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Existence of BV flow via elliptic regularization
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ABSTRACT. We investigate a mean curvature flow obtained via elliptic regularization,
and prove that it is not only a Brakke flow, but additionally a generalized BV flow
proposed by Stuvard and Tonegawa. In particular, we show that the change in volume
of the evolving phase can be expressed in terms of the generalized mean curvature of the
Brakke flow.

1. Introduction

Arising as the natural L’-gradient flow of the area functional, the mean
curvature flow (henceforth referred to as MCF) is arguably one of the most
fundamental geometric flows. The unknown of MCF is a one-parameter
family {M,},., of surfaces in the Euclidean space (or more generally some
Riemannian manifold) such that the normal velocity vector V' of M, equals its
mean curvature vector i at each point for every time, i.e.,

V=nh on M,. (L.1)

When given a compact smooth surface M, a unique smooth solution exists for
a finite time until singularities such as shrinkage and neck pinching occur.
Numerous frameworks of generalized solutions of MCF that allow singular-
ities have been proposed and studied: we mention, among others, the Brakke
flow [2], level set flow [3, 6], BV flow [13, 11, 12], L? flow [15, 1], generalized
BV flow [19]. These weak solutions have been investigated by numerous
researchers in the last 40 years or so from varying viewpoints.

The aim of the present paper is to show that the flow arising from elliptic
regularization [9] is a generalized BV flow in addition to being a Brakke flow.
A generalized BV flow consists of a pair of phase function and Brakke flow,
in many ways reminiscent to Ilmanen’s enhanced motion described in [9], but
the one which relates the volume change of phase and the Brakke flow in an
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explicit manner. When an (n — 1)-dimension smooth MCF {M,},_, is the
boundary of open sets {E;},.,, the following equality holds naturally for all
¢e CHIR" x RY):

ij e z)dx:J 2d(x, t)dx—&—J B, Dh(x, 1) - vag, (DA (). (12)
dt ), E, M,

Here, A(-,t) is the mean curvature of M, and v, is the unit outer normal
vector of M,. The notion of BV flow utilizes this equality to characterize the
motion law, roughly speaking: a family of sets of finite perimeter {E;},. is a
BV flow if the reduced boundary M, := 0*E, has generalized mean curvature
vector A(-,t) satisfying (1.2). The underlying assumption of the BV flow is
that the generalized mean curvature vector is derived from 0*E,. The gener-
alized BV flow is proposed by Stuvard and Tonegawa [19] so that the flow can
allow possible integer multiplicities (> 2) for the underlying Brakke flow while
still keeping the equality (1.2) for sets of finite perimeter. When the higher
multiplicity portion of the Brakke flow has null measure, the generalized BV
flow corresponds to a BV flow. Additionally having this equality (1.2) has a
certain conceptual advantage for the Brakke flow in that some non-uniqueness
and stability issues of Brakke flow can be resolved: Fischer et al. [7] showed
that a BV flow with smooth initial datum necessarily coincides with the smooth
MCEF until the time when some singularity appears. There are some condi-
tional existence results for BV flows such as [13, 11, 12] under an assumption
that the approximate solutions converge to the limit without loss of surface
energy. In the present paper, we prove without any condition that the solution
arising from elliptic regularization is a generalized BV solution with possible
higher integer multiplicities on the side of Brakke flow.

We next briefly mention closely related works on the MCF using elliptic
regularization. Ilmanen’s elliptic regularization [9] gives a Brakke flow by first
minimizing weighted area functional with a parameter. The solution of this
minimization is a translative soliton and smooth (except for a small set of
singularity of codimension 7), and by letting the parameter converge to 0, one
obtains a Brakke flow as a limit of the smooth flows. One advantage of this
method is that one can apply White’s local regularity theorem for this Brakke
flow arising from the elliptic regularization [23]. Elliptic regularization has also
been studied for constructing MCFs with the Neumann boundary conditions by
Edelen [4] and Dirichlet boundary conditions by White [25]. In addition, by
Schulze and White [16], this method is utilized to construct a MCF with a
triple junction by setting up an appropriate minimizing problem within the class
of flat chains.

The key element of the present paper is an estimate of L?> boundedness
of approximate velocity for elliptic regularization. The idea is to find the
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convergence of the velocity vector representing the motion of phase boundaries
using the concept of measure function pairs by Hutchinson [8]. The existence
of velocity leads to absolute continuity of phase boundary measure in space-
time with respect to the weight measure of the Brakke flow. More precisely, if
{u,} is the Brakke flow, and {E,} is the family of sets of finite perimeter driven
by p,, we may obtain d|0S| « du,dt, where S = {(x,1)|x € E,} is the space-time
track of {E,}, and |0S| is the total variation measure of the characteristic
function of S in space-time. Once this is done, we may recover the formula
(1.2) using a suitable version of co-area formula from geometric measure
theory.

The paper is organized as follows. In Section 2, we set our notation and
explain the main result. In Section 3, we review an outline of elliptic regula-
rization. In Section 4, we construct the approximate velocity and show that
the existence of velocity leads to a generalized BV flow, and then we prove that
the limit of the translative soliton is indeed a generalized BV flow.

2. Preliminaries and main results

2.1. Basic notation. We shall use the same notation for the most part
adopted in [19, Section 2]. In particular, the ambient space we will be work-
ing in is the Euclidean space IR” or its open subset U, and R will denote the
interval [0,00). The coordinates (x,?) are set in the product space R” x R,
and ¢ will be thought of and referred to as “time”. We will denote p and q
the projections of R” x R onto its factor, so that p(x,7) =x and q(x,?) =t
If A C R" is (Borel) measurable, .#"(4) will denote the Lebesgue measure of
A, whereas #*(A4) denotes the k-dimensional Hausdorff measure of 4. When
x€R” and r > 0, B,(x) denotes the closed ball centered at x with radius r.
More generally, if & is an integer, then B¥(x) will denote closed balls in IR¥.
The symbols V, V', 4, and V? denote the spatial gradient and the full gradient
in R” x IR, Laplacian, and Hessian, respectively. The symbol 0, will denote
the time derivative.

A positive Radon measure z on R” (or “space-time” IR"*!) is always also
regarded as a positive linear functional on the space C’(IR") of continuous and
compactly supported functions, with pairing denoted u(¢) for ¢ e C°(R").
The restriction of u to a Borel set A is denoted pL,, so that (uL4)(E):=
w(ANE) for any EC R". The support of u is denoted supp u, and it is the
closed set defined by

supp = {x e R" | u(B,(x)) > 0 for all r > 0}.

For 1 < p < o0, the space of p-integrable functions with respect to u is denoted
L?(p). Ifpu=2" LP(ZL") is simply written L”(R"). For a signed or vector-
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valued measure u, |u| denotes its total variation. For two Radon measures u
and g, when the measure i is absolutely continuous with respect to u, we write
A< u. We say that a function f € L'(R") has a bounded variation, written
feBV(R"), if

sup{J fdiv X dx
]Rn

X e CHR";RY), | X| o < 1} < 0.

If /e BV(IR"), then there exists an IR”-valued Radon measure (which we will
call the measure derivative of f denoted by Vf') satisfying

mexwzi[de for all X e C!(R";R").
For a set E C R", x5 is the characteristic function of E, defined by y, =1 if
x€eE and yp =0 otherwise. We say that E has a finite perimeter if y €
BV(R"). When E is a set of finite perimeter, then the measure derivative Vy
is the associated Gauss-Green measure, and its total variation |Vyj| is the
perimeter measure; by De Giorgi’s structure theorem, |Vy | = #" 'L g, where
0*E is the reduced boundary of E, and Vy, = —ve|Vyy| = —vet" Lo,
where vg is the outer pointing unit normal vector field to 0*E.
A subset M C IR” is countably k-rectifiable if it admits a covering

MczulJ A(RY
ielN

where #%(Z)=0 and f;:R* = R" is Lipschitzz. If M is countably
k-rectifiable, .#*-measurable and #*(M) < co, M has a measure-theoretic
tangent plane called approximate tangent plane for #*-ae. xe M (117,
Theorem 11.6]), denoted by 7, M. We may simply refer to it as the tangent
plane at x € M without fear of confusion. A Radon measure u is said to be
k-rectifiable if there are a countably k-rectifiable, #*-measurable set M and
a positive function 0 € L'(#*Ly,) such that u = 0% ). This function 0 is
called multiplicity of u. The approximate tangent plane of M in this case
(which exists p-a.e.) is denoted by T,u. When 0 is an integer for p-a.e., u is
said to be integral. The first variation du: C!(R";R") — R of a rectifiable
Radon measure u is defined by

u(x) = | dive, X du

where Pr, is the orthogonal projection from R" to T,u, and divy, X =
tr(Pr,VX). For an open set U C R”, the total variation |ou|(U) of u is
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defined by
0u|(U) = sup{ou(X) | X € C}(U;R"), [ X0 < 1}

If the total variation |du|(U) is finite for any bounded subset U of U, then du
is called locally bounded, and we can regard |du| as a measure. If |0pu| <« g,
then the Radon—Nikodym derivative (times —1) is called the generalized mean
curvature vector /& of u, and we have

ou(X) = — J]R” X -hdu  for all X e C(R";R").

If u is integral, then /& and T,u are orthogonal for u-a.e. by Brakke’s perpendi-
cularity theorem [2, Chapter 5].

2.2. Weak notions of mean curvature flow and main result. In this subsection,
we introduce some weak solutions to the MCF. We briefly define and com-
ment upon the three of interest in the present paper: We begin with the notion
of Brakke flow introduced by Brakke [2].

DEerINITION 2.1. A family of Radon measures {x,}, g+ in R” is an

(n — 1)-dimensional Brakke flow if the following four conditions are satisfied:

(1): For ae. te R", g, is integral and dyu, is locally bounded and ab-

solutely continuous with respect to u, (thus the generalized mean
curvature exists for a.e. 7, denoted by #).

(2): For all s>0 and all compact set K C R", sup,co 4 #,(K) < 0.
(3): The generalized mean curvature / satisfies h e L?(du,dt).
(4): Forall 0 <¢ <1, < oo and all test functions ¢ € C!(R” x RT;R™),

1 (905 12)) =ty (-5 11))
< Jrz J (V(x, 1) = Pl 0h(x, 1)) - h(x, 1) + p(x, )y, (x)de. (2.1)

n

The inequality (2.1) is motivated by the following identity,

J B, 1)dA!
M,

,2 :H Vo—gh)-V+agpdrd,  (22)
M,

t=t 4

where M, is an (n — 1)-dimensional smooth surface, /# is the mean curvature
vector, and V' is the normal velocity vector of M,. In particular, if {M,},.( 7
is a smooth MCF (hence V = h), setting u, := #" 'L, defines a Brakke flow
for which (2.1) is satisfied with the equality. Conversely, if u, = #"~ 'Ly, with
smooth M, satisfies (2.1), then one can prove that {M}, 7) is a classical
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solution to the MCF. The notion of Brakke flow is equivalently (and orig-
inally in [2]) formulated in the framework of varifolds, but we use the above
formulation using Radon measures, mainly for convenience.

The following definition of L? flow (modified slightly for our purpose) was
given by Mugnai and Roger [15].

DEFINITION 2.2 (L? flow). A family of Radon measures {z,}, g+ in R” is
an (n — 1)-dimensional L* flow if it satisfies (1)—(2) in Definition 2.1 as well as
the following:

(a): The generalized mean curvature A(-,¢) (which exists for a.e. re R"
by (1)) satisfies (-, ) € L*(u,; R"), and du := du,dt is a Radon mea-
sure on R” x R™.

(b): There exists a vector field V € L?(u; R") and a constant C = C(yu,) >
0 such that
(b'1): V(x,t) L Ty, for pae. (x,1)e R" x RT,

(b'2):  For every test functions ¢ € C!(R" x (0, 00)), it holds

0
JO Jw B, 1) + Vh(x, 1) - V(x, 0 (x)d| < Cllflcor (2.3)
The vector field V' satisfying (2.3) is called the generalized velocity vector
in the sense of L? flow. This definition interprets equality (2.2) as a functional
expression of the area change.
Finally, we introduce the concept of generalized BV flow suggested by
Stuvard and Tonegawa [19].

DeFINITION 2.3 (Generalized BV flow). Let {4}, g+ and {E;}, g+ be
families of Radon measures and sets of finite perimeter, respectively. The pair
(e} er+s {Et}er+) 18 a generalized BV flow if all of the following hold:

(1) {u},egr+ is a Brakke flow.

(ii): For all te R™, |Vyz| < u,.

(ili): For all 0 <1 < < oo and all test functions ¢ e C!(R" x R™),

’ :Jtzj 0/p(x, t)dxdt

1= I3l t

J &(x, t)dx

t

5]
+ J J G(x, Oh(x,t) - vg, (x)dA"(x)dt.  (2.4)
n JO'E,

If x4, and E, satisty the above definition, we say “}V = A" in the sense of
generalized BV flow. This definition expresses that the interface 0*E, is driven
by the mean curvature of . 1If y, = |V | for a.e. t, the characterization (2.4)
coincides with the notion of BV flow considered by Luckhaus—Sturzenhecker in
[13] since the mean curvature of 0*F, is naturally defined to be 4(-,7) in this
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case. On the other hand, while the original BV flow is characterized only by
(2.4), here g, is additionally a Brakke flow to which one can apply White’s local
regularity theorem [23] (see [10, 21, 18] for more general regularity theorems for
Brakke flow).

REMARK 2.4. The relationship between the Brakke flow {,}, g+ and the
sets of finite perimeter {E,},_ g+ in the generalized BV flow appears unclear
from the definition.

(1): If the initial datum E|, satisfies the following assumption

o gl ()
p

P <1+ O(V())7
0<r<rg,xeR” Wp—17r

where @, | = Z"'(By~!), then there exists 7 >0 such that
#, = |Vyg| for ae. te[0,T]. One can see this fact by examining
the time variation of the surface density using Huisken’s monoto-
nicity formula and demonstrating that a rapid increase in density
does not occur for a short time interval (for more details, see [20,
Proposition 8.6] for example).

(2): In general, the perimeter measure of the phase function [Vyg| and
the Brakke flow yx, may be different Radon measures. This dis-
crepancy arises from the fact that convergence of the surface mea-
sures is lower semi-continuous when the MCF is constructed by
approximation. It is not known that this discrepancy does not occur
in the elliptic regularization.

REMARK 2.5. Note that one can prove that Brakke flow is an L? flow of
V' =h in general, but the opposite implication may not hold in general. The
following is a simple counterexample. Define

16} 0<r<1)
Ef{{xem"||x|231—2(;1—1)([—1)} (IStlerﬁ),

and consider y, := #"'_sz. One can show that it defines an L> flow with
V =h but it is not a Brakke flow.

The following claim is the essence of the main result of the present paper.

THEOREM 2.6. Suppose that Ey C R" is a set of finite perimeter and con-
sider the initial value problem of MCF starting from 0*Ey. Then, the elliptic
regularization of Ilmanen [9] produces a generalized BV flow of V. =h. Namely,
in addition to a Brakke flow {u},cg+ with uy = """ a5, (whose existence
was proved in (9]), there exists a family of sets of finite perimeter {E;}, g+ such
that ({i},er+>{Ei}er+) s a generalized BV flow.
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In the present paper, we discuss the case where the flow is considered
in R”. Since the analysis is local in nature, the same characterization holds
equally (with appropriate modifications) for flows in [4, 16, 25].

3. Review on the existence of Brakke flow via elliptic regularization

In this section, we briefly review Ilmanen’s proof on the existence of
Brakke flow in [9] for the convenience of the reader (see also a lecture note
on MCF by White [24]).

3.1. Translative functional and Euler-Lagrange equation. The method of
construction in [9] uses the framework of rectifiable current and for general
codimensional case. Since we are concerned only with the hypersurface case,
we work with surfaces realized as boundaries of sets of finite perimeter. In the
following, the time variable is temporarily denoted as z. Let ¢ > 0 be fixed.
The symbol e, ; will denote the standard basis pointing the time direction, i.e.,
e,r1 =(0,...,0,1) e R™! We define the following functional for a set of
finite perimeter S c R"*!:

I4(S) ::lj exp<—5>d|\7';{s(x,z). (3.1)
& Jrrtt &
We will say that a stationary point S¢ of 7¢ is a translative soliton of the MCF
with velocity —(1/¢)e,;1. The name “translative soliton” is based on the fact
that the translation of S* in the time direction S* — (#/¢)e,;; results in a MCEF,
as in the grim reaper type MCF. We consider a set of finite perimeter
Ey C R" as an initial datum and find a stationary point S* for /¢ by minimi-
zation. The existence of a minimizer follows from the compactness theorem
of set of finite perimeter (see [9, Section 3.2)).

LemMma 3.1. Let Ey C R" be a set of finite perimeter. Then there exists
a set of finite perimeter S® C R" x R such that
(1): S*CR"xR" and {z=0}N3"S* = Ey,
(2): I%(S%) < #" (0 Ey),
(3):  S¢ is a minimizer for I* among the sets S C R" x RY with {z =0} N
0*S = E,.

DeriniTioN 3.2, We define S, = {xe R"|(x,z) € S}, that is, S, is the
horizontal slice of S at height z.

The well-known regularity theory of geometric measure theory shows that
the support of |V'ys.| in {z > 0} is a smooth hypersurface except for a closed
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set of codimension 7 ([17]). For such S*, we calculate the first variation of /¢
and obtain the following equations (see [9, Section 2.6]).

Lemma 3.3. Let S° be as in Lemma 3.1 and let h® denote the mean
curvature of 0*S® (computed as a submanifold in R" x (0,00)). Then we have
all of the following for |V'yg:|-a.e. in {z > 0}:

(1): eh® + PT(\::)<6*S8)L(en+1) =0,

Q) |k < 1/e,
(3); PT(xys)gﬁ*Sg)L(l/ls):hE’ 2
@) e + P, o s (enrn)]” = L.

By considering the integration of this equation in the time direction, we
obtain the following (see [9, Section 4.5]).

LemMA 3.4. For every 0 <z < z,

J |PT<\»,.~2)(0*S“)(en+1)|d5%)n71(x) +J 6|h6‘2d5#n(x’ z)
G 0" SeN(R"x(z1,22))

= L*S |PT(,\..:1)(8*53)(en+1)|d<}f"_1(x), (3.2)
s

In particular, for any ¢ > 0,

z>0

max{supL*S 1P, ovso (@a) [d A" (x),

J et Pd A" (x,z) p < A0 Ey). (3.3)
0" S*N(RR" % (0, 00))

Now consider E¢ = k,(S*) in which S? is shrunk by the map #,(x,z) =
(x,ez) in the z direction. Since x, is the contraction map by ¢ to z, the
determinant of Jacobian matrix of r, on 0°S* is (|Pr, s (V'P(x, D)) +
82|PT(“:)<6*S,I)L(e”+])‘2)]/2. Therefore, by Lemma 3.4, we have the following
for the mass of 0"S® and 0*E* (see [9, Section 5.1 and 5.3]).

LemMA 3.5. For any open interval A = (a,b) C R, we obtain
Vs (R” x A4) < (21(4) + &) #" (0" Ey), (3-4)
V' (R x A) < (LNA) + & + (LNA4) + ) ) (0" Ey).  (3.5)

In particular, the result holds for any ¥'-measurable set A C R™ by approx-
imation.
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For this S* we define the following notation:

Z & & &
o_)p(x,2) = <x,z - —), SE(t) := a_1,(S°), = |V')(Sf,(,)|. (3.6)

€

This uf is a Brakke flow on the (x,z) components of W¢:= {(x,z,t) € (R" x R)
x [0,00)|z > —t/e}. Since the Brakke flow u° satisfies p?(R" x (z1,z2)) <
((z2 — z1) +&)#" (0" Ey) by (3.4), we can apply the compactness theorem
for Brakke flow to u? [9, Section 7.1]. Thus taking a further subsequence from
uf, there exists a Brakke flow {f,},., on the (x,z) components of W := (R" x
R x (0,00)) U(R" x (0,0) x {0}) such that u/ converges to f, as Radon
measure. Since #, is invariant to translations in the z direction, we have the
following from the product lemma [9, Lemma 8.5]. See [9, Section 8] for the
details of the above discussion.

LEMMA 3.6. Let 0 e C2(R;RY) with [, 0(z)dz=1 and supp 0 C (0, )
be fixed. We define a Radon measure u, on ¢e C°(R";R") by

w(P) = [,(09),

then y, is independent of 0 and the following hold:
(1): f,=p L except for countable t >0,
(2): {m},>¢ is a Brakke flow on R".

When applying the compactness theorem of Brakke flow, we take a further
subsequence using the compactness of set of finite perimeter: there exists a set
of finite perimeter £ C R” x R" such that

XE: = XE in Ly, (R" x R"),
V'%el(9) < limi%f|V')(Eg\(¢) for all e CO(R" x RT;R™).
e—+
Since S*(¢) is the translation of S¢ by —¢/¢ in the z direction, and E* is the

contraction by & in the z direction as defined above, one can check the
following:

SE(Z): = §+1/e = Etg+az’ (37)

where S%(7)., S°

z+t/e and Ef

/.- are the horizontal slices as in Definition 3.2.

4. A generalized BV flow: Proof of Theorem 2.6

The key to the proof is to construct an approximate velocity and obtain a
suitable L? estimate for a convergence of the velocity.
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4.1. Existence of measure-theoretic velocities. In this subsection, even after
taking a subsequence, we use the same notation ¢ for simplicity. In estab-
lishing (2.3), the main tool is the co-area formula applied to S® It is a
formula describing the rate of change of the volume of E; and the ob-
stacle to obtain this is the possible presence of a portion where d*S* is “close
to being horizontal”, that is, we want to make sure that the domain
{IP7, ,o*s+)(ens1)| <1 —¢'/2} vanishes when passing to the limit & — +0.
According to Lemma 3.3(4), if [Py, (a*s)(€np1)] < 1—&'/2, we have 1/6%2 <
|h?|*(< 1/¢?). Using this fact and the L? boundedness of 4° (Lemma 3.4),
we can prove that the domain {|P7__(ose)(ens1)| <1 —¢'/2} is vanishing as
e — +0.

LemMa 4.1. For S° of Section 3.1, we define

1

2
|PT<v.,:>(0*S")(en+1)| <1- —},

ek . * Q&
AL {(x,z)e@S %

Then if 1 <k <& /2, we have lim,_ o|V'ys.|(Z%*) = 0.
PrOOF. Let 1 <k <& '/? be fixed. From Lemma 3.3(1) and

2 2
1= |PT(X__.)(8*SS)(en+1)| + |PT(X7:)(a*s/:)i(en+l)| )

({(x,z) €0*S* é < |h£|2}>.

Thus, by using Markov’s inequality and the L?> boundedness of h® (3.4), we
compute

we have

() = V'ss.

Vs

V x5l (Z5F) = IV gl ({1 < ke?[h*|?})
< ng A 2dV g | < 8PV E). (&)
R"xIR

By taking ¢ — +0, we obtain lim, . o|V'yg.|(Z%%) = 0. O

The following two lemmas relate g, and E; so that these fit in the frame-
work of generalized BV flow.

LemMmA 4.2. Taking a further subsequence if mnecessary, we have
d|Vyg:|dt — dpdt as Radon measure.

REMARK 4.3. By Remark 2.4(2), d|Vy |dt and du,dt may not coincide in
general.
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Proor. By (3.5) and the co-area formula (see, for example, [5, Theorem
3.10] or [14, Theorem 13.1]), we obtain

5]
|| awzeside < 9z R < 1,1
]RN

<((h—1)++(—1)+ ) (0*E)  (4.2)

for all 0 < ¢ <t < . Thus, by the compactness theorem of Radon mea-
sure, d|Vyg.|dt converges to some Radon measure.

Next, we fix ¢ e CO(R" x R") and z>0. Parallel translating with re-
spect to time, for sufficiently small ¢ > 0, we have

|| sdwaglae—| | bavie
0 JR” 0 JR" -

IA

Jw J}Rn lp(x, 1 —ez) — $(x, )|d|V g |dt

0

< supp(xr—ez) = (x| IV iy l(K), (4.3)
(x,f)eR"xXR™

where K is a sufficiently large compact set for ¢ and we used the co-area
formula. Therefore, by letting ¢ — +0 in the above, we can deduce

R” t e—10 0 R” t+ez

e—+0 Jo

Finally, we prove d|Vyg:|dt— dudt as Radon measure. Let ¢e
C)(R" x R"), and let 0 € C>(R;R") with [ 6(z)dz =1 and supp 6 C (0, )
be arbitrary. To use the co-area formula for 0*S%(¢), we translate
I()OO Jre & dp,dt as

[ st

— lim r LR 0(2)(x, 1)t (x, =)

e—+0 0

i { [ 0005001 = 1Pr s e DV s 52

e—+0 0

o T LAY S

Since |PT(XY:>(8*55)(e”+1)\2 ~ 1 from Lemma 4.1, setting 4., and B, by
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Aci= || 0000 = 1P s en DI 5 5,21

0
Bom [ 0@ 0P s ens IV s ol .2,

we can predict 4, — 0 and B, ~ [ [p. ¢ d|Vyp:|dt.
For B,, by the co-area formula and (3.7), we obtain

o0
81—151;10 B. = SEIEO 0 Jret! 0¢ d VXSI?H-‘ |dZdl
[e¢]
= sliIJrrlo o S O d\Vyp: |dzdt
— lim  d|Vyp.|dt. (4.6)
e=+0Jo Jr '

Here, we also used Fubini’s theorem to change the order of integration with
respect to z and 7, (4.4) and [ 0(z)dz =1 for the second line to the third line.

Now we consider 4,. For X** of Lemma 4.1, 1 — |PT(XW_)(3*SE>(e,,+1)|2 <
1/k is satisfied for all (x,z) € 0*S*\X**. Hence, by using the co-area formula,
the mass boundedness of 9*S. (3.3) and [ 0(z)dz =1, we calculate as

o0
2
Jo J]R”“ 0412, 0 5500 (1= [P1 050 (€ns1) | )V 2505 ldt

2
1 [P, o 500 (€n+1)]
I

0
< 0 A% Qg ek 7
N Jo JRn+1 | ¢|X”*f/v(" SN I 11—

1 d\V’){ss(t)|dl
k

ZYK) su
< LCOSBII [ g1y s eren eVl
k—1 R JRr" )
2 (K) suplg|
k—1

IA

AN Ey),

where K is a sufficiently large bounded interval for ¢. Therefore, by using
Lemma 4.1 for k = ¢ '/2, we obtain

o0

4, < j

0 J,R,,H 10912, ey T2y szt

x (1= |Pr, (o se() (€ns1) )|V x50 ldlt

0
< B Ly
- JO J]R)H»l |0¢|X6,,/E(Z""‘"‘ ]/Z)dlv xs (I)ldl
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o0
+ JO LR 10911, 0"55072)

< (1= |Pr,_ o se() (€ns1) )|V 2500 ldlt

1
e—1/2 1

C(0, ¢, Eo)(IV'xs5:) (25 7) + &%), (4.7)

—= C(@, ¢a EO) (J 2,4—1/2 d|V XS‘
R" 141

where C(6, ¢, Ey) is a constant that depends only on 6, ¢ and the initial value
Ey. By Lemma 4.1, we obtain lim, o A, =0. Thanks to (4.5)—(4.7), we
have d|Vy.|dt — du,dt as Radon measure. ]

<

Lemma 4.4.  Taking a further subsequence if necessary, we have |Vyg |($)
(@) for all g€ CO(R"; R") and for a.e. t>0.

Proor. From Section 3.1, yz. —yp in L) (R"xR%'). Let z>0
be arbitrary. Since the parallel translation is continuous in L', we have
AEtteze,, — XE 1D L} (R"x R*"). Taking a further subsequence from
{E®+¢eze,i1}, ype(x,t+ez) converges to yp(x,f) for Z"lae. (x,1)e
R” x R*, and by Fubini, Xe:. = Xg, in L} (R") for a.e. t>0. Thus we
obtain |Vy|(¢) < 11m1an+g|V)(Ea’ |(¢) for all ¢ € CO(R";R") and a.e. >0
by the lower semi- contlnulty of Vailation measure. Let ¢ € CO(R"; R*) and
0e C2(R;R*") with [ 0(z)dz =1, supp 6 C (0,00) be arbitrary. Then we
obtain

) = i(09) = Jim [ 0p a7z

e—+0

> liminf Juwl 0P| Pr. o s (@nr )|V 1500

&e——+0

e—+0

= liminf i HJ ¢ d\V 500 |dz

=liminf [ 0| ¢dVys ) |dz
R" +tfe

e—+0 R

=liminf | 0| ¢d\Vyg |dz
e—+0 JR R” t+ez

> | 0timint Vs, 191 > V250 (48)

where we used the co-area formula, Fatou’s Lemma, the lower semi-continuity
of Vx|, Jg0(z)dz=1 and (3.7). O
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Finally, we construct an approximate velocity to show that d|V'y.| «
du,dt. 1If the co-area formula is available, we obtain

J 0 dxdt:J qﬁq(vE)d%”:J J ¢ UE) gy (4.9)
E 0'E o Jorg, [P(vE)|

for all ¢ e C!(R"” x (0,0)). Since we have that the domain {|p(vs:)| ~ 0}
where the co-area formula is not applicable goes to measure 0 from Lemma
4.1 and [p(vs:)| = |Pr, (2" s)(€nt1)|, We may construct the approximate velocity
based on (4.9).

ProPOSITION 4.5. Taking a further subsequence if necessary, there exists
Ve L*(du,dt) such that

J b1 dxdt = —J J SV dudt, (4.10)
E 0 R”

for all ¢ € CHIR" x (0, 00)).

Proor. To use Lemma 4.1, we assume that ¢ > 0 is sufficiently small.
Let ¢ € C(R" x (0,0)) be arbitrary. We define the approximate velocity of
ES by

q(ver)
Vs(xa l) = _X;c,:(ﬁ*SS\E”‘Z) |p(an)| (X, Z)

_ { — AL (1) (%, 0) €50, (07SP\252)
0 ((x, ) € Ko(Z52)).

(Note that p and q are the projections of IR” x R onto its factor, so that
p(x,7) =x and q(x,7) =) Since the map k. shrinks z-variable by ¢, the
following holds as the relationship between the unit normal vectors of S* and
E?:

q(vs:)

A () _ ) @.11)

p(ve:)]

Furthermore, since the area element of x, is ¢ and 7 = ¢z, we have

J d.p dxdt = J 0.4 dxd:. (4.12)
Eé‘ S-‘J

A simple geometric argument shows |p(vs:)| = |Pr, (o*s+)(€s1)], and by the
definition of X%2, we may deduce 1/2 < |p(vs:)|* on 8*S¥\Z%2. Thus, by the
co-area formula and (4.12), we obtain
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J o dxdt = | 0.4 dxdz
ES Si‘

= (Xze2 +){0‘55\25,2)¢q(vsf;)d|V’)(Sa|
R"x (0, 00)

= Az 9q(vs)d|V s
R"x (0, )

* q(vs:)
*L J e S?\f“\p@ ] Vsl

o0
| etV s - | j WV, AVl
R” (0, ) 0 Jr”
From Lemma 4.1, we see that

lim J s dq(vs:)d|V xg:| = 0.
"% (0, 0)

e—+0

Next, we prove the following with respect to the second term:

o0
J J VPdIV g ldi < C < o,
0 R”

(4.13)

(4.14)

(4.15)

where C is a constant that depends only on #"~!(0*E;). By (4.11), we see

that
® © 1 q(VSf)

AR 1% ,..dzzj J (_6 P NCUA dV |dz

J, Jo tverawelan= || (Grsesee i) ¢ Vs

1ij ( Q(VS')>

= — X( £\ ye2 dVX &

& 0 n S\Z p(VSF)| | S

From 1/2 < |p(vs:)|* on 8*$%\Z%? and Lemma 3.3(1), we obtain

2
q(Vss)) 217,612
Yo gmpez oS < 282 Be
<BS\Z Ip(vs:)l Il

Thus, by (3.3), we have

1J°OJ ( Cl(VS)>
- Zosorer VSN gy lde
e)y o osnee i) Vs

o0

gzj J I 2d\V ys.|dz < 271 (0" E),
0 ]R“ -
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and thus (4.15) is proved. As Lemma 4.2 and (4.15) are valid, we can apply
Theorem A.3 to (d|Vyg:|dt,V.). Therefore, taking a further subsequence if
necessary, we obtain a function V e L?*(du,dt) such that

limJ J ¢V8d\vm|dzzj J $V du,dt (4.16)
R” 0 JR”

e—+0 Jo

for all g€ C}(R” x (0, 0)). By (4.14), (4.16) and yz. — xz in L (R" x R),
we obtain

J 0, dxdi = lim J 0, dxdt
E e—+0 E¢

— lim (J J v, d|\7%E,,.|dz) - ,J J SV du,dt,
e—+0 0 R” t 0 R”

for all ¢ € C(R" x (0,00)). This completes the proof. O

LemMMA 4.6.  There exists G C RY with ' (R*\G) =0 such that LE, 1S
1/2-Holder continuous in L'(R™) norm with respect to t on G.

Proor. Let GCIR™ be a set such that te G is a Lebesgue point of
function fy(s) := JES ¢ dx for any ¢ € C!(R"). By choosing a countable dense
set of functions in C!(IR") and using a standard result in measure theory,
one can prove that such G is a full-measure set in R™. Let ¢, 1, (] < 12) be
arbitrary points in G, and consider a smooth approximation ; of y Use
¢(x)n(7) in (4.10) and let » — y;, ., to obtain

-,

]

INZIN

15}

¢dx+J

E,

¢ dx = —J J}R" oV du,dt.

I3l
By approximation, we may replace ¢ by XE, and obtain
15}

12
\LMEy) — L(Ea N Ey)| < (J #z(Etl)dl> T
n

< (o —10)"PH" N E) PV gy, (417)

where we also used x,(R") < uy(R") = #" (0" Ep). This inequality is due to
the energy decreasing property of Brakke flow which follows from (2.1). The
left-hand side of (4.17) is ¥"(E,\E,). One can obtain the similar estimate for
L"(E,\E;) by considering XE, - This proves the claim. O

REMARK 4.7. By Lemma 4.6, if necessary, we may re-define E so that yj,
is 1/2-Holder continuous in L'(IR”) on R". We also point out that, one can
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re-define the Brakke flow {z,}, g+ so that it is left-continuous at all 7e R*.
This is because, for any ¢ e C>(IR"), u,(¢) — C(4)t is a monotone decreasing
function of ¢ for a suitable C > 0, and is discontinuous on a countable set at
most (see for example [22, Proposition 3.3]). At these discontinuous points,
one may re-define g, (by approaching from the left) so that it is left-continuous
while keeping (2.1). Now the claim of Lemma 4.4 is for a.e. ¢ >0, while
Definition 2.3(ii) is for all 7> 0. Let G be the set of points where the con-
clusion of Lemma 4.4 holds, which is a full-measure set of R". For any
t¢ G, we may choose a sequence {;} C G approaching from left to z. Since
X, — xg, in L'(R"), we have for any ¢ e CJ(R";R)

V25, 1(4) < liminf [Vz, |(4) < liminf g1, (6) = ().

Here the first inequality is due to the lower semi-continuous property, the
second is due to #; € G, and the last is the left-continuity of x,. Thus we have
the desired property Definition 2.3(ii).

Even if a family of perimeter measures {|Vyg |},~, is a Brakke flow, the
pair ({|Vxg|};>0, {E:},>0) may not be a genenralized BV flow. For example,
define

(xeR"[|x> < 1-2(n— 1)1} (031<ﬁ),

[ p—
1
%] (—4(%1) < z),

this is a simple counterexample, that is, the formula (2.4) fails at =
1/(4(n—1)). We can expect such a phenomenon where the formula (2.4)
does not hold to occur due to a discontinuity to time direction in the measure-
theoretic sense. The existence of the velocity ensures that the discontinuity
does not occur.

ProposiTioN 4.8. For {u},5 and {E},., of Section 3.1, we have
d\V'yg| « du,dt.

Proor. From Proposition 4.5,
V/XE(X7 l) = (VXE, dta V(X, l)d:utdl)

is satisfied in the sense of vector-valued measure. Thus, from Lemma 4.4, we
obtain d|V'yg| « du,dt. O

REMARK 4.9.  Setting du = d|Vyg |dt and E = {(x,t) |t > 0, x € E,}, where
E, is as in the above counterexample, then one can obtain that d|V'y .| « du,dt
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is not satisfied by the following calculation:

swpp)=  |J (P =1-20- 1)1} x {1},

0<t<1/(4(n—1))

supplV'ze) = |J AP =1-20- 11 x {1}
0<r<1/(4(n-1))

U{xeR"||x]* <1/2} x {1/(4(n—1))}.

4.2. Basic properties of L> flow and set of finite perimeter. In this subsection,
we state the properties of L? flow and set of (locally) finite perimeter. The
proof of Theorem 2.6 will follow from those properties. The arguments in
this subsection are mostly contained in [15, 19] and we include this for the
convenience of the reader.

PropPosITION 4.10.  Let {y,},.g+ and E be as in Section 3.1 and let dy =
dudt. Then p g is a rectifiable Radon measure and we have the following
SJor A"-ae (x,t)ed"EN{t>0}:

(1):  the tangent space Ty yu exists, and T ypu= T(y, (0 E),
h(x,t

(2): ( (1 )> € Tix.nit,

(3): xe€d"E, and Ty, = T, (0"E,),

(@) p(ve(x,1)) #0, and vi,(x) = [p(vi(x,0))| ' p(ve(x, 1)),

(5): Ty(0"E;) x {0} is linear subspace of Ty i

The crucial step of the proof of Theorem 2.6 is to prove the above
proposition, for which the L? flow property of y, plays a pivotal role, and this
proposition is proved in detail by [19, Lemma 4.7]. In this paper, we will give
a brief outline of the proof of Proposition 4.10.

First, the following are simple propositions of L> flow by [15, Proposition
3.3] and [19, Theorem 4.3].

PrOPOSITION 4.11.  Let {w,},.p+ and V be an L* flow in Definition 2.2,
and let p be the space-time measure du = du,dt. Then,

( V(’lc’ ’)) € Tpn it (4.18)

at p-ae. (x,t) € R" x R™ wherever the tangent space Ty yu exists.

PropPOSITION 4.12.  The Brakke flow {u}, g+ in Definition 2.1 with
U (R™) < oo is an L* flow with the velocity V = h in Definition 2.2. Namely,
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there exists C = C(y,) > 0 such that

JZOJ 0p(x, 1) + V(x, 1) - h(x, Odp,(x)dt| < Cllg]l o, (4.19)

for all ¢ e CHIR" x (0, 00)).

Next, before the proof of Proposition 4.10, we will need some conse-
quences of Huisken’s monotonicity formula for MCF. Now we briefly state
the consequences necessary to prove the main result. See [22, Section 3.2] for
discussion below in detail. First, we set some notation. For (y,s) e R” x R™,
we define the backward heat kernel p, , by

. 1 x =y
Py (X:1) = (n(s— )07 P (‘ 4s—1) )

for all 0 <7< s and x e R", as well as the truncated kernel

X —

. Y

Ply.g (X, 1) 1= 77( )P(y,s) (x, 1),

where >0 and e C*(By(0); R") is a suitable cut-off function such that
n=1onB(0),0<y<1,|Vy <2and |V?| <4. The following is a variant
of Huisken’s monotonicity formula for MCF (for example, see [22, Section 3.2]
in detail).

Lemma 4.13.  Let {y,}, g+ is a Brakke flow in Definition 2.1. Then there
exists ¢(n) >0 with the following property. For every 0 <t <t <s< o0,
yeR" and r >0, it holds that

5]

1(P(y (X 0)| <c(n)

=1

h—t B>,
2 - 1 sup ﬂt( 21).
r te(t,n]

(4.20)

yn—1
As a consequence, Lemma 4.13 and a local mass bound (Definition 2.1(2))

indicate the following, which provides the upper bound of mass density ratio
([22, Proposition 3.5]).

Lemma 4.14. Let {u,},cg+ is a Brakke flow in Definition 2.1, and let
dyu=dud:  For any § > 0, xg € R" and R > 0, there exists ¢(d,n, R) > 0 with
the following property. For any te€ [0, ) and B.(y) C Br(xy), we have

#(B,(y))

1 SC(&,I’!,R) sup ﬂS(B3R(x0))'

s€l0,1]

In particular, ©" (u, (x,1)) < oo for all (x,t) e R" x (0, 00) holds.
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For the proof of Proposition 4.10, we need the following general facts on
sets of finite perimeter ([14, Theorem 18.11]).

LemMma 4.15. If ECR" x R is a set of locally finite perimeter, then the
horizontal section E, = {x €e R" | (x,t) € E} as in Definition 3.2 is a set of locally
finite perimeter in R" for ae. teR, and the following properties hold:

(1): #" Y (0*E,A(0*E),) = 0,

2): p(ve(x,t)) #0 for #" '-ae xe(*E),

(3): Vi, = (e (x, ) DO, ) .

ProoF (Proof of Proposition 4.10). First of all, we will prove that ui ;g
is a rectifiable Radon measure. It is not difficult to see that 4 « #". Indeed,
let ACR"xR be a set with #"(4) =0, and let the set Dy := {(x,?) €
R"” x R"| @™ (u,(x,1)) <k} for each ke N. By [17, Theorem 3.2], we have

wWANDy) <2"kA" (AN D) =0

for all k € N. Furthermore, by the upper bound of mass density ratio (Lemma
4.14), we see that u(A\U;_; D) =0. Thus we obtain u(A4) =0, that is,
u< A" holds. Since u <« A", |V'yg| = #" sk and Proposition 4.8, we see
that

UL g < [V xgl, \ R

By Radon-Nikodym theorem, there exists a function f = (duiyg)/d|V'ygl
with 0< f<oo for |Viygl-ae, felLl (Vxgl) and wisp=fIV'yg| =
fH" yg. This shows that uLyg is a rectifiable Radon measure and the
tangent space Ty, (uLs+g) with multiplicity f* exists for #"-a.e. (x,1) € 0"EN
{t > 0}. For the next step, we prove that T, yu= T(, »(0"E) for #"-a.e.
(x,t) e 0*EN{t>0}. Now, by [17, Theorem 3.5], we see that

n+1 *
i sup #8200 E)
r—+0 r"

=0 for #"-ae. (x,t)e 3" EN{t>0}.
Let then ¢ € CO(B{™(0)) be arbitrary, we have

lim
r—-+0

: ¢(1 (y—x,5- l))d’u(y,S)

J]R”x(O,oc)\é*E AN

=0

i Bt (x,1)\0"E
< (14 o lim sup “B_ (5 ONTE)

r——+0 r"

for #"-ae. (x,1)ed*EN{r>0}. Thus, by feL] (|V'yg|), we obtain at
each Lebesgue point of f
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. 1 1
im | ”X(M)—qﬁ(ﬂy—x?s—z))dms)

=40 "

. 1 /1 du
lim —dl=(y—x,5—1) | ==—(p,5)d|V'yx .S
[t (F = ms=0) gt 09 sl (0,9

r—+0 Jgrp 1"

F0 | A (5
T, (0"E)
for all ¢ € CO(R" x R) and #"-a.e. (x,7) € 3" EN{t>0}. This completes the
proof of T yu = Ty »(0"E).
By Proposition 4.11, Proposition 4.12, and the above argument, (1) and
(2) are proved. Next, we prove (3) and (4). By Lemma 4.15, we have the
following for a.e. t>0 and #" '-ae. xe (0"E),

A"V (0*E,A(0*E),) = 0, (4.21)

P(VE(x, 1)) # 0, (4.22)
_ p(vE(x, t))

50 = s, )] 423)

Let 4:={r>0]|(4.21) fails} and for every >0 set 4, := {x € (0'E),|x ¢ 0"E,
or (4.22)—(4.23) fail}, so that £'(4) =0 and #"'(4,)=0 for every te
(0,00)\A4. Consider then the characteristic function y(x,):=y,(x) on
R” x (0,0), since £'(4) =0 and #"'(4,) =0 for every te (0,0)\4, we
have

o

|| oo Fatsopian s = |

J y(x, )d#"\dt
0 J(@"E),

= J A" (A)dt = J A" (A,)dt =0,
0 A

where we used the co-area formula in the first line, and where V? % is the
gradient on the tangent plane of ¢*E, that is,

V7Eq(x,1) = Py 05 (Va(x, 7).

Here, combining (1) and (2), we see that

h(x,t
(") etun@n  at arae mesEn (>0,

which implies |V £(q(x,7))| > 0 for #"ae. (x,1)€d*EN{t>0}. Hence, it
must be y(x,t) =0 for #"-a.e. (x,t) e d*"EN{t> 0}, thus the first part of
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(3) and (4) are proved. For the proof of the identity T\ u, = T.(0*E;), by
repeating the argument of the first half of (1) and Lemma 4.14, we have
u, < #" ! for all t>0. Thus it is obtained by Lemma 4.4 and repeating the
argument of (1) at fixed ¢.

Finally, we prove (5). Taking a point (x,?) € 0*E as satisfying (1)—(4) of
this Proposition, we can calculate as

"(2,0) - ve(x, 1) = 2 p(ve(x, 1) = [POve(x, 1)I(z - ve (x)) = 0

for all ze Tx(0"E;). This completes the proof of (5). O

4.3. Boundaries move by mean curvature. In this subsection, we prove The-
orem 2.6 by rephrasing the velocity V" in Proposition 4.5 as the mean curvature
and by using geometric measure theory. The argument for this rephrasing cor-
responds to the proof of the equality (2.4). Since Definition 2.3(ii) is treated
in Remark 4.7, we can deduce that ({#,}, g+, {E:},cr+) as in Section 3.1 is a
generalized BV flow.

PRrOOF (Proof of Theorem 2.6). We fix a test function ¢ € C!(R” x (0, o0))
arbitrarily. Then, by using Gauss-Green’s theorem for set of finite perimeter,
we have

| o= gaera (4.29)
R” (0, o0) 'E

Let G be the set satisfying Proposition 4.10(1)—(5). Then for all (x,¢) € G, we
have

T pn = (Te(07E;) x {0}) ® Span<h(>;7 l)>

(by Proposition 4.10(2)). (4.25)

By h(x,t) L Tyu,, (4.25), Proposition 4.10(1) and (4), we have

1
ve(X, 1) = ———— ( f VE () ) (4.26)
14 e, )2 \ 060 VE ()
By (4.26) and h(x,?) L Typ, again, for all (x,7) € G, we can calculate the
i x (n+1) component of the matrix [, —ve®vg for i=1,...,n+1 as
=0, (), (h(x, ) ve, (X))
T+ P (i=1,...,n),

(Ins1 — vE @ VE); (n+l)(x7 1) =

5 1 P —
1+|h(x, 1) (i=n+1),
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where 1,1 is the (n+ 1)-identity matrix and (vg,), is the i-th component of
vg,. According to this calculation, Vq = e,;1 and T, yu= T(, (0"E) on G,
we obtain that the co-area factor of the projection q satisfies

VEEQ(x, )] = [T — ve @ ve)(Va(x, 1)) = L (4.27)

L+ [h(x, 1))
Due to (4.24)—(4.27) and the co-area formula, we compute as

1
J dipy i dxdt = —J ¢h - vg, ————— d A"
"% (0, 00)

G 1+ 1A

o B I
0*E
- ve, dA"ds

0 JoEn{q=1}

J ¢h-vg, da"Vdt, (4.28)

0 JO'E,

where we used #"(0*E\G) =0. By the same cut-off argument of Lemma 4.6
for (4.28) and Remark 4.7, we deduce

I

d(x, t)dx — J d(x, t1)dx

ty Etl

5] 15)
:J J 0 dxdt—i—J J ¢h-vg, d"Vdt (4.29)
n JE, ty JO'E,

for all 0 <t <t < oo. Use the continuity of Remark 4.7, we obtain the
above equality for all 0 <7 < < oo and all ¢ C!(R" x R). This com-
pletes the proof. ]

Appendix A. Measure-function pairs

Here, we recall the notion of measure-function pairs introduced by
Hutchinson in [8].

DerFmNiTION A.1. Let £ C R" be an open set and let 4 be a Radon
measure on E. Suppose f e L'(u;RY). Then we say that (u, f) is an R’-
valued measure-function pair over E.

We define the notion of convergence for a sequence of IR?-valued measure-
function pairs over E.
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DeriNITION A2, Let {(4;, f))}72, and (u f) be R%-valued measure-
function pairs over E. Suppose

M — H

as Radon measure on E. Then we call (g, f;) converges to (u, f) in the weak
sense if

| #vam—]| roan

for all ¢ e CO(E;RY).

We present a less general version of [8, Theorem 4.4.2] to the extent that
it can be used in this paper.

THEOREM A.3.  Suppose that RY-valued measure-function pairs {(1;, i)},
satisfy

supj filPdp; < .
i E

Then the following hold:
(1): There exist a subsequence {(p; , fi)}2y and an R%-valued measure-
Junction pair (u, f) such that (y;, fi;) converges to (p, f') as measure-
function pair.

(2): If (w;, i) converges to (u, f). then

J |f12du < liminfj i |dy; < 0.
E jme Jp Y
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