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Abstract. The solid torus core recognition problem is the problem that, given a knot

in the solid tours, decides whether the knot is the core of the solid torus. This problem

is in NP since the thickened torus recognition problem is in NP. We give an alternate

proof of the fact and prove that the problem is in co-NP. It is also proved that the

Hopf link recognition problem is in NP and co-NP as a corollary to our result.

1. Introduction

The unknot recognition problem is the problem of deciding whether the

knot K represented by a given knot diagram is the unknot in the 3-sphere,

namely, the problem of deciding whether K has the diagram with no cross-

ings. This problem is one of the fundamental problems in the computational

topology. Haken showed in [4] that there is an algorithm to solve the unknot

recognition problem using normal surface theory. With regard to the com-

putational complexity of this problem, Hass, Lagarias and Pippenger showed in

[6] that this problem is in NP, i.e. there is a non-deterministic polynomial time

algorithm to solve the problem. Moreover, it is proved by Lackenby in [10]

that the unknot recognition problem is in co-NP. Thus, the unknot recogni-

tion problem is in NP \ co-NP. However, it remains to be an open problem

whether this problem is in P.

A two-component link L in the 3-sphere S3 is called the Hopf link if L has

the diagram depicted as in Figure 1.1. The Hopf link recognition problem is

the problem of deciding whether the link represented by a given link diagram

is the Hopf link. It is known that a two-component link L in S3 is the Hopf

link if and only if the fundamental group of the exterior of L is an abelian

group. See Chapter 6 of [9]. Furthermore, since the exterior of the Hopf link

is the thickened torus T 2 � ½0; 1� and the fundamental group of T 2 � ½0; 1� is an
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abelian group, a two-component link in S3 is the Hopf link if and only if the

exterior of the link is T 2 � ½0; 1�. Recently, Haraway and Ho¤man announced

in [5] that for every compact surface S, the S � ½0; 1� recognition problem is in

NP. This immediately implies that the Hopf link recognition is in NP. In

addition, assuming the generalized Riemann hypothesis, the Hopf link recogni-

tion problem is in co-NP ([13]).

In this paper, we consider knots in the solid torus V . When we regard

V as the product space of the annulus A and the unit interval ½0; 1�, a diagram

of a knot K in V is the image of a generic projection of K onto A� f0g with

over/under information at each double point. The knots in V that are non-

a‰ne and prime up to 6 crossings are completely classified in [3]. Here, a

knot K in V is said to be non-a‰ne if there are no embedded 3-ball in V

containing K .

We regard the solid torus V as D2 � S1, where D2 denotes the disk and

S1 the circle. Let x be a point of the interior of D2. A knot K is called the

core of V if K is ambient isotopic to the knot fxg � S1 in D2 � S1. The solid

torus core recognition problem is the problem that, given a knot K in the solid

torus V , decides whether K is the core of V , namely, the problem of deciding

whether K is non-a‰ne and has a diagram with no crossings.

Let L ¼ K1 [ K2 be a two-component link in S3 such that K1 is the

unknot. Since the exterior of K1 is the solid torus, K2 can be regard as a knot

in the solid torus. In this situation, we see that K2 is the core of the exterior

of K1 if and only if L is the Hopf link, i.e. the exterior of L is the thickened

torus. For this reason, a knot K in the solid torus V is the core of V if and

only if the exterior of K is the thickened torus. Thus, the solid torus core

recognition problem is in NP.

The proof that the S � ½0; 1� recognition problem is in NP by Haraway

and Ho¤man uses the powerful algorithm for cutting a 3-manifold along a

properly embedded surface developed by Lackenby [10]. In this paper, we

give an alternate proof that is independent of the results of Lackenby [10]

Fig. 1.1. A diagram of the Hopf link
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for the theorem that the solid torus core recognition problem is in NP, i.e. we

give a new non-deterministic polynomial time algorithm for the problem. Our

algorithm does not contain the operation of cutting a 3-manifold along a

properly embedded surface, and so it is simpler than the algorithm of Haraway

and Ho¤man.

Theorem 1.1. The solid torus core recognition problem is in NP.

Haraway and Ho¤man also announced in [5] that for every compact

surface S, the S � ½0; 1� recognition problem is in co-NP among orientable

irreducible 3-manifolds. Using their theorem, we can show that the solid torus

core recognition problem is in co-NP.

Theorem 1.2. The solid torus core recognition problem is in co-NP.

A two-component link L ¼ K1 [ K2 in the 3-sphere S3 is the Hopf link

if and only if K1 is the unknot and K2 is the core of S3 � int NðK2Þ. Thus,

we also give an alternate proof of the theorem that the Hopf link recognition

is in NP as a corollary of Theorem 1.1, and it is proved that the Hopf link

recognition is in co-NP as a corollary to Theorem 1.2 without assuming the

generalized Riemann hypothesis.

Corollary 1.3. The Hopf link recognition problem is in NP \ co-NP.
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2. Preliminaries

2.1. Knots in the solid torus. A knot K in a 3-manifold M is a piecewise-

linear simple closed curve embedded in M. Two knots K and K 0 in M are

ambient isotopic if there is a continuous map F : M � ½0; 1� ! M such that, if

ft denotes F jM�ftg, ft : M ! M is a homeomorphism for each t A ½0; 1�, f0 is

the identity map, and f1ðKÞ ¼ K 0. Given a knot K in a 3-manifold M, the

exterior of K is obtained from M by removing the interior of the regular

neighborhood NðKÞ of K .
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Definition 2.1. Let K be an oriented knot in the solid torus V . Let ½K �
denote the homology class of H1ðV ;ZÞ represented by K . Fix an isomorphism

f from H1ðV ;ZÞ to Z. Then the rotation number, denoted by rf ðKÞ, of K is

defined by f ð½K �Þ A Z.

The absolute value of the rotation number does not depend on an orien-

tation of a knot and an isomorphism from H1ðV ;ZÞ to Z. Thus, for an

unoriented knot K in V , we denote by jrðKÞj the absolute value of the rotation

number, where an orientation of K and an isomorphism from H1ðV ;ZÞ to Z
are auxiliarily fixed. This is an invariant of unoriented knots in V . If a knot

K is the core of V , then we see that jrðKÞj ¼ 1. However, jrðKÞj ¼ 1 does not

necessarily mean that K is the core of V (See Figure 2.1).

2.2. Triangulations. Let D ¼ fD1; . . . ;Dng be a collection of disjoint n tetra-

hedra in R3. A face-pairing on D is an a‰ne map between two distinct faces

of tetrahedra Di and Dj (possibly i ¼ j). Let F be a collection of face-pairings

on D such that each face of the tetrahedra appears at most once. Then the

pair ðD;F Þ is called a generalized triangulation. In this paper, we call a gen-

eralized triangulation simply a triangulation. The underlying space, denoted

by jT j, of a triangulation T ¼ ðD;F Þ is the quotient space obtained by gluing

the union of the tetrahedra by the face-pairings. If jT j is homeomorphic to a

3-manifold M, then T is called a triangulation of M. We abuse notation by

writing Di for the image of a tetrahedron Di in jT j. The size, denoted by

sizeðT Þ, of a triangulation T is the number of tetrahedra of T . If sizeðT Þ ¼ n,

then T is called an n-tetrahedra triangulation.

An input of the solid torus core recognition problem is given as a pair of

a triangulation of the solid torus and a knot in its 1-skeleton.

Fig. 2.1. A knot K with jrðKÞj ¼ 1 but not the core of the solid torus
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Definition 2.2 (The solid torus core recognition problem). Let TV be a

triangulation of the solid torus V . Assume that a knot K in V is represented

by a collection of edges of the 1-skeleton of TV . The solid torus core recog-

nition problem is the problem that, given the pair ðTV ;KÞ, decides whether K is

the core of V .

Let TV be an n-tetrahedra triangulation of the solid torus V . By labeling

the vertices of the tetrahedra of TV by 1; . . . ; 4n, each face-pairing of TV is

represented by a pair of triples of integers ðði1; i2; i3Þ; ð j1; j2; j3ÞÞ. Since the

number of face-pairings of TV is at most 2n, the face-pairings of TV is rep-

resented by at most 2n pairs of triples of integers. In addition, by labeling

the edges of T
ð1Þ
V by integers, a knot K in T

ð1Þ
V is represented by at most OðnÞ

integers. For these reasons, the input size of the solid torus core recognition

problem is measured by the size of an input triangulation of the solid torus.

Let TM be a triangulation of a compact 3-manifold M containing a knot K

in its 1-skeleton T
ð1Þ
M . Let T 00

M denote the triangulation obtained by barycentri-

cally subdividing TM twice. A triangulation of the exterior of K is obtained

from T 00
M by removing the tetrahedra containing K in its edges. From this

construction, we have the following.

Lemma 2.3. Let TM be an n-tetrahedra triangulation of a compact

3-manifold M containing a knot K in its 1-skeleton T
ð1Þ
M . Then there is an

OðnÞ time algorithm that, given TM and K, outputs a triangulation TE of the

exterior of K. Moreover, sizeðTEÞ is at most OðnÞ.

Proof. The barycentric subdivision is performed in OðsizeðTMÞÞ ¼OðnÞ
time and multiplies the number of tetrahedra by 24. Thus, the triangulation

T 00
M obtained by barycentrically subdividing TM twice is obtained in OðnÞ time,

and we have sizeðT 00
MÞ ¼ 242n. Therefore, we can obtain a triangulation TE of

the exterior of K by removing the tetrahedra containing K in OðsizeðT 00
MÞÞ ¼

OðnÞ time, and the number of tetrahedra of TE is less than 242n.

2.3. An algorithm for calculating the rotation number of a knot in the solid

torus. Suppose that TV is a triangulation of the solid torus V and K is a

knot in V represented by a collection of edges of T
ð1Þ
V . In this subsection, we

describe that jrðKÞj is calculated in polynomial time of sizeðTV Þ.

Lemma 2.4. Let TV be an n-tetrahedra triangulation of the solid torus V

and K a knot in V represented by a collection of edges of T
ð1Þ
V . Then there is

an algorithm that, given TV and K, outputs jrðKÞj in polynomial time of n.

Proof. For each dimension kb 0, we denote the k-simplices of TV by

ck1 ; . . . ; c
k
nk
, and fix an orientation for each k-simplex cki . Let Ck denote the
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k-chain group of TV over Z. We denote the set of the n�m matrices over

Z by Mn;mðZÞ. Let Dk A Mnk�1;nk ðZÞ denote the representation matrix of the

boundary operator qk : Ck ! Ck�1 with respect to the standard basis. Then

there are unimodular matrices P A Mn0;n0ðZÞ and Q A Mn1;n1ðZÞ such that PD1Q

is the Smith normal form of D1. The matrices P and Q can be calculated

in polynomial time of n ([12]). Let Q ¼ ðq1; . . . ; qn1Þ, D2 ¼ ðd1; . . . ; dn2Þ, and
rk ¼ rankðImðDkÞÞ for each k. We see that fq1; . . . ; qn1g is a basis of C1 and

fqr1þ1; . . . ; qn1g is a basis of KerðD1Þ.
A basis of ImðD2Þ is obtained as follows. Let S ¼ q. For each i

ð1a ia n2Þ, if S [ fd ig is linearly independent, then add d i to S. We can

check whether a set of vectors fd j1 ; . . . ; d jmg is linearly independent by cal-

culating the Smith normal form of the matrix ðd j1 ; . . . ; d jmÞ and checking the

number of elementary divisors is m. Unimodular matrices P 0 and Q 0 such that

P 0ðd j1 ; . . . ; d jmÞQ 0 is the Smith normal form are calculated in polynomial time

of n since m is at most n. Thus, the Smith normal form of the matrix

ðd j1 ; . . . ; d jmÞ is calculated in polynomial time of n, and so a basis fd i1 ; . . . ; d ir2
g

of ImðD2Þ is obtained in polynomial time of n.

Since H1ðV ;ZÞFZ, there is a vector qj ðr1 þ 1a ja n1Þ such that

fqj; d i1 ; . . . ; d ir2
g is a basis of KerðD1Þ. We can find qj by calculating

rankðhqj 0 ; d i1 ; . . . ; d ir2
iÞ for each j 0 A fr1 þ 1; . . . ; n1g. The rank of hqj 0 ; d i1 ; . . . ;

d ir2
i is obtained by calculating the Smith normal form of ðqj 0 ; d i1 ; . . . ; d ir2

Þ.
Thus, a vector qj is obtained in polynomial time of n. Then we see that

fqj; d i1 ; . . . ; d ir2
; q1; . . . ; qr1g is a basis of C1. Let X ¼ ðqj ; d i1 ; . . . ; d ir2

; q1; . . . ;

qr1Þ. Now, for each 1-cycle a in V , if a ¼ a1c
1
1 þ � � � þ an1c

1
n1
, then the

homology class ½a� A H1ðV ;ZÞ is the first element of X �1ða1; . . . ; an1Þ
>. The

inverse of X is calculated in polynomial time of n by using the Gaussian

elimination method. Thus, given TV and K , we can calculate jrðKÞj in poly-

nomial time of n.

2.4. Normal surfaces. A properly embedded arc in a triangle is an elementary

arc if the arc connects the interior of distinct edges of the triangle. An

elementary disk in a tetrahedron Di is a properly embedded disk in Di whose

boundary consists of three or four elementary arcs of the faces of Di depicted

as in Figure 2.2. Two elementary disks in a tetrahedron are said to be of the

same type if the vertices of them are on the same edges of the tetrahedron.

There are seven types of elementary disks in a tetrahedron. A properly

embedded surface F in a compact 3-manifold M with a triangulation TM

is called a normal surface with respect to TM if for each tetrahedron Di of TM ,

Di \ F is a collection of disjoint elementary disks.

Let n be the size of a triangulation TM of a compact 3-manifold M. We

record a normal surface F with respect to TM as the vector vðF Þ A Z7n, where
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each coordinate describes the number of elementary disks of each type in each

tetrahedron. The vector vðFÞ is called the vector representation of a normal

surface F .

A vector in Z7n does not always represent a normal surface with respect to

an n-tetrahedra triangulation TM . We describe the conditions for a vector x ¼
ðx1;1; . . . ; x1;7; x2;1; . . . ; xn;7Þ A Z7n to represent a normal surface F . Firstly,

each coordinate xi; j is greater than or equal to 0. This condition is called the

non-negative condition. Secondly, the elementary disks in two adjacent tetra-

hedra are glued together. Since for each face of a tetrahedron of TM , there are

two types of elementary disks whose intersection with the face are the same

type elementary arcs, the equation

xi; s þ xi; t ¼ xj;u þ xj;w

holds for each type of elementary arcs of an interior face of TM . See Figure

2.3. Since there are three types of elementary arcs in each interior face and

at most 2n interior faces in TM , there are at most 6n equations. The matrix

ATM
is defined by the coe‰cient matrix of these equations. We call this matrix

the matching matrix of TM . The matching condition is the condition that

ATM
x ¼ 0. If there are distinct types of quadrilateral elementary disks in a

tetrahedron, they must intersect. The final condition is that each tetrahedron

has at most one type quadrilateral elementary disks. This is called the quad-

rilateral condition. Haken showed in [4] that a vector x A Z7n represents a

normal surface with respect to an n-tetrahedra triangulation TM if and only if

Fig. 2.3. Elementary disks in adjacent tetrahedra

Fig. 2.2. Elementary disks
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x satisfies the non-negative condition, the matching condition, and the quad-

rilateral condition.

Vertex surfaces are introduced by Jaco and Ortel [7] and by Jaco and

Tollefson [8]. Let TM be an n-tetrahedra triangulation of a compact

3-manifold M and ATM
denote the matching matrix of TM . The Haken

normal cone CTM
of TM is the polyhedral cone in R7n defined by ATM

x ¼ 0

and xi b 0 for each coordinate. The integer points of CTM
that satisfy the

quadrilateral condition represent the normal surfaces with respect to TM . A

normal surface F with respect to TM is a vertex surface if F is connected and

2-sided in M, and the vector representation vðFÞ is on an extreme ray, namely

a 1-dimensional face, of CTM
.

Let M be a compact 3-manifold. A properly embedded surface F in M

that is not the disk or the 2-sphere is said to be essential if F is incompressible,

q-incompressible, and not parallel to qM.

Theorem 2.5 (Jaco-Tollefson [8]). Let TM be a triangulation of M ¼
S � ½0; 1�, where S is a closed surface that is not a 2-sphere or a projective plane.

Then there is an essential two-sided annulus F that is a vertex surface with

respect to TM.

If K is the core of the solid torus, then the exterior of K is homeomor-

phic to T 2 � ½0; 1�, where T 2 is the torus. Therefore, we have the following

lemma.

Lemma 2.6. Let K be the core of the solid torus V and E ¼ V � int NðKÞ.
Assume that TE is a triangulation of E. Then there is an essential annulus F

that is a vertex surface with respect to TE.

Let M be a compact irreducible 3-manifold. A collection of properly

embedded disjoint disks fD1; . . . ;Dng in M is called a complete disk system for

M if each boundary component of the 3-manifold obtained by cutting M alongSn
i¼1 Di is incompressible.

Theorem 2.7 (Jaco-Tollefson [8]). Let TM be a triangulation of a compact

irreducible 3-manifold M whose boundary is compressible. Then there is a com-

plete disk system fD1; . . . ;Dng for M such that each disk Di is a vertex surface

with respect to TM.

Vertex surfaces play an important role in analyzing the computational

complexity of algorithms using normal surfaces. Hass, Lagarias, and Pip-

penger showed the following.

Theorem 2.8 (Hass-Lagarias-Pippenger [6]). Let TM be an n-tetrahedra

triangulation of a compact 3-manifold M. Assume that F is a vertex surface

268 Yuya Nishimura



with respect to TM represented by vðFÞ ¼ ðx1; . . . ; x7nÞ A Z7n. Then each xi is

bounded from above by 27n�1.

This theorem implies that any vertex surface with respect to a triangula-

tion TM of a compact 3-manifold M is represented by a binary string whose

length is at most OðsizeðTMÞ2Þ. Thus, if TM is an n-tetrahedra triangulation,

then we can guess a vertex surface with respect to TM in non-deterministic

polynomial time of n. Indeed, the unknot recognition problem is solved in

non-deterministic polynomial time by guessing a vertex surface with respect to

a triangulation of the exterior of a given knot.

Theorem 2.9 (Hass-Lagarias-Pippenger [6]). There is a non-deterministic

polynomial time algorithm that, given a knot diagram D, decides whether the knot

represented by D is the unknot.

Assume that x ¼ ðx1; . . . ; x7nÞ A Z7n is a vector such that xi a 27n�1 for

each coordinate, that is, x is a candidate for the vector representation of

a vertex surface with respect to an n-tetrahedra triangulation of a compact

3-manifold. In this situation, some computations on normal surfaces can be

performed in polynomial time.

Lemma 2.10. There is a polynomial time algorithm that, given an

n-tetrahedra triangulation TM of a compact 3-manifold M and a vector x ¼
ðx1; . . . ; x7nÞ A Z7n such that xi a 27n�1 for each coordinate, decides whether x

represents a normal surface with respect to TM.

Proof. We can decide whether x represents a normal surface with respect

to TM by verifying the non-negative condition, the matching condition, and the

quadrilateral condition. Since each coordinate is less than or equal to 27n�1,

we can verify each condition in polynomial time of n.

We describe a polynomial time algorithm that calculates the Euler char-

acteristic wðFÞ of a normal surface F . Schleimer [11] constructed a polynomial

time algorithm that calculates wðFÞ in the case where F is closed. By adding

a slight change to this algorithm, we can calculate wðF Þ of a normal surface F

with non-empty boundary.

Lemma 2.11. Let TM be an n-tetrahedra triangulation of a compact

3-manifold M (possibly qM0q) and F be a normal surface with respect

to TM represented by a vector x ¼ ðx1; . . . ; x7nÞ A Z7n. Assume that xi a 27n�1

for each coordinate. Then there is a polynomial time algorithm that, given TM

and x, calculates the Euler characteristic wðF Þ.

Proof. The Euler characteristic wðFÞ is calculated by the formula

nf � ne þ nv, where nf , ne, and nv is the number of faces, edges, and vertices of
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F , respectively. The number of faces nf is the sum of the coordinates
P

xi.

The number of edges ne is calculated as follows. For each face f of T
ð2Þ
M and

each integer i A f1; . . . ; 7ng, set ef ; i ¼ 1 if the elementary disks described by xi
meet f , otherwise set ef ; i ¼ 0. Then

ne ¼
X
f :face

X7n

i¼1

ef ; ixi

degð f Þ ;

where degð f Þ denotes the number of tetrahedra of TM containing f . Similarly,

the number of vertices nv is also calculated as follows. For each edge e of T
ð1Þ
M

and each integer i A f1; . . . ; 7ng, set ee; i ¼ 1 if the elementary disks described by

xi meet e, otherwise set ee; i ¼ 0. Then

nv ¼
X
e:edge

X7n

i¼1

ee; ixi

degðeÞ ;

where degðeÞ denotes the number of tetrahedra of TM containing e. Since each

coordinate xi is less than or equal to 27n�1, we can calculate these values in

polynomial time of n.

3. Knots in the solid torus

In this section, we give a necessary condition and a su‰cient condition for

a knot in the solid torus to be the core of the solid torus. Let V and W be

both solid tori and K a knot in V . For any essential simple closed curve a in

qV , Ma denotes the 3-manifold obtained by gluing qV and qW so that a and

the meridian of W are identified, KMa
denotes the knot in Ma obtained from

K , and EMa
denotes the exterior of KMa

. The aim of this section is to prove

Lemma 3.1.

Lemma 3.1. Let V and W be both solid tori. Let K be a knot in V

with jrðKÞj ¼ 1. If K is the core of V, then there is a properly embedded

essential annulus A in EV ¼ V � int NðKÞ such that qA meets both qV and

qNðKÞ, and for any essential simple closed curve a in qV, there is a properly

embedded essential disk D in EMa
. Moreover, if there is a properly em-

bedded essential annulus A in EV such that qA meets both qV and qNðKÞ,
and for some essential simple closed curve a in qV that is not the meridian

of V, there is a properly embedded essential disk D in EMa
, then K is the core

of V.

Note that even though there is a properly embedded essential disk in EMa

for some essential simple closed curve a in qV , K may not necessarily be the
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core of V in the situation of Lemma 3.1. For example, we consider the knot

K in the solid torus V depicted as in Figure 2.1, and suppose that a is a

longitude of V . In this case, Ma is the 3-sphere S3, and KMa
is the unknot

in S3. Thus, there is a properly embedded essential disk in EMa
, but K is not

the core of V .

Lemma 3.2. Let K be a knot in the solid torus V, and assume that

jrðKÞj0 0. Then the exterior E of K is irreducible and q-irreducible.

Proof. Suppose that E is reducible, i.e. there is a properly embedded

essential 2-sphere S in E. Since V is irreducible, S bounds a 3-ball containing

K in V . This implies that jrðKÞj ¼ 0. This is a contradiction.

Suppose that E is q-reducible, i.e. there is a properly embedded essential

disk D in E. Let S 0 be the 2-sphere in E obtained from qV by q-compression

along D. We see that S 0 bounds a 3-ball containing K in V . Thus, jrðKÞj ¼ 0

holds. This is a contradiction.

The next lemma will be applied to Lemma 3.4 and 3.6.

Lemma 3.3. Let M be a compact 3-manifold with non-empty boundary.

Assume that F1 and F2 are properly embedded surfaces in M such that F1 and

F2 intersect transversely. Then we can isotope F1 and F2 so that there are no

bigons in qM whose boundaries consist of parts of qF1 and qF2. Moreover, this

procedure does not increase the number of intersections of F1 and F2.

Proof. Suppose that there is a bigon B whose boundary consists of two

arcs a1 and a2, where ai is a sub-arc of qFi for each i. Let c1 and c2 denote

the vertices of B and bi denote the arc of F1 \ F2 containing ci for each i. In

this situation, we can remove B by moving a1 to a2 along B (See Figure 3.1).

If b1 and b2 are distinct edges, then this isotopy decrease jF1 \ F2j. Otherwise

Fig. 3.1. An isotopy to remove a bigon B in the boundary of M
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this isotopy does not change jF1 \ F2j. By repeating the above procedure, we

can remove all bigons in the boundary of M without increasing jF1 \ F2j.

Suppose that EV is the exterior of a knot K in the solid torus V and A is

a properly embedded essential annulus in EV such that qA meets both qV and

qNðKÞ as in Lemma 3.1. First, we consider the case where A \ qNðKÞ is not

the meridian of NðKÞ.

Lemma 3.4. Let E denote the exterior of a knot K in the solid torus V.

Assume that jrðKÞj ¼ 1. Then K is the core of V if and only if there is a

properly embedded essential annulus A in E such that qA meets both qNðKÞ and

qV, and qA \ qNðKÞ is not the meridian of NðKÞ.

Proof. Suppose that K is the core of V . Since K is parallel to qV , there

is a properly embedded essential annulus A in E such that qA meets both

qNðKÞ and qV , and qA \ qNðKÞ is not the meridian of NðKÞ.
Conversely, suppose that A is a properly embedded essential annulus such

that qA meets both qNðKÞ and qV , and qA \ qNðKÞ is not the meridian of

NðKÞ. Let mk denote the meridian of NðKÞ. We take A so that jqA \mkj is
minimal up to isotopy of A. If jqA \mkj ¼ 1, then we see that K is parallel to

qV . Since jrðKÞj ¼ 1, K is the core of V .

Suppose that jqA \mkjb 2. We take the meridian disk D of V so

that jD \ K j is minimal up to isotopy of D. Let F denote the surface

D� intðD \NðKÞÞ in E.

Claim. The surface F is incompressible and q-incompressible in E.

Proof. Suppose that there is a compression disk d for F . Then qd

divides F into the two sub-surfaces d1 and d2. Assume that d1 contains

qF \ qV . Since qd is essential in F , we have jðd [ d1Þ \ qNðKÞj < jF \ qNðKÞj.
This contradicts the minimality of jD \ K j. Therefore, F is incompressible.

Suppose that there is a q-compression disk d for F . First, we consider the

case where the arc qd \ F connects the same component of qF . The arc qd \ F

divides F into the two sub-surfaces d1 and d2. We consider the first homol-

ogy class ½qD� A HðqV ;ZÞ. Since we have 00 ½qD� ¼ ½qðd1 [ dÞ� þ ½qðd2 [ dÞ�,
either of qðd1 [ dÞ or qðd2 [ dÞ is essential in qV . Without loss of generality,

assume that qðd1 [ dÞ is essential in qV . Since qd \ F is essential in F , we have

jðd1 [ dÞ \ qNðKÞj < jF \ qNðKÞj. This contradicts the minimality of jD \ K j.
Next, we consider the case where qd \ F connects distinct components of qF .

The loops qF \ qNðKÞ divide qNðKÞ into annuli. Let S denote the annulus

containing the arc qd \ qNðKÞ. We regard NðdÞ as d� ½0; 1�. Then the disk

ðS � ðS \NðdÞÞÞ [ d� f0; 1g is a compression disk for F . This contradicts

that F is incompressible. Therefore, F is q-incompressible.
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We take F so that jF \ Aj is minimal up to isotopy of F . Using Lemma

3.3, all bigons in qE bounded by qF and qA are removed while keeping the

minimality of jF \ Aj.

Claim. There are no loops and arcs of F \ A that are inessential in A.

Proof. Suppose that a is a loop of F \ A such that a is inessential in A

and is an innermost loop in A with respect to F \ A. Let d denote the disk in

A bounded by a. Since F is incompressible, a bounds a disk d 0 in F . We see

that the 2-sphere d [ d 0 bounds a 3-ball B in E since E is irreducible. Thus,

a is removed from F \ A by an isotopy of F along B. This contradicts the

minimality of jF \ Aj.
Suppose that a is an arc of F \ A such that a is inessential in A and is an

outermost arc in A with respect to F \ A. Let d denote the disk in A bounded

by a and a sub-arc of qA. Since F is q-incompressible, a co-bounds a disk d 0

in F with a sub-arc of qF . Since E is q-irreducible, qd [ qd 0 bounds a disk d 00

in qE. We see that the 2-sphere d [ d 0 [ d 00 bounds a 3-ball B in E since E

is irreducible. Therefore, a is removed from F \ A by an isotopy of F along

B. This is a contradiction. Thus, there are no loops and arcs of F \ A that

are inessential in A.

Since each component of qF \ qNðKÞ is the meridian of NðKÞ and

qA \ qNðKÞ is an essential loop that is not the meridian of NðKÞ, we see

that qA \ qF 0q. This implies that each component of F \ A is an essential

arc in A.

Since there are no bigons in qE bounded by qF and qA, there is an integer

m such that each component of qF \ qNðKÞ intersects qA \ qNðKÞ as m points.

By the assumption that jqA \mkjb 2, we see that mb 2.

Claim. The number of components of qF \ qNðKÞ is one.

Proof. Let n denote the number of components of qF \ qNðKÞ. Sup-

pose that nb 2. Let ðB3; tÞ denote the tangle in the 3-ball B3 such that

ðB3; tÞ is obtained by cutting ðV ;KÞ along D. We see that t has n strings

t1; . . . ; tn. Let Et denote the exterior of t, and let F þ and F � denote the two

sub-surfaces of qEt obtained from F . The surface F divides A into nm disks

since each component of F \ A is an essential arc in A. These disks are

denoted by Ai; j ð1a ia n; 1a jamÞ, where Ai; j is a disk intersecting qNðtiÞ.
Now, we have the following:

� for each string ti, there is a disk Ai; j since qA \ qNðKÞ is not the

meridian of NðKÞ, and
� for each disk Ai; j, qNðtiÞ \ qAi; j is an arc that connects F þ and F �

since there are no bigons in qE bounded by qF and qA.
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These imply that ðEt;
S

Ai; jÞ is homeomorphic to ðF þ � ½0; 1�; ð
S

Ai; j \ F þÞ �
½0; 1�Þ as a pair.

Let aGi; j denote the arc Ai; j \ FG and bGi denote qNðtiÞ \ qFG. We

define f : F � ! F þ to be the homeomorphism such that E is obtained

from Et by gluing F þ and F � by f . We also define g : F þ ! F � to be

the homeomorphism such that gðbþi Þ ¼ b�i and gðaþi; jÞ ¼ a�i; j for each i and

j. Note that g is just the projection from F þ to F � since ðEt;
S

Ai; jÞF
ðF þ � ½0; 1�; ð

S
Ai; j \ F þÞ � ½0; 1�Þ. Let h ¼ f � g. If k > 0, then the func-

tion hk : F þ ! F þ is defined by hk�1 � h, and if k ¼ 0, then h0 : F þ !
F þ is defined by the identity map. Since A is connected, we have the

following:
� hnmðaþ1;1Þ ¼ aþ1;1 and
� for each i and j ð1a ia n; 1a jamÞ, there is an integer k ð0a ka

nm� 1Þ such that aþi; j ¼ hkðaþ1;1Þ.
Let s denote the boundary component qF þ �

S
bþi . Now, the points

s \
S

aþi; j divide s into nm sub-arcs s1; . . . ; snm. We see that for each sub-

arc si, there is an integer k ð0a ka nm� 1Þ such that si ¼ hkðs1Þ.
We show that for each boundary component bþi , the arcs of A \ F

that meet bþi are mutually parallel in F þ. If n ¼ 2, i.e. F þ is the two-

punctured disk, then the arcs of A \ F that meets bþi must be mutually

parallel. Suppose that nb 3. For simplicity, we show that the arcs meet-

ing bþ1 are mutually parallel. Suppose that aþ1; j and aþ1;k are not parallel.

In this situation, without loss of generality, we can suppose that aþ1; j [ aþ1;k
divides the set fbþ2 ; . . . ; bþn g into the two set X ¼ fbþ2 ; . . . ; bþl g and Y ¼
fbþlþ1; . . . ; b

þ
n g, and jX ja jY j. Let p be an integer such that hpðbþ1 Þ is in

X . Then hpðaþ1; jÞ [ hpðaþ1;kÞ divides the set fhpðbþ2 Þ; . . . ; hpðbþn Þg into the two

set X p ¼ fhpðbþ2 Þ; . . . ; hpðbþl Þg and Y p ¼ fhpðbþlþ1Þ; . . . ; hpðbþn Þg. Here, we see

that aþ1; j [ aþ1;k intersects hpðaþ1; jÞ [ hpðaþ1;kÞ since jX � fhpðb1Þgj < jX pj depicted
as in Figure 3.2. This contradicts that A is an embedded annulus. Thus,

we see that the arcs of A \ F that meet bþi are mutually parallel for each

bþi .

From this fact and the assumption that mb 2, we see that there is a sub-

arc si of s bounded by endpoints of parallel arcs of A \ F . This implies that

for each integer k, hkðsiÞ is bounded by endpoints of parallel arcs of A \ F ,

that is, each sub-arc of s is bounded by endpoints of parallel arcs of A \ F .

On the other hand, since nb 2, there is a sub-arc of s bounded by endpoints

of non-parallel arcs of A \ F . This is a contradiction. Therefore, we have

n ¼ 1.

Since the number of components of qF \ qNðKÞ is one, F is an annulus.

Let F 0 be a disk that is obtained by dividing F by qA1;1. Now, we see that
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an annulus is obtained from F 0 and A1;1, and it intersects the meridian mk of

NðKÞ as a point. This implies that K is parallel to qV . Since jrðKÞj ¼ 1, K is

the core of V .

Next, we consider the case where A is a properly embedded annulus

in the exterior of a knot K such that qA \ qNðKÞ is the meridian of

NðKÞ.

Lemma 3.5. Let E be the exterior of a knot K in the solid torus V.

Suppose that jrðKÞj ¼ 1. Let i : qNðKÞ ! E and j : qV ! E denote the inclu-

sion maps, and let i� : H1ðqNðKÞ;ZÞ ! H1ðE;ZÞ and j� : H1ðqNðKÞ;ZÞ !
H1ðE;ZÞ denote the homomorphisms induced by i and j, respectively. Then,

i� and j� are both bijective.

Proof.

Claim. The homomorphism i� is injective.

Proof. Let i 0� : p1ðqNðKÞÞ ! p1ðEÞ denote the homomorphism induced

by i. Since qNðKÞ is the torus, there is an isomorphism f : p1ðqNðKÞÞ !
H1ðqNðKÞ;ZÞ. By the Hurewicz theorem, p1ðEÞ=½p1ðEÞ; p1ðEÞ� is isomorphic

to H1ðE;ZÞ, where ½p1ðEÞ; p1ðEÞ� is the commutator subgroup of p1ðEÞ. Let

g 0 denote this isomorphism map. We denote the natural homomorphism from

p1ðEÞ to p1ðEÞ=½p1ðEÞ; p1ðEÞ� by g 00. Let g ¼ g 0 � g 00. Now, we have the fol-

lowing commutative diagram.

Fig. 3.2. Arcs that are not parallel in F þ
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p1ðqNðKÞÞ p1ðEÞ???y f

???yg

H1ðqNðKÞ;ZÞ ���!i� H1ðE;ZÞ:

������!i 0�

Since jrðKÞj0 0, qNðKÞ is incompressible by Lemma 3.2. This implies that

i 0� is injective. Suppose that ½m� and ½l � are elements of p1ðqNðKÞÞ such that

½m� and ½l � generate p1ðqNðKÞÞ. Let N denote the sub-group of p1ðEÞ such

that N is generated by i 0�ð½m�Þ and i 0�ð½l �Þ. We see that N is an abelian group.

Therefore, gjN is injective. Since f is bijective, we see that i� ¼ gjN � i 0� � f �1

is injective.

Claim. The homomorphism i� is surjective.

Proof. Let a be an arbitrary oriented loop in E. Let l be an oriented

longitude of NðKÞ. Suppose that h : E ! V is the inclusion map and

h� : H1ðE;ZÞ ! H1ðV ;ZÞ is the homomorphism induced by h. Since jrðKÞj ¼
1, there is an integer k A Z such that h�ð½a� þ k � i�ð½l �ÞÞ ¼ 0 A H1ðV ;ZÞ.

Suppose that F is an embedded annulus in E such that b1 ¼ qF \ a is

a sub-arc of a and m ¼ F \ qNðKÞ is the meridian of NðKÞ (See Figure 3.3).

Let b2 denote the arc qF � ðint b1 [mÞ. Choose an orientation of F so that

the orientation of b1 induced by the orientation of F is reverse to the ori-

entation of a. Assume that the orientations of b1, b2, and m are induced by

the orientation of F . Let a 0 denote the loop ða� b1Þ [ b2. Now, we have

½a 0� ¼ ½a� þ ½m� in H1ðE;ZÞ, and a 0 is obtained by moving a across NðKÞ once.

Thus, there is an integer k 0 A Z such that ½a� þ k � i�ð½l �Þ þ k 0 � i�ð½m�Þ ¼ 0 A
H1ðE;ZÞ. Therefore, we have ½a� ¼ i�ð�k½l � � k 0½m�Þ A H1ðE;ZÞ. This implies

that i� is surjective.

Fig. 3.3. The arc a 0
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From the above two claims, i� is bijective. In a similar way, we can show

that j� is bijective.

Lemma 3.6. Let E denote the exterior of a knot K in the solid torus V.

Assume that there is a properly embedded annulus A in E such that qA meets

both qV and qNðKÞ, and qA \ qNðKÞ is the meridian of NðKÞ. Then K is the

core of V if and only if there is a properly embedded planar surface F in E such

that jqF \ qNðKÞj ¼ 1, and qF \ qNðKÞ is an essential loop in qNðKÞ and not

the meridian of NðKÞ.

Proof. Suppose that K is the core of V . Since K is parallel to qV , there

is a properly embedded annulus F such that jqF \ qNðKÞj ¼ 1, and qF \ qNðKÞ
is an essential loop in qNðKÞ and not the meridian of NðKÞ.

Conversely, suppose that there is a properly embedded planar surface F in

E such that jqF \ qNðKÞj ¼ 1, and qF \ qNðKÞ is an essential loop in qNðKÞ
and not the meridian of NðKÞ. Let a denote the loop qF \ qNðKÞ. Suppose

that jqF \ qV j ¼ n, and let b1; . . . ; bn be the components of qF \ qV . We

prove that K is the core of V by induction on n. If n ¼ 1, i.e. F is the

annulus, then we see that K is the core of V by Lemma 3.4.

Assume that nb 2. First, we consider the case where F is compressible,

i.e. there is a compression disk d for F . The boundary qd divides F into the

two sub-surfaces d1 and d2. Suppose that d1 contains qF \ qNðKÞ. Since qd

is essential in F , we have jqðd [ d1Þ \ qV j < jqF \ qV j. Using the induction

hypothesis, K is the core of V .

Next, suppose that F is incompressible. We take F so that jF \ Aj is

minimal up to isotopy of F . Using Lemma 3.3, all bigons in qE bounded by

qF and qA are removed while keeping the minimality of jF \ Aj.

Claim. There is a q-compression disk for F whose intersection with F

connects distinct boundary components bi and bj of F.

Proof. Fix an orientation of F . The orientations of a; b1; . . . ; bn are

induced by the orientation of F . Now, we see that ½qF � ¼ ½a� þ
Pn

i¼1½bi� ¼ 0 A
H1ðE;ZÞ. Thus, we have �½a� ¼

Pn
i¼1½bi�. Let i : qNðKÞ ! E and j : qV !

E denote the inclusion maps, and let i� : H1ðqNðKÞ;ZÞ ! H1ðE;ZÞ and

j� : H1ðqV ;ZÞ ! H1ðE;ZÞ denote the homomorphisms induced by i and j,

respectively. By Lemma 3.5, i� and j� are bijective. Fix an orientation of A.

Let f : H1ðqNðKÞ;ZÞ ! ZlZ and g : H1ðqV ;ZÞ ! ZlZ be isomorphisms

such that f ðqA \ qNðKÞÞ ¼ ð0; 1Þ, gðqA \ qVÞ ¼ ð0; 1Þ, and if gðaÞ ¼ ð1; 0Þ,
then f � i�1

� � j�ðaÞ ¼ ð1; 0Þ, where a is a loop in qV . We see that qA \ qV

and qA \ qNðKÞ are homologous in E. This implies that f � i�1
� � j�ðqA \ qVÞ

¼ ð0; 1Þ, and so f � i�1
� � j� � g�1 is the identity map. Suppose that ðx; yÞ ¼

f � i�1
� ð�½a�Þ and for each bi, ðpi; qiÞ ¼ g � j�1

� ð½bi�Þ. Since F is incompressible,
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the loops b1; . . . ; bn are essential in qV . Thus, there is a pair of integers

ðp; qÞ A ZlZ such that ðp; qÞ is equal to ðpi; qiÞ or ð�pi;�qiÞ for each i.

This implies that there is an integer k A Z such that
Pn

i¼1ðpi; qiÞ ¼ ðkp; kqÞ.
Now, we have ðx; yÞ ¼ f � i�1

� ð�½a�Þ ¼
Pn

i¼1 f � i�1
� ð½bi�Þ ¼

Pn
i¼1 f � i�1

� � j� �
g�1ðpi; qiÞ ¼

Pn
i¼1ðpi; qiÞ ¼ ðkp; kqÞ: Since a is an essential loop in qNðKÞ

and not the meridian of NðKÞ, x and y satisfy either of the following:
� ðx; yÞ ¼ ð1; 0Þ or
� x0 0, y0 0, and x and y are relatively prime.

Thus, it follows that k ¼ 1, and so ðx; yÞ ¼ ðp; qÞ. This implies that jqF \
qA \ qNðKÞj ¼ p and jqF \ qA \ qV j ¼ np. By the assumption that nb 2, we

have jqF \ qA \ qNðKÞj < jqF \ qA \ qV j. This implies that there is an arc a

of F \ A whose endpoints are in qA \ qV . Let d denote the disk in A whose

boundary consists of a and a sub-arc of qA.

Suppose that there are loops of F \ A in d. Let d 0 be an innermost disk

in d and a 0 denote the boundary of d 0. Since F is incompressible, a 0 bounds a

disk d 00 in F . From the irreducibility of E, the properly embedded 2-sphere

d 0 [ d 00 bounds a 3-ball in E. Thus, we can remove a 0 from F \ A by an

isotopy of F along the 3-ball. This contradicts the minimality of jF \ Aj.
Therefore, there are no loops of F \ A in d.

Let a 00 denote an outermost arc in d and d 00 denote the disk bounded by a 00

and a sub-arc of qA. Since there are no bigons in qE bounded by qF and qA,

a 00 connects distinct boundary components of F . Since int d 00 \ F ¼ q, the disk

d 00 is a q-compression disk for F such that F \ d 00 connects distinct boundary

components of F .

Let F 0 denote the surface obtained from F by q-compression using the

boundary compression disk d 00. Then we have jqF \ qV j > jqF 0 \ qV j. Using

the induction hypothesis, K is the core of V .

As in Lemma 3.1, Ma denotes the 3-manifold obtained by gluing the

boundaries of solid tori V and W so that an essential simple closed curve a in

qV and the meridian of W are identified, KMa
denotes the knot in Ma obtained

from a knot K in V , and EMa
denotes the exterior of KMa

.

Lemma 3.7. Let V and W be solid tori. Let K be a knot in V and

EV denote the exterior V � int NðKÞ. Assume that A is a properly embedded

annulus in EV such that qA meets both qNðKÞ and qV, and qA \ qNðKÞ is the

meridian of NðKÞ. If K is the core of V, then for any essential simple closed

curve a in qV, there is a properly embedded essential disk D in EMa
. Moreover,

if for some essential simple closed curve a in qV that is not the meridian of qV,

there exists a properly embedded essential disk D in EMa
, then K is the core

of V.
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Proof. Suppose that K is the core of V . We see that EMa
is homeo-

morphic to the solid torus for any essential simple closed curve a in qV . Thus,

there is a properly embedded essential disk D in EMa
.

Conversely, suppose that there is an essential simple closed curve a in qV

such that there is a properly embedded essential disk D in EMa
and a is not the

meridian of qV . We denote the properly embedded torus qV ¼ qW in EMa
by

T . Assume that D and T intersect transversely.

Claim. The simple closed curve qD is not the meridian of NðKÞ.

Proof. Let d denote the meridian disk of NðKÞ such that qd ¼ qD.

Then we see that D [ d is a non-separating 2-sphere in Ma. On the other

hand, Ma is irreducible since a is not the meridian of V . This is a contra-

diction. Thus, qD is not the meridian of NðKÞ.

Let F denote the component of V \D such that qF contains qD. Then

F is a properly embedded planar surface in EV , jqF \ qNðKÞj ¼ 1, and

qF \ qNðKÞ is not the meridian of NðKÞ. Using Lemma 3.6, K is the core

of V .

Now, we are ready to show Lemma 3.1.

Proof (Proof of Lemma 3.1). Suppose that K is the core of V . Then we

have a properly embedded essential annulus A in EV such that qA meets both

qNðKÞ and qV , and qA \ qNðKÞ is the meridian of NðKÞ. Using Lemma 3.7,

there is a properly embedded essential disk D in EMa
for any essential simple

closed curve a in qV .

Conversely, suppose that there is a properly embedded essential annulus in

EV such that qA meets both qV and qNðKÞ, and there is an essential simple

closed curve a in qV such that there is a properly embedded essential disk D

in EMa
and a is not the meridian of V . If qA \ qNðKÞ is not the meridian of

NðKÞ, then we see that K is the core of V by Lemma 3.4. If qA \ qNðKÞ is

the meridian of NðKÞ, then K is the core of V by Lemma 3.7.

4. An algorithm for the solid torus core recognition problem

In this section, we describe an algorithm for the solid torus core recog-

nition problem.

4.1. Algorithms for deciding whether disks and annuli in the exterior of a knot

are essential. Let TEM
be an n-tetrahedra triangulation of the exterior EM of a

knot K in a compact 3-manifold M. Suppose that EM is irreducible. First,
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we describe that if D is a normal surface with respect to TEM
, then it can be

verified that D is an essential disk in EM in polynomial time of n.

Lemma 4.1. Let TT be a triangulation of the torus T. Suppose that TT

contains n triangles. Then there is a polynomial time algorithm that, given

TT , outputs simple closed curves m and l in the 1-skeleton T
ð1Þ
T such that the

homology classes ½m� and ½l � generate H1ðT ;ZÞ.

Proof. Let ne and nv denote the number of edges and vertices of TT ,

respectively. There is an Oðne þ nvÞ ¼OðnÞ time algorithm that, givenT
ð1Þ
T and

a vertex of TT , outputs a non-contractive simple closed curve passing the given

vertex if it exists ([2]). Thus, we can obtain an essential simple closed curve m

in T
ð1Þ
T in polynomial time of n. Suppose that v is a vertex contained in m.

Let T 0
T denote the triangulation of the annulus obtained by cutting TT along m,

and let vþ and v� denote the vertices of T 0
T obtained from v. A simple path p

in T
0ð1Þ
T connecting vþ and v� is obtained by using a depth-first search starting

at vþ in OðnÞ time. Let l denote the simple closed curve in T
ð1Þ
T obtained from

p by gluing vþ and v�. Now, we see that ½m� and ½l � generate H1ðT ;ZÞ. This

completes the proof.

Let TS be a triangulation of a compact surface S. A properly embedded

simple curve a in S is called a normal curve with respect to TS if for each

triangle ti of TS, a \ ti is a collection of elementary arcs of ti. In a similar way

of normal surfaces, a normal curve with respect to TS is represented by a vector

x ¼ ðx1; . . . ; x3nÞ A Z3n, where n is the number of triangles in TS.

Lemma 4.2. Let TT be a triangulation of the torus T. Suppose that TT

contains n triangles. Let a be a normal curve with respect to TT that is rep-

resented by a vector x ¼ ðx1; . . . ; x3nÞ A Z3n. Assume that each xi is at most

2OðnÞ. Then there is an algorithm that, given TT and x, decides whether a is

essential in T in polynomial time of n.

Proof. By Lemma 4.1, simple closed curves m and l in T
ð1Þ
T such that the

homology classes ½m� and ½l � generate H1ðT ;ZÞ are obtained in polynomial time

of n. Since a is a normal curve with respect to TT , a and m intersect trans-

versely. For a similar reason, a and l also intersect transversely. The simple

closed curve a is essential in T if and only if either of jm \ aj or jl \ aj is odd.

Since each xi is at most 2OðnÞ, jm \ aj and jl \ aj are calculated in polynomial

time of n. Thus, we can decide whether a is essential in T in polynomial time

of n.

Lemma 4.3. Let TEM
be an n-tetrahedra triangulation of the exterior EM

of a knot K in a compact 3-manifold M. Suppose that EM is irreducible. Let

280 Yuya Nishimura



D be a normal surface with respect to TEM
represented by a vector x ¼ ðx1; . . . ;

x7nÞ A Z7n. Suppose that each coordinate xi is less than or equal to 27n�1.

Then there is an algorithm that, given TEM
and x, decides whether D is an

essential disk in EM in polynomial time of n.

Proof. A normal surface D is the disk if and only if D is connected,

wðDÞ ¼ 1, and qD0q. There is an algorithm that, given TEM
and x, outputs

the number of components of D in polynomial time of n log 27n�1 ¼
ð7n2 � nÞ log 2 ([1]). Thus, we can verify whether D is connected in polyno-

mial time of n. By Lemma 2.11, wðDÞ is calculated in polynomial time of n,

and it can be verified that qD0q in polynomial time of n. Therefore, we

can check whether D is the disk in polynomial time of n.

A disk D in EM is essential if and only if qD is essential in qEM since EM

is irreducible. Let qTEM
denote the triangulation of qEM obtained from TEM

and n 0 denote the number of triangles in qTEM
. Suppose that y ¼ ðy1; . . . ;

y3n 0 Þ A Z3n 0
is the representation vector of the normal curve qD with respect to

qTEM
. Since xi a 27n�1 for each xi, we see that yi is at most 2OðnÞ. Thus, we

can verify that qD is essential in qEM in polynomial time of n by Lemma 4.2.

Let TE be an n-tetrahedra triangulation of the exterior E of a knot K in

the solid torus V and A be a normal surface with respect to TE . We describe

that it can be verified that A is an essential annulus in E such that qA meets

both qNðKÞ and qV in polynomial time of n.

Lemma 4.4. Let E denote the exterior of a knot K in the solid torus V and

A be a properly embedded annulus in E such that qA meets both qNðKÞ and qV.

Assume that jrðKÞj0 0. Then A is essential if and only if qA \ qV is essential

in qV.

Proof. Suppose that qA \ qV is inessential in qV . Then there is a disk

D in qV bounded by a component of qA, and the disk obtained by pushing D

to the interior of E is a compression disk for A. Thus, A is inessential.

Conversely, suppose that A is inessential. Since qA meets both qNðKÞ
and qV , A is q-incompressible and not parallel to qE. This implies that A is

compressible, i.e. there is a compression disk D for A. Let A 0 and A 00 denote

the disks obtained by compressing A using D. Suppose that qA 0 meets qV .

By the assumption that jrðKÞj0 0, E is q-irreducible by Lemma 3.2. There-

fore, qA 0 ¼ qA \ qV is inessential in qV .

Lemma 4.5. Let TE be an n-tetrahedra triangulation of the exterior E of

a knot K in the solid torus V and A be a normal surface with respect to TE

represented by a vector x ¼ ðx1; . . . ; x7nÞ A Z7n. Suppose that jrðKÞj0 0 and

each coordinate xi is less than or equal to 27n�1. Then there is a polynomial
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time algorithm that, given TE and x, decides whether A is an essential annulus in

E such that qA meets both qNðKÞ and qV.

Proof. A normal surface A is a properly embedded annulus in E such

that qA meets both qNðKÞ and qV if and only if A is connected, wðAÞ ¼ 0, and

qA meets both qNðKÞ and qV . The number of components of A is calculated

in polynomial time of n by [1]. Thus, we can verify whether A is connected

in polynomial time of n. The Euler characteristic wðAÞ can be calculated in

polynomial time of n by Lemma 2.11. It also can be verified whether qA

meets both qNðKÞ and qV in polynomial time of n. Therefore, it can be

verified that A is a properly embedded annulus in E such that qA meets both

qNðKÞ and qV in polynomial time of n.

Since jrðKÞj0 0, an annulus A in E is essential if and only if qF \ qV

is essential in qV by Lemma 4.4. By Lemma 4.2, we can decide whether

qA \ qV is essential in qV in polynomial time of n. Thus, it can be verified

whether A is essential in E in polynomial time of n.

4.2. An algorithm for gluing the boundaries of two solid tori. In order to solve

the solid torus core recognition problem using Lemma 3.1, we describe an

algorithm for gluing the boundaries of two solid tori in polynomial time.

Lemma 4.6. Let TM be an n-tetrahedra triangulation of a compact

3-manifold M with non-empty boundary and a be a simple closed curve in

qM represented by a collection of edges of T
ð1Þ
M . Let N be the 3-manifold

obtained by gluing a 2-handle along a. Then there is an algorithm that, given

TM and a, outputs a triangulation TN of N in polynomial time of n. Moreover,

sizeðTNÞ is at most OðnÞ.

Proof. We can obtain TN as follows. Let T 00
M denote the triangulation

obtained by barycentrically subdividing TM twice. The barycentric subdivision

is performed in OðnÞ time, and sizeðT 00
MÞ is at most OðnÞ. Let qT 00

M denote the

triangulation of qM obtained from T 00
M . Let A denote the triangulation of an

annulus in qM consisting of the faces of qT 00
M that meet a. We can obtain A

in OðsizeðqT 00
MÞÞ ¼OðnÞ time, and sizeðAÞ is at most OðnÞ. Let B1; . . . ;BsizeðAÞ

denote the triangulated 3-balls depicted as in Figure 4.1. Each Bi has the

two triangle faces and the two triangulated quadrilateral faces. Then TN is

obtained by gluing a triangle face of Bi and a face of A, and gluing the faces of

adjacent triangulated 3-balls Bi and Bj . If adjacent quadrilateral faces cannot

be glued, then the faces are glued by adding a tetrahedron (See Figure 4.2).

This procedure is performed in OðnÞ time and increases the number of tetra-

hedra by at most OðnÞ. Thus, TN is obtained in polynomial time of n, and

sizeðTNÞ is at most OðnÞ.
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As in Lemma 3.1, Ma denotes the 3-manifold obtained by gluing the

boundaries of solid tori V and W so that an essential simple closed curve a in

qV and the meridian of W are identified, and KMa
denotes the knot in Ma

obtained from a knot K in V .

Lemma 4.7. Let V and W be solid tori and mW be the meridian of W.

Let TV be an n-tetrahedra triangulation of V. Suppose that K is a knot in V

represented by a collection of edges of T
ð1Þ
V and a is an essential simple closed

curve in qV represented by a collection of edges of T
ð1Þ
V . Then there is an

algorithm that, given TV , K, and a, outputs a triangulation TMa
of Ma and the

knot KMa
represented by a collection of edges of T

ð1Þ
Ma

in polynomial time of n.

Moreover, sizeðTMa
Þ is at most OðnÞ.

Proof. We obtain TMa
and KMa

as follows. Let V 0 be the 3-manifold

obtained from V by gluing a 2-handle along a. Using Lemma 4.6, a trian-

gulation TV 0 of V 0 is obtained from TV in polynomial time of n, and sizeðTV 0 Þ
is at most OðnÞ. Then we obtain TMa

by taking the cone of qTV 0 , where

Fig. 4.1. A triangulated 3-ball Bi

Fig. 4.2. Gluing adjacent quadrilateral faces
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qTV 0 is a triangulation of qV 0 obtained from TV 0 . This procedure increases the

number of tetrahedra by OðsizeðqTV 0 ÞÞ ¼OðnÞ. Thus, TMa
is obtained in poly-

nomial time of n, T
ð1Þ
Ma

contains KMa
, and sizeðTMa

Þ is at most OðnÞ.

4.3. Proof of Theorem 1.1. Now, we are ready to show Theorem 1.1.

Proof (Proof of Theorem 1.1). Let TV be an n-tetrahedra triangulation

of the solid torus V and K a knot in V represented by a collection of edges of

T
ð1Þ
V . We consider the following non-deterministic algorithm.

(1) Check whether jrðKÞj ¼ 1. If jrðKÞj0 1, then output ‘‘no’’.

(2) Construct a triangulation TEV
of the exterior EV of K , and let

n1 ¼ sizeðTEV
Þ.

(3) Guess a vector x ¼ ðx1; . . . ; x7n1Þ A Z7n1 such that each coordinate

xi is less than or equal to 27n1�1.

(4) If x represents a normal surface with respect to TEV
, then let A

denote it. Otherwise output ‘‘no’’.

(5) If A is not an essential annulus in EV such that qA meets both

qNðKÞ and qV , then output ‘‘no’’.

(6) Take an essential simple closed curve a in qV such that a is not the

meridian of V and a is contained in T
ð1Þ
V .

(7) Construct a triangulation TMa
and the knot KMa

, where TMa
is a

triangulation of the 3-manifold Ma obtained by gluing qV and the

boundary of the solid torus W so that a is identified with the me-

ridian of W and KMa
is the knot in Ma obtained from K .

(8) Construct a triangulation TEMa
of the exterior EMa

¼ Ma �
int NðKMa

Þ, and let n2 ¼ sizeðTEMa
Þ.

(9) Guess a vector y ¼ ðy1; . . . ; y7n2Þ A Z7n2 such that each coordinate yi
is less than or equal to 27n2�1.

(10) If y represents a normal surface with respect to TEMa
, then let D

denote it. Otherwise output ‘‘no’’.

(11) If D is an essential disk in EMa
, then output ‘‘yes’’. Otherwise

output ‘‘no’’.

Claim. The above algorithm outputs ‘‘yes’’ if and only if K is the core

of V.

Proof. Suppose that K is the core of V . Since jrðKÞj ¼ 1, the 1st step

does not output ‘‘no’’. From Lemma 2.6, there is an essential annulus A such

that A is a vertex surface with respect to TE . Let x ¼ ðx1; . . . ; x7n1Þ A Z7n1

denote the vector representation of A. Using Theorem 2.8, we see that each

coordinate xi is at most 27n1�1. This implies that we can guess the vector x

representing the essential annulus A in E in the 3rd step. Thus, the 4th step
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and 5th step do not output ‘‘no’’. From Theorem 2.7 and Lemma 3.1, there

is an essential disk D in EMa
such that D is a vertex surface with respect to

TEMa
. Since D is a vertex surface, we can guess the vector representation y of

D in the 9th step, and the 10th step does not output ‘‘no’’. Since D is an

essential disk, the 11th step outputs ‘‘yes’’.

Conversely, suppose that K is not the core of V . If jrðKÞj0 1, then the

1st step outputs ‘‘no’’. Suppose that jrðKÞj ¼ 1. From Lemma 3.1, there are

no properly embedded essential annuli in EV such that the annuli meet both

qNðKÞ and qV or there are no properly embedded essential disks in EMa
for

any essential simple closed curve a in qV . Therefore, the algorithm outputs

‘‘no’’ in the 4th, 5th, 10th, or 11th step.

Claim. The running time of the above algorithm is bounded by a poly-

nomial of n.

Proof. The 1st step is performed in polynomial time of n by Lemma 2.4.

Using Lemma 2.3, the 2nd step is performed in polynomial time of n, and n1
is at most OðnÞ. Since each coordinate xi is less than or equal to 27n1�1, x is

represented by a binary code whose length is at most Oðn21Þ. Thus, we can

guess x in Oðn21Þ ¼ Oðn2Þ time in the 3rd step. By Lemma 2.10, the 4th step

runs in polynomial time of n. Lemma 4.5 implies that the 5th step runs in

polynomial time of n. From Lemma 4.1, two simple closed curves m and l

in qV satisfying that ½m� and ½l � generate H1ðqV ;ZÞ is obtained in polynomial

time of n. Since at least one of m and l is not the meridian of V , we can

obtain a simple closed curve a in qV such that a is not the meridian of V by

calculating the homology classes ½m� and ½l � in H1ðV ;ZÞ. Therefore, the 6th

step runs in polynomial time of n. By Lemma 4.7, the 7th step is performed in

polynomial time of n, and sizeðTMÞ is at most OðnÞ. A triangulation TEMa
of

the exterior EMa
¼ Ma � int NðKMa

Þ is obtained by barycentrically subdividing

TMa
twice and removing the tetrahedra containing KMa

. Thus, we obtain TEMa

in polynomial time of n, and sizeðTEMa
Þ is at most OðnÞ. In a similar way of

the 3rd step and the 4th step, the 9th step and the 10th step run in polynomial

time of n. Since jrðKÞj0 0, EMa
is irreducible. Thus, the 11th step runs in

polynomial time of n by Lemma 4.3. Since each step is performed in poly-

nomial time of n, the above algorithm runs in polynomial time of n.

Now, we see that there is a non-deterministic polynomial time algorithm

for the solid torus core recognition problem. Therefore, this problem is in

NP.

4.4. Proof of Theorem 1.2. For every compact surface S, the S � ½0; 1� rec-
ognition problem is the problem of determining that the underlying 3-manifold
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of a given triangulation is homeomorphic to S � ½0; 1�. Haraway and Ho¤-

man showed that this problem is in co-NP among orientable irreducible

3-manifolds.

Theorem 4.8 (Haraway-Ho¤man [5]). For every compact surface S,

the S � ½0; 1� recognition problem is in co-NP among orientable irreducible

3-manifolds.

Proof (Proof of Theorem 1.2). Let TV be an n-tetrahedra triangulation

of the solid torus V and K a knot in V represented by a collection of edges

of T
ð1Þ
V . We consider the following non-deterministic algorithm.

(1) If jrðKÞj0 1, then output ‘‘yes’’.

(2) Construct a triangulation TE of the exterior E ¼ V � int NðKÞ.
(3) If E is not homeomorphic to T 2 � ½0; 1�, then output ‘‘yes’’, where T 2

is the torus. Otherwise output ‘‘no’’.

The knot K is not the core of V if and only if E is not homeomorphic to

T 2 � ½0; 1�. Thus, this algorithm outputs ‘‘yes’’ if and only if K is not the

core of V . By Lemma 2.4 and Lemma 2.3, the 1st step and the 2nd step

run in polynomial time of n. In the 3rd step, we see that jrðKÞj ¼ 1 since if

jrðKÞj0 1, then the 1st step outputs ‘‘yes’’. This implies that E is irreducible

by Lemma 3.2. Using Theorem 4.8, the 3rd step is performed in non-

deterministic polynomial time of n. Since there is a non-deterministic poly-

nomial time algorithm that decides whether K is not the core of V , the solid

torus core recognition problem is in co-NP.

4.5. The Hopf link recognition problem. In this subsection, we give an

alternate proof that the Hopf link recognition problem is in NP and show

that problem is in co-NP.

Definition 4.9 (The Hopf link recognition problem). Let D be a diagram

of a link L in S3. The Hopf link recognition problem is a problem that, given

D, decides L is the Hopf link.

Let D be a diagram of a link L in S3. Suppose that c is the number of

crossings of D and k is the number of components of L. The crossing measure

n of D is defined as

n ¼ cþ k � 1:

The computational complexity of a problem whose input is a link diagram is

measured by the crossing measure of the input diagram. See [6] for details.

Lemma 4.10 (Hass-Lagarias-Pippenger [6]). Let D be a diagram of a link

L in S3 and n the crossing measure of D. Then there is an Oðn log nÞ time
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algorithm that, given D, outputs a triangulation TL of S3 such that the 1-skeleton

T
ð1Þ
L contains L. Furthermore, sizeðTLÞ is at most OðnÞ.

Corollary 1.3. The Hopf link recognition problem is in NP \ co-NP.

Proof. Let D be a diagram of a link L in S3. Suppose that the crossing

measure of D is n.

Claim. The Hopf link recognition problem is in NP.

Proof. We consider the following non-deterministic algorithm.

(1) If the number of components of L is two, then let L ¼ K1 [ K2.

Otherwise output ‘‘no’’.

(2) If K1 is the unknot in S3, then construct a triangulation TE1
of the

solid torus E1 ¼ S3 � int NðK1Þ such that T
ð1Þ
E1

contains K2. Other-

wise output ‘‘no’’.

(3) If K2 is the core of E1, then output ‘‘yes’’. Otherwise output ‘‘no’’.

The link L ¼ K1 [ K2 is the Hopf link if and only if K1 is the unknot and

K2 is the core of E1 ¼ S3 � int NðK1Þ. Therefore, the above algorithm outputs

‘‘yes’’ if and only if L is the Hopf link.

The 1st step is performed in OðnÞ time. Let D1 be the diagram of K1

that is contained in D. By Theorem 2.9, we can determine whether D1 is a

diagram of the unknot in non-deterministic polynomial time of n. By Lemma

4.10, a triangulation TL of S3 such that the 1-skeleton T
ð1Þ
L contains L is

constructed in polynomial time of n, and sizeðTLÞ is at most OðnÞ. A triangu-

lation TE1
of E1 ¼ S3 � int NðK1Þ is obtained by barycentrically subdividing

T
ð1Þ
L twice and removing the tetrahedra containing K1. This implies that TE1

is

obtained in polynomial time of n, and sizeðTE1
Þ is at most OðnÞ. Thus, the

2nd step runs in polynomial time of n. Using Theorem 1.1, the 3rd step is

performed in non-deterministic polynomial time of n. Therefore, the above

algorithm runs in non-deterministic polynomial time of n. Since there is a

non-deterministic polynomial time algorithm for the Hopf link recognition

problem, this is in NP.

Claim. The Hopf link recognition problem is in co-NP.

Proof. We consider the following non-deterministic algorithm.

(1) If the number of components of L is two, then let L ¼ K1 [ K2.

Otherwise output ‘‘yes’’.

(2) If K1 is not the unknot in S3, then output ‘‘yes’’. Otherwise con-

struct a triangulation TE1
of the solid torus E1 ¼ S3 � int NðK1Þ such

that T
ð1Þ
E1

contains K2.

(3) If K2 is not the core of E1, then output ‘‘yes’’. Otherwise output

‘‘no’’.
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If L is not the Hopf link, then
� the number of components of L is not two,
� K1 is not the unknot, or
� K1 is the unknot and K2 is not the core of E1.

Thus, the above algorithm outputs ‘‘yes’’ if L is not the Hopf link.

Conversely, if L is the Hopf link, then this algorithm outputs ‘‘no’’ in the

3rd step. Thus, this algorithm outputs ‘‘yes’’ if and only if L is not the Hopf

link.

We see that the 1st step runs in polynomial time of n. The 2nd step is

performed in non-deterministic polynomial time of n since the unknot recog-

nition is in co-NP ([10]). Using Theorem 1.2, we see that the 3rd step runs

in non-deterministic polynomial time of n. Since there is a non-deterministic

polynomial time algorithm that decides whether L is not the Hopf link, the

Hopf link recognition problem is in co-NP.

From the above two claims, the Hopf link recognition problem is in

NP \ co-NP.
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