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Abstract. In this paper, we consider the problem of exponential instability behavior

of random dynamical systems described by cocycles in Banach spaces. We prove some

continuous and discrete versions of Datko type theorem for the exponential instability

in average of cocycles. In addition, two characterizations of the exponential instability

in average in terms of Lyapunov functions are given.

1. Introduction

It is well known that the topic of (non)uniform exponential behaviors of

nonautonomous di¤erential equations in Banach spaces has been intensively

studied, both in the deterministic case and in the stochastic case. During the

last couple of decades, various results concerning this subject have witnessed

considerable development. One of the most important and fundamental results

in the exponential stability theory of dynamical systems was given by Datko [8]

in 1972.

Theorem 1.1 (Datko’s Theorem). A uniformly exponentially bounded evo-

lution family U ¼ fUðt; sÞgtbsb0 on a Banach space X is uniformly exponentially

stable if and only if there exists pb 1 such that

sup
sb0

ðy
s

kUðt; sÞxkp
dt < y;

for all x A X.

In fact, the Theorem 1.1 was initially proved by Datko [7] in 1970 for

C0-semigroups acting on Hilbert spaces and p ¼ 2. Later, using di¤erent
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techniques, Pazy in [23] proved the case pb 1 on arbitrary Banach spaces.

Also, we note that a discrete-time version of Datko’s theorem was first estab-

lished by Zabczyk in [32], for the particular case of the discrete semigroups on

Banach spaces.

After the seminal work of Datko, with the help of Datko-Pazy theorem,

Perron’s methods, discrete-time methods, Banach function spaces, Lyapunov

functions, Lyapunov norms and other ways, there has been a great number

of papers devoted to this area (see [1, 2, 3, 4, 5, 10, 11, 13, 14, 18, 19, 20, 21,

22, 24, 26, 27, 28]) and the references therein). For instance, in [27] and [28]

Preda and his collaborators obtained Datko type conditions for the existence

of the nonuniform exponential stability in the sense of Barreira and Valls [4]

for linear skew-product semiflows and evolution families respectively. In [11]

Dragičević gave some Datko type characterizations of strong nonuniform

exponential behavior: stability, instability and dichotomy, for both discrete and

continuous time cases. Recently, the work [11] motivated Lupa and Popescu

[19] to describe the nonuniform exponential stability of evolution families, in

terms of a class of admissible Banach spaces. Furthermore, we note that the

techniques were gradually improved and expanded in the following directions:

from uniform behavior to nonuniform behavior (see [1, 5, 10, 11, 18, 27, 28]),

from exponential behavior to polynomial behavior (see [6, 15, 16]), from Datko

type theorems to Barbashin type theorems (see [12, 25, 31]), from the deter-

ministic case to the stochastic case (see [9, 17, 29, 30]).

Since some stochastic di¤erential equations arising in nature or engineering

involve the discussion of asymptotic properties of cocycles, the study of expo-

nential behaviors of cocycles has attracted the attention of many researchers.

In particular, Stoica [29] gave a Perron type characterization for uniform

exponential dichotomy in mean square of stochastic cocycles in Hilbert spaces.

Later, Barreira, Dragičević and Valls [2] characterized the exponential dichot-

omy in average of discrete-time cocycles in terms of an admissibility prop-

erty (see [3] for related results in the case of continuous time). Moreover,

a notable contribution in this direction was made by Dragičević in [9] who

obtained an interesting Datko type theorem for exponential stability in average

of cocycles.

Theorem 1.2 (see [9]). Let F be a cocycle, which is exponentially bounded

in average. Then it is exponentially stable in average if and only if there exist

C; p > 0 such thatðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� �p

dt

� �1=p
aC

ð
W

kzðoÞkdmðoÞ;

for all ðs; zÞ A Rþ �F.
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Inspired by [9], it is natural to study the exponential instability in average

of cocycles. The main purpose of this paper is to give some continuous and

discrete versions of Datko type theorem for the exponential instability in

average of cocycles in Banach spaces. In addition, we use our Datko type

results to obtain necessary and su‰cient conditions for the existence of expo-

nential instability in average in terms of proper Lyapunov functions. Variants

for exponential instability in average of some well-known results in stability

theory (Datko [8], Dragičević [9], Zabczyk [32], Preda et al. [27]) are obtained.

2. Preliminaries

In this section, we give some notations and definitions that will be used

in the sequel. We denote by N the set of natural numbers, by N� the set of

positive integers, by R the set of real numbers, by Rþ ¼ ½0;þyÞ and by D ¼
fðt; sÞ A R2

þ : tb sg. For any real number y, the largest integer less than or

equal to y is denoted by ½y�. Let W ¼ ðW;B; mÞ be a probability space, X a

Banach space, LðX Þ the set of all invertible bounded linear operators acting

on X . Let us consider

F ¼ z : W ! X : z is Bochner measurable and

ð
W

kzðoÞkdmðoÞ < y

� �
;

which is a Banach space endowed with the norm

kzk1 :¼
ð
W

kzðoÞkdmðoÞ:

Definition 2.1 (see [9]). A measurable map j : Rþ �W ! W is called a

semiflow on W if the following conditions hold:

( i ) jð0;oÞ ¼ o for all o A W;

(ii) jðtþ s;oÞ ¼ jðt; jðs;oÞÞ for all ðt; s;oÞ A R2
þ �W.

Definition 2.2 (see [9]). Let j be a semiflow on W. A strongly mea-

surable map F : Rþ �W ! LðXÞ (i.e., ðt;oÞ7�!Fðt;oÞx is Bochner measur-

able for each x A X ) is called a cocycle over j if the following conditions are

satisfied:

( i ) Fð0;oÞ ¼ Id (where Id is the identity operator on X ) for all o A W;

(ii) Fðtþ s;oÞ ¼ Fðt; jðs;oÞÞFðs;oÞ for all ðt; s;oÞ A R2
þ �W.

In what follows, we denote by

Foðt; sÞ ¼ Fðt;oÞFðs;oÞ�1; Eðt; s;oÞ A R2
þ �W:

It is easy to see that Foðt; rÞ ¼ Foðt; sÞFoðs; rÞ, for all tb sb rb 0 and o A W.
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Definition 2.3. A cocycle F : Rþ �W ! LðXÞ is said to be exponen-

tially bounded in average if there exist K > 0 and a > 0 such that

ð
W

kFoðt; sÞzðoÞkdmðoÞaKeaðt�sÞ
ð
W

kzðoÞkdmðoÞ ð2:1Þ

for all ðt; s; zÞ A D�F.

Throughout the paper, for given a cocycle F over a semiflow j, we shall

always assume that F is exponentially bounded in average.

Definition 2.4. A cocycle F : Rþ �W ! LðXÞ is exponentially unstable

in average if there are N > 0 and v > 0 such that

ð
W

kFoðt; sÞzðoÞkdmðoÞbNevðt�sÞ
ð
W

kzðoÞkdmðoÞ; ð2:2Þ

for all ðt; s; zÞ A D�F.

Remark 2.5. A cocycle F is exponentially unstable in average if and only

if there exist N > 0 and v > 0 such that

ð
W

kFoðt; t0ÞzðoÞkdmðoÞbNevðt�sÞ
ð
W

kFoðs; t0ÞzðoÞkdmðoÞ;

for all tb sb t0 b 0 and z A F.

3. Exponential instability in average

In this section, we present the main results of this paper. First, the con-

tinuous version of Datko type theorem for exponential instability in average of

cocycles is established. Next, we prove two discrete characterizations of Datko

type by using the continuous version. Finally, we show how exponential insta-

bility in average can be characterized in terms of Lyapunov functions.

The following Theorem 3.1 is a crucial result in this paper, which is an

integral characterization of Datko type.

Theorem 3.1. The cocycle F is exponentially unstable in average if and

only if there exist C > 0 and p > 0 such that

ðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

� �1=p
aC

ð
W

kzðoÞkdmðoÞ
� ��1

; ð3:1Þ

for all ðs; zÞ A Rþ � ðFnf0gÞ.
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Proof. Necessity. If the cocycle F is exponentially unstable in average,

then by Definition 2.4, there are N > 0 and v > 0 such that (2.2) holds. Take

now any p > 0. By (2.2), we haveðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

a

ðy
s

Nevðt�sÞ
ð
W

kzðoÞkdmðoÞ
� ��p

dt

¼ N�p

ð
W

kzðoÞkdmðoÞ
� ��pðy

s

e�vpðt�sÞ dt

¼ N�p

ð
W

kzðoÞkdmðoÞ
� ��pðy

0

e�vpt dt

¼ N�pðvpÞ�1

ð
W

kzðoÞkdmðoÞ
� ��p

for all ðs; zÞ A Rþ � ðFnf0gÞ. Hence, (3.1) holds with C ¼ N�1ðvpÞ�1=p.

Su‰ciency. Let ðt; s; zÞ A D� ðFnf0gÞ and t A ½t; tþ 1�. We note that it

follows from (2.1) thatð
W

kFoðt; sÞzðoÞkdmðoÞ
� �p

¼
ð
W

kFoðt; tÞFoðt; sÞzðoÞkdmðoÞ
� �p

a Keaðt�tÞ
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� �p

aKpeap
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� �p

;

and thusð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

aKpeap
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

:

By integrating on ½t; tþ 1� and using (3.1), we have

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

a

ð tþ1

t

K peap
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

aKpeap
ðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

aCpK peap
ð
W

kzðoÞkdmðoÞ
� ��p

;
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which implies that

ð
W

kFoðt; sÞzðoÞkdmðoÞbC�1K�1e�a

ð
W

kzðoÞkdmðoÞ; ð3:2Þ

for all ðt; s; zÞ A D�F.

Taking now tb sb 0, t A ½s; t� and z A Fnf0g. By (3.2), we deduce

that ð
W

kFoðt; sÞzðoÞkdmðoÞ ¼
ð
W

kFoðt; tÞFoðt; sÞzðoÞkdmðoÞ

bC�1K�1e�a

ð
W

kFoðt; sÞzðoÞkdmðoÞ;

which yields that

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

aCpK peap
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

:

Integrating now on ½s; t� and using (3.1), we get

ðt� sÞ1=p
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��1

a

ð t
s

C pK peap
ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

� �1=p

aCKea
ðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

� �1=p

aC2Kea
ð
W

kzðoÞkdmðoÞ
� ��1

:

Therefore

C

ð
W

kFoðt; sÞzðoÞkdmðoÞbC�1K�1e�aðt� sÞ1=p
ð
W

kzðoÞkdmðoÞ; ð3:3Þ

for all ðt; s; zÞ A D�F.

From (3.2) and (3.3) we observe that

ð
W

kFoðt; sÞzðoÞkdmðoÞb
1þ ðt� sÞ1=p

ð1þ CÞCKea
ð
W

kzðoÞkdmðoÞ; ð3:4Þ

for all ðt; s; zÞ A D�F.
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It follows from (3.4) that there exists x A N� such that

ð
W

kFoðt; sÞzðoÞkdmðoÞb e

ð
W

kzðoÞkdmðoÞ

for all t� sb x and z A F: ð3:5Þ

For each ðt; sÞ A D, there exist n A N and r A ½0; xÞ such that t� s ¼ nxþ r.

By (3.5) and (3.2), we obtain that

ð
W

kFoðt; sÞzðoÞkdmðoÞ ¼
ð
W

kFoðnxþ sþ r; sÞzðoÞkdmðoÞ

b e

ð
W

kFoððn� 1Þxþ sþ r; sÞzðoÞkdmðoÞ

b � � �

b en
ð
W

kFoðsþ r; sÞzðoÞkdmðoÞ

bC�1K�1e�aen
ð
W

kzðoÞkdmðoÞ

¼ C�1K�1e�ðaþ1Þenþ1

ð
W

kzðoÞkdmðoÞ

bC�1K�1e�ðaþ1Þeðt�sÞ=x
ð
W

kzðoÞkdmðoÞ;

and thus (2.2) holds with N ¼ C�1K�1e�ðaþ1Þ and v ¼ 1=x. The proof is

complete.

We now give below a discrete version of the Datko type theorem by

making use of Theorem 3.1.

Theorem 3.2. The cocycle F is exponentially unstable in average if and

only if there exist ~CC; p > 0 such that

Xy
n¼½s�þ1

ð
W

kFoðn; sÞzðoÞkdmðoÞ
� ��p

0
@

1
A

1=p

a ~CC

ð
W

kzðoÞkdmðoÞ
� ��1

; ð3:6Þ

for all ðs; zÞ A Rþ � ðFnf0gÞ.

Proof. Necessity. We suppose that the cocycle F is exponentially

unstable in average. Using (2.2) we deduce that for any p > 0,
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Xy
n¼½s�þ1

ð
W

kFoðn; sÞzðoÞkdmðoÞ
� ��p

a
Xy

n¼½s�þ1

Nevðn�sÞ
ð
W

kzðoÞkdmðoÞ
� ��p

¼ N�p

ð
W

kzðoÞkdmðoÞ
� ��p Xy

n¼½s�þ1

e�vpðn�sÞ

¼ evpðs�½s��1Þ

1� e�vp
N�p

ð
W

kzðoÞkdmðoÞ
� ��p

a
N�p

1� e�vp

ð
W

kzðoÞkdmðoÞ
� ��p

;

and we conclude that (3.6) holds with ~CC ¼ N�1ð1� e�vpÞ�1=p.

Su‰ciency. Let ðt; s; zÞ A D� ðFnf0gÞ. If sa ta ½s� þ 1, then by (2.1),

we haveð
W

kFoð½s� þ 1; sÞzðoÞkdmðoÞ ¼
ð
W

kFoð½s� þ 1; tÞFoðt; sÞzðoÞkdmðoÞ

aKea
ð
W

kFoðt; sÞzðoÞkdmðoÞ: ð3:7Þ

From (3.6) and (3.7) we obtain that

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

aKpeap
ð
W

kFoð½s� þ 1; sÞzðoÞkdmðoÞ
� ��p

a ~CCpK peap
ð
W

kzðoÞkdmðoÞ
� ��p

:

Integrating now on ½s; ½s� þ 1� we deduce that

ð ½s�þ1

s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

a ~CCpK peap
ð ½s�þ1

s

ð
W

kzðoÞkdmðoÞ
� ��p

dt

a ~CCpK peap
ð
W

kzðoÞkdmðoÞ
� ��p

: ð3:8Þ

If tb ½s� þ 1, we denote by i ¼ ½t�. Then, it follows from (2.1) that
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ð
W

kFoði þ 1; sÞzðoÞkdmðoÞ ¼
ð
W

kFoði þ 1; tÞFoðt; sÞzðoÞkdmðoÞ

aKea
ð
W

kFoðt; sÞzðoÞkdmðoÞ;

and thus ð iþ1

i

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

aKpeap
ð
W

kFoði þ 1; sÞzðoÞkdmðoÞ
� ��p

: ð3:9Þ

From (3.9) and (3.6) we get thatðy
½s�þ1

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

¼
Xy

i¼½s�þ1

ð iþ1

i

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

aKpeap
Xy

i¼½s�þ1

ð
W

kFoði þ 1; sÞzðoÞkdmðoÞ
� ��p

¼ Kpeap
Xy

i¼½s�þ2

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

a ~CCpK peap
ð
W

kzðoÞkdmðoÞ
� ��p

: ð3:10Þ

Combining (3.8) with (3.10), we have thatðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dta 2 ~CCpK peap
ð
W

kzðoÞkdmðoÞ
� ��p

:

Therefore, (3.1) holds with C ¼ 21=p ~CCKea. Now by Theorem 3.1, we conclude

that F is exponentially unstable in average.

Another discrete characterization of the exponential instability in average

is given by:

Theorem 3.3. Assume that the cocycle F has exponential decay in average,

that is, there exist ~KK > 0 and ~aa > 0 such thatð
W

kFoðt; sÞzðoÞkdmðoÞb ~KKe�~aaðt�sÞ
ð
W

kzðoÞkdmðoÞ ð3:11Þ
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for all ðt; s; zÞ A D�F. Then it is exponentially unstable in average if and only

if there exist ~CC; p > 0 such that

Xy
n¼0

ð
W

kFoðsþ n; sÞzðoÞkdmðoÞ
� ��p

 !1=p
a ~CC

ð
W

kzðoÞkdmðoÞ
� ��1

; ð3:12Þ

for all ðs; zÞ A Rþ � ðFnf0gÞ.

Proof. Necessity. It is a simple verification that (3.12) holds for any

p > 0 and ~CC ¼ N�1ð1� e�vpÞ�1=p, where N, v are given by Definition 2.4.

Su‰ciency. Let ðs; zÞ A Rþ � ðFnf0gÞ. Using (3.11) and (3.12) we ob-

tain thatðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

¼
Xy
n¼0

ð sþnþ1

sþn

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

¼
Xy
n¼0

ð sþnþ1

sþn

ð
W

kFoðt; sþ nÞFoðsþ n; sÞzðoÞkdmðoÞ
� ��p

dt

a
Xy
n¼0

ð sþnþ1

sþn

~KK�pe ~aapðt�s�nÞ
ð
W

kFoðsþ n; sÞzðoÞkdmðoÞ
� ��p

dt

a
Xy
n¼0

~KK�pe ~aap

ð
W

kFoðsþ n; sÞzðoÞkdmðoÞ
� ��p

a ~CCp ~KK�pe ~aap

ð
W

kzðoÞkdmðoÞ
� ��p

:

Hence (3.1) holds with C ¼ ~CCK�1e ~aa. By virtue of Theorem 3.1, we conclude

that F is exponentially unstable in average.

Remark 3.4. Theorems 3.1, 3.2 and 3.3 are certain versions of the classical

exponential stability results due to Datko [8], Dragičević [9], and Zabczyk [32],

for exponential instability in average of cocycles.

In the following, we give two characterizations for the exponential insta-

bility in average of cocycles by using Lyapunov functions.

Theorem 3.5. The cocycle F is exponentially unstable in average if and

only if there exist p > 0 and W : Rþ � ðFnf0gÞ ! Rþ such that:

( i ) there exists L > 0 such that Wðt; zÞaLð
Ð
W
kzðoÞkdmðoÞÞ�p

, for all

ðt; zÞ A Rþ � ðFnf0gÞ;
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(ii) Wðt;Foðt; sÞzðoÞÞ þ
Ð t
s
ð
Ð
W
kFoðt; sÞzðoÞkdmðoÞÞ�p

dt ¼Wðs; zðoÞÞ, for
all ðt; s; zÞ A D� ðFnf0gÞ, where Foðt; sÞzðoÞ ¼ Fðt;oÞFðs;oÞ�1

zðoÞ.

Proof. Necessity. If the cocycle F is exponentially unstable in average,

then by Definition 2.4, there are N > 0 and v > 0 such that (2.2) holds. Take

an arbitrary p > 0. We define W : Rþ � ðFnf0gÞ ! Rþ by the formula

Wðt; zÞ ¼
ðy
t

ð
W

kFoðt; tÞzðoÞkdmðoÞ
� ��p

dt: ð3:13Þ

It follows from (2.2) that

Wðt; zÞa
ðy
t

Nevðt�tÞ
ð
W

kzðoÞkdmðoÞ
� ��p

dt

¼ N�p

ð
W

kzðoÞkdmðoÞ
� ��pðy

t

e�vpðt�tÞ dt

¼ N�pðvpÞ�1

ð
W

kzðoÞkdmðoÞ
� ��p

;

which shows that the first assertion holds with L ¼ N�pðvpÞ�1. Moreover, by

(3.13), it is clear that

Wðt;Foðt; sÞzðoÞÞ ¼
ðy
t

ð
W

kFoðt; tÞFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

¼
ðy
t

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

¼ Wðs; zðoÞÞ �
ð t
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt:

Su‰ciency. We note thatð t
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dtaWðs; zðoÞÞaL

ð
W

kzðoÞkdmðoÞ
� ��p

;

for all ðt; s; zÞ A D� ðFnf0gÞ. Now, taking the limit for t ! y we obtainðy
s

ð
W

kFoðt; sÞzðoÞkdmðoÞ
� ��p

dt

� �1=p
aL1=p

ð
W

kzðoÞkdmðoÞ
� ��1

;

for all ðs; zÞ A Rþ � ðFnf0gÞ. By Theorem 3.1, we conclude that F is expo-

nentially unstable in average.

Theorem 3.6. The cocycle F is exponentially unstable in average if and

only if there exist p > 0 and W : Rþ � ðFnf0gÞ ! Rþ such that:
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( i ) there exists L > 0 such that Wðs; zÞaLð
Ð
W
kzðoÞkdmðoÞÞ�p

, for all

ðs; zÞ A Rþ � ðFnf0gÞ;
(ii) W ðs þ n; Foðs þ n; sÞzðoÞÞ þ

P½s�þn

i¼½s�þ1ð
Ð
W
kFo ði; sÞzðoÞkdmðoÞÞ�p ¼

Wðs; zðoÞÞ, for all ðn; s; zÞ A N� �Rþ � ðFnf0gÞ.

Proof. Necessity. Take an arbitrary p > 0. We define

W : Rþ � ðFnf0gÞ ! Rþ;

Wðs; zÞ ¼
Xy

i¼½s�þ1

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

: ð3:14Þ

Using (2.2), it can easily be verified that the first assertion holds. In addition,

it follows from (3.14) that

Wðsþ n;Foðsþ n; sÞzðoÞÞ

¼
Xy

i¼½s�þnþ1

ð
W

kFoði; sþ nÞFoðsþ n; sÞzðoÞkdmðoÞ
� ��p

¼
Xy

i¼½s�þnþ1

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

¼ Wðs; zðoÞÞ �
X½s�þn

i¼½s�þ1

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

;

for all ðn; s; zÞ A N� �Rþ � ðFnf0gÞ.
Su‰ciency. Since

X½s�þn

i¼½s�þ1

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

aWðs; zðoÞÞaL

ð
W

kzðoÞkdmðoÞ
� ��p

for all ðn; s; zÞ A N� �Rþ � ðFnf0gÞ, it follows that

Xy
i¼½s�þ1

ð
W

kFoði; sÞzðoÞkdmðoÞ
� ��p

0
@

1
A

1=p

aL1=p

ð
W

kzðoÞkdmðoÞ
� ��1

;

for all ðs; zÞ A Rþ � ðFnf0gÞ. By Theorem 3.2, we conclude that F is expo-

nentially unstable in average.

Remark 3.7. Theorems 3.5 and 3.6 are variants for the case of exponential

instability in average of a well-known result due to Preda et al. (see Theorem 3.3

in [27]) for (non)uniform exponential stability.
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