�EÞ=dj‘ 0wE j
with 0 < f < y for j‘ 0wE j-a.e., f A L1

locðj‘ 0wE jÞ and m
Oq

�E ¼ f j‘ 0wE j ¼
fHn

Oq
�E . This shows that m

Oq
�E is a rectifiable Radon measure and the

tangent space Tðx; tÞðmOq�EÞ with multiplicity f exists for Hn-a.e. ðx; tÞ A q�E \
ft > 0g. For the next step, we prove that Tðx; tÞm ¼ Tðx; tÞðq�EÞ for Hn-a.e.

ðx; tÞ A q�E \ ft > 0g. Now, by [17, Theorem 3.5], we see that

lim sup
r!þ0

mðBnþ1
r ðx; tÞÞnq�EÞ

rn
¼ 0 for Hn-a:e: ðx; tÞ A q�E \ ft > 0g:

Let then f A C 0
c ðBnþ1

1 ð0ÞÞ be arbitrary, we have

lim
r!þ0

ð
Rn�ð0;yÞnq�E

1

rn
f

1

r
ðy� x; s� tÞ

� �
dmðy; sÞ

�����
�����

a kfkC 0 lim sup
r!þ0

mðBnþ1
r ðx; tÞÞnq�EÞ

rn
¼ 0

for Hn-a.e. ðx; tÞ A q�E \ ft > 0g. Thus, by f A L1
locðj‘ 0wE jÞ, we obtain at

each Lebesgue point of f
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lim
r!þ0

ð
Rn�ð0;yÞ

1

rn
f

1

r
ðy� x; s� tÞ

� �
dmðy; sÞ

¼ lim
r!þ0

ð
q �E

1

rn
f

1

r
ðy� x; s� tÞ

� �
dm

dj‘ 0wE j
ðy; sÞdj‘ 0wE jðy; sÞ

¼ f ðx; tÞ
ð
Tðx; tÞðq�EÞ

fðy; sÞdHnðy; sÞ

for all f A C 0
c ðRn �RÞ and Hn-a.e. ðx; tÞ A q�E \ ft > 0g. This completes the

proof of Tðx; tÞm ¼ Tðx; tÞðq�EÞ.
By Proposition 4.11, Proposition 4.12, and the above argument, (1) and

(2) are proved. Next, we prove (3) and (4). By Lemma 4.15, we have the

following for a.e. t > 0 and Hn�1-a.e. x A ðq�EÞt:

Hn�1ðq�EtDðq�EÞtÞ ¼ 0; ð4:21Þ

pðnEðx; tÞÞ0 0; ð4:22Þ

nEt
ðxÞ ¼ pðnEðx; tÞÞ

jpðnEðx; tÞÞj
: ð4:23Þ

Let A :¼ ft > 0 j ð4:21Þ failsg and for every t > 0 set At :¼ fx A ðq�EÞt j x B q�Et

or ð4:22Þ–ð4:23Þ failg, so that L1ðAÞ ¼ 0 and Hn�1ðAtÞ ¼ 0 for every t A
ð0;yÞnA. Consider then the characteristic function wðx; tÞ :¼ wAt

ðxÞ on

Rn � ð0;yÞ, since L1ðAÞ ¼ 0 and Hn�1ðAtÞ ¼ 0 for every t A ð0;yÞnA, we

haveð
q�E

wðx; tÞj‘q �Eðqðx; tÞÞjdHnðx; tÞ ¼
ðy
0

ð
ðq �EÞt

wðx; tÞdHn�1dt

¼
ðy
0

Hn�1ðAtÞdt ¼
ð
A

Hn�1ðAtÞdt ¼ 0;

where we used the co-area formula in the first line, and where ‘q �E is the

gradient on the tangent plane of q�E, that is,

‘q �Eqðx; tÞ ¼ PTðx; tÞðq �EÞð‘qðx; tÞÞ:

Here, combining (1) and (2), we see that

hðx; tÞ
1

� �
A Tðx; tÞðq�EÞ at Hn-a:e: ðx; tÞ A q�E \ ft > 0g;

which implies j‘q �Eðqðx; tÞÞj > 0 for Hn-a.e. ðx; tÞ A q�E \ ft > 0g. Hence, it

must be wðx; tÞ ¼ 0 for Hn-a.e. ðx; tÞ A q�E \ ft > 0g, thus the first part of
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(3) and (4) are proved. For the proof of the identity Txmt ¼ Txðq�EtÞ, by

repeating the argument of the first half of (1) and Lemma 4.14, we have

mt fHn�1 for all t > 0. Thus it is obtained by Lemma 4.4 and repeating the

argument of (1) at fixed t.

Finally, we prove (5). Taking a point ðx; tÞ A q�E as satisfying (1)–(4) of

this Proposition, we can calculate as

tðz; 0Þ � nEðx; tÞ ¼ z � pðnEðx; tÞÞ ¼ jpðnEðx; tÞÞjðz � nEt
ðxÞÞ ¼ 0

for all z A Txðq�EtÞ. This completes the proof of (5). r

4.3. Boundaries move by mean curvature. In this subsection, we prove The-

orem 2.6 by rephrasing the velocity V in Proposition 4.5 as the mean curvature

and by using geometric measure theory. The argument for this rephrasing cor-

responds to the proof of the equality (2.4). Since Definition 2.3(ii) is treated

in Remark 4.7, we can deduce that ðfmtgt ARþ ; fEtgt ARþÞ as in Section 3.1 is a

generalized BV flow.

Proof (Proof of Theorem 2.6). We fix a test function f A C1
c ðRn � ð0;yÞÞ

arbitrarily. Then, by using Gauss-Green’s theorem for set of finite perimeter,

we have ð
Rn�ð0;yÞ

qtfwE dxdt ¼
ð
q �E

fqðnEÞdHn: ð4:24Þ

Let G be the set satisfying Proposition 4.10(1)–(5). Then for all ðx; tÞ A G, we

have

Tðx; tÞm ¼ ðTxðq�EtÞ � f0gÞl span
hðx; tÞ

1

� �

ðby Proposition 4:10ð2ÞÞ: ð4:25Þ

By hðx; tÞ ? Txmt, (4.25), Proposition 4.10(1) and (4), we have

nEðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jhðx; tÞj2
q nEt

ðxÞ
�hðx; tÞ � nEt

ðxÞ

� �
: ð4:26Þ

By (4.26) and hðx; tÞ ? Txmt again, for all ðx; tÞ A G, we can calculate the

i � ðnþ 1Þ component of the matrix Inþ1 � nE n nE for i ¼ 1; . . . ; nþ 1 as

ðInþ1 � nE n nEÞi; ðnþ1Þðx; tÞ ¼
�ðnEt ðxÞÞiðhðx; tÞ�nEt ðxÞÞ

1þjhðx; tÞj2
ði ¼ 1; . . . ; nÞ;

1

1þjhðx; tÞj2
ði ¼ nþ 1Þ;

8<
:
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where Inþ1 is the ðnþ 1Þ-identity matrix and ðnEt
Þi is the i-th component of

nEt
. According to this calculation, ‘q ¼ enþ1 and Tðx; tÞm ¼ Tðx; tÞðq�EÞ on G,

we obtain that the co-area factor of the projection q satisfies

j‘q �Eqðx; tÞj ¼ jðInþ1 � nE n nEÞð‘qðx; tÞÞj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jhðx; tÞj2
q : ð4:27Þ

Due to (4.24)–(4.27) and the co-area formula, we compute asð
Rn�ð0;yÞ

qtfwE dxdt ¼ �
ð
G

fh � nEt

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jhj2

q dHn

¼ �
ð
q �E

fh � nEt
j‘q�Eqðx; tÞjdHn

¼ �
ðy
0

ð
q�E\fq¼tg

fh � nEt
dHn�1dt

¼ �
ðy
0

ð
q�Et

fh � nEt
dHn�1dt; ð4:28Þ

where we used Hnðq�EnGÞ ¼ 0. By the same cut-o¤ argument of Lemma 4.6

for (4.28) and Remark 4.7, we deduceð
Et2

fðx; t2Þdx�
ð
Et1

fðx; t1Þdx

¼
ð t2
t1

ð
Et

qtf dxdtþ
ð t2
t1

ð
q �Et

fh � nEt
dHn�1dt ð4:29Þ

for all 0 < t1 < t2 < y. Use the continuity of Remark 4.7, we obtain the

above equality for all 0a t1 < t2 < y and all f A C1
c ðRn �RþÞ. This com-

pletes the proof. r

Appendix A. Measure-function pairs

Here, we recall the notion of measure-function pairs introduced by

Hutchinson in [8].

Definition A.1. Let E � Rn be an open set and let m be a Radon

measure on E. Suppose f A L1ðm;RdÞ. Then we say that ðm; f Þ is an Rd -

valued measure-function pair over E.

We define the notion of convergence for a sequence of Rd -valued measure-

function pairs over E.
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Definition A.2. Let fðmi; fiÞg
y
i¼1 and ðm; f Þ be Rd -valued measure-

function pairs over E. Suppose

mi * m

as Radon measure on E. Then we call ðmi; fiÞ converges to ðm; f Þ in the weak

sense if ð
E

fi � f dmi !
ð
E

f � f dm

for all f A C0
c ðE;RdÞ.

We present a less general version of [8, Theorem 4.4.2] to the extent that

it can be used in this paper.

Theorem A.3. Suppose that Rd -valued measure-function pairs fðmi; fiÞg
y
i¼1

satisfy

sup
i

ð
E

j fij2dmi < y:

Then the following hold:

(1): There exist a subsequence fðmij ; fij Þg
y
j¼1 and an Rd-valued measure-

function pair ðm; f Þ such that ðmij ; fij Þ converges to ðm; f Þ as measure-

function pair.

(2): If ðmij ; fij Þ converges to ðm; f Þ, then
ð
E

j f j2dma lim inf
j!y

ð
E

j fij j
2
dmij < y:
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