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Abstract. E. Bunch, P. Lofgren, A. Rapp and D. N. Yetter [4] pointed out that

by considering inner automorphism groups of quandles, one has a functor from the

category of quandles with surjective homomorphisms to that of groups with surjective

homomorphisms. In this paper, we focus on faithful quandles. As main results,

we give a category equivalence between the category of faithful quandles with surjec-

tive quandle homomorphisms and that of pairs of groups and their conjugation-stable

generators with suitable group homomorphisms. We are also interested in injective

quandle homomorphisms. By defining suitable morphisms among pairs of groups and

their conjugation-stable generators, we obtain a category which is equivalent to the

category of faithful quandles with injective quandle homomorphisms.

1. Introduction

The concept of quandles was introduced by Joyce ([13]). A quandle is a

set with a binary operator, whose axioms are corresponding to Reidemeister

moves of classical knots. Quandles have been studied actively from various

viewpoints ([2], [3], [4], [5], [6], [7], [10], [12], [17], [19]). From the view

point of di¤erential geometry, quandles can be regarded as a generalization of

symmetric spaces. There have already been several studies of quandles that

transfer notations and ideas in the theory of symmetric spaces to that of

quandles ([11], [14], [15], [18]).

Let Q be a quandle. We denote by AutðQÞ the group of quandle auto-

morphisms of Q. For a point x of Q, a quandle automorphism sx : Q! Q is

defined as the right multiplication of x with respect to the binary operator, and

is called the symmetry at x on Q. The inner automorphism group InnðQÞ is
defined as the subgroup of AutðQÞ generated by sðQÞ the set of all symmetries

on Q. The inner automorphism groups play important roles in the structure

theory of quandles.

We write Q for the category of quandles and quandle homomorphisms.

One may expect that the correspondence Inn : Q 7! Inn Q will become a func-
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tor Q! Grp, where Grp denotes the category of groups and group homo-

morphisms. As shown in [4], ‘‘Inn’’ becomes a functor for surjective quandle

homomorphisms, i.e. ‘‘Inn’’ is a functor between the category of quandles with

surjective quandle homomorphisms and Grp. It should be noted that such the

functor is not a category equivalence.

In this paper, we focus on faithful quandles. Let us denote by Qf the full

subcategory of Q consists of faithful quandles. We are interested in the sub-

categories Qf
surj of Q

f with surjective quandle homomorphisms and Qf
inj of Q

f

with injective quandle homomorphisms.

In order to study Qf
surj and Qf

inj, we define group theoretic categories

Grp
g:c:f
surj and Grpg:c:f

? . The objects of Grp
g:c:f
surj and those of Grpg:c:f

? are pairs

of groups and generators with certain conditions. The morphisms of Grp
g:c:f
surj

are surjective group homomorphisms inducing surjective maps between fixed

generators. The morphisms of Grpg:c:f
? are defined more complicatedly (see

Sections 2.4, 4.1 and 4.2 for the details).

The main results of this paper are the following:

Theorem 1.1. There exists an equivalence Fsurj : Q
f
surj ! Grp

g:c:f
surj such that

FsurjðQ; sÞ ¼ ðInn Q; sðQÞÞ for each faithful quandle ðQ; sÞ.

Theorem 1.2. There exists an equivalence Finj : Q
f
inj ! Grpg:c:f

? such that

FinjðQ; sÞ ¼ ðInn Q; sðQÞÞ for each faithful quandle ðQ; sÞ.

In particular, for each pair of faithful quandles ðQ1;Q2Þ, we have the

following bijections:

HomQf
surj
ðQ1;Q2Þ $

1:1
Hom

Grp
g:c:f
surj

ððInnðQ1Þ; sðQ1ÞÞ; ðInnðQ2Þ; sðQ2ÞÞÞ; ð1:1Þ

HomQf
inj
ðQ1;Q2Þ $

1:1
Hom

Grp
g:c:f
?
ððInnðQ1Þ; sðQ1ÞÞ; ðInnðQ2Þ; sðQ2ÞÞÞ: ð1:2Þ

This paper is organized as follows. In Section 2, we recall some notions

on categories and those on quandles. We also define several categories of

groups with generators. Theorems 1.1 and 1.2 will be discussed in Sections 3

and 4, respectively. In Section 5, as an easy application of Theorem 1.2,

we study the set of all injective quandle homomorphisms from the dihedral

quandle R3 of order 3 to the dihedral quandle R9 of order 9.

2. Preliminaries

In this section, we recall some notions on categories and those on

quandles. We also define some categories of groups with generators.
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2.1. Notions on the category theory. In this subsection, we recall some

notions on the category theory. For details, see [16].

Definition 2.1 (category). A (locally small) category C consists of the

following:
� A collection ObjðCÞ of objects.
� For each c1; c2 A ObjðCÞ, a set HomCðc1; c2Þ of morphisms from c1

to c2.
� For each c1, c2 and c3 A ObjðCÞ, a map:

HomCðc2; c3Þ �HomCðc1; c2Þ ! HomCðc1; c3Þ
ðg; f Þ 7! g � f ;

called composition.
� For each c A ObjðCÞ, an element idc of HomCðc; cÞ, called the identity

on c,

where the following axioms hold:
� (Associativity) For each f A HomCðc1; c2Þ; g A HomCðc2; c3Þ and h A

HomCðc3; c4Þ, we have h � ðg � f Þ ¼ ðh � gÞ � f .
� (Identity laws) For each f A HomCðc1; c2Þ, we have f � idc1 ¼ f ¼

idc2 � f .

In Sections 2.2 and 2.4, we define some categories as subcategories or full

subcategories of several categories. The definitions of subcategories and full

subcategories are given as follows.

Definition 2.2 (subcategory, full subcategory). Let C be a category. A

subcategory C 0 of C consists of a subclass ObjðC 0Þ of ObjðCÞ together with,

for each c1; c2 A ObjðC 0Þ, a subset HomC 0 ðc1; c2Þ of HomCðc1; c2Þ such that

C 0 is closed under the composition and identities. It is a full subcategory if

HomC 0 ðc1; c2Þ ¼ HomCðc1; c2Þ for all c1; c2 A ObjðC 0Þ.

We recall notions of isomorphisms and functors in order to define category

equivalences.

Definition 2.3 (isomorphism). (1) A morphism f A HomCðc1; c2Þ is called
an isomorphism from c1 to c2 in C if there exists a morphism g A
HomCðc2; c1Þ such that g � f ¼ idc1 and f � g ¼ idc2 . Such the mor-

phism g is called the inverse of f .

(2) An object c1 A ObjðCÞ is said to be isomorphic to an object c2 A
ObjðCÞ if there exists an isomorphism from c1 to c2. For such c1
and c2, we write c1 G c2.

Definition 2.4 (functor, faithful functor, full functor). For two categories

C and D, a (covariant) functor F : C ! D consists of the following:
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� A function ObjðCÞ ! ObjðDÞ, written as c 7!Fc.
� For each c1; c2 A ObjðCÞ, a map HomCðc1; c2Þ ! HomDðFc1;Fc2Þ,

written as f 7!Ff ,

where the following axioms hold:
� For each f A HomCðc1; c2Þ and g A HomCðc2; c3Þ, we have Fðg � f Þ ¼

Fg �Ff .
� For each c A ObjðCÞ, we have F idc ¼ idFc.

A functor F : C ! D is said to be faithful (resp. full ) if, for each c1; c2 A
ObjðCÞ, the following map is injective (resp. surjective):

HomCðc1; c2Þ ! HomDðFc1;Fc2Þ
f 7! Ff :

A functor F : C ! D is said to be essentially surjective on objects if, for all

d A ObjðDÞ, there exists c A ObjðCÞ such that FcG d on D.

We also define category equivalences.

Definition 2.5 (natural isomorphism, category equivalence). For two

functors F;G : C ! D, a natural isomorphism y : F) G is a family fyc : Fc!
Gcgc AObjðCÞ of isomorphisms in D such that, for each morphism f : c1 ! c2 in

C, the following diagram commutes:

c1???y f

c2

Fc1 ���!yc1
Gc1

Ff

???y
???yGf

Fc2 ���!
yc2

Gc2:

A category equivalence between C and D consists of a pair of functors C �! �F
G

D

together with natural isomorphisms y : idC ) GF and h : FG) idD.

In Sections 3.2 and 4.4, we prove Theorem 1.1 and 1.2, respectively,

according to the definition of category equivalence above.

The following is a well known proposition on category theory, and induces

bijections (1.1) and (1.2) in Section 1 from Theorem 1.1 and 1.2.

Proposition 2.6 ([16, Proposition 1.3.18]). Let F : C ! D be a functor.

Then F gives a category equivalence if and only if F is faithful, full and

essentially surjective on objects.

2.2. Notions on quandles. In this subsection, we fix our terminologies for

quandles, subquandles, faithful quandles and their categories.

Quandles are usually defined by sets with binary operators satisfying three

axioms, derived from the Reidemeister moves of classical knots. However,
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we employ a formulation in terms of symmetries as [13]. For a set Q, we

write

MapðQ;QÞ :¼ f f : Q! Q : a mapg:

Definition 2.7 (quandle, quandle homomorphism). Let Q be a set. We

consider a map

s : Q!MapðQ;QÞ : x 7! sx:

Then the pair ðQ; sÞ is a quandle if

(Q1) Ex A Q, sxðxÞ ¼ x,

(Q2) Ex A Q, sx is bijective,

(Q3) Ex; y A Q, sx � sy ¼ ssxðyÞ � sx.
For a quandle ðQ; sÞ, the map s is called a quandle structure on Q. For each

x A Q, the map sx is called a symmetry at x on Q.

Let ðQ1; s
Q1Þ and ðQ2; s

Q2Þ be quandles. Then f : Q1 ! Q2 is called a

quandle homomorphism if, for any x1 A Q1, it satisfies

f � sQ1
x1
¼ s

Q2

f ðx1Þ � f :

We recall the notion of faithful quandles.

Definition 2.8 (faithful quandle). A quandle ðQ; sÞ is said to be faithful

if sx ¼ sy implies x ¼ y for all x; y A Q.

In this paper, we use the symbol Q for the category of quandles and

quandle homomorphisms. Let us define categories Qf , Qf
surj and Qf

inj related

to faithful quandles as follows.

Definition 2.9 (Qf , Qf
surj, Q

f
inj). We write Qf for the full subcategory of

Q consists of faithful quandles and quandle homomorphisms. Furthermore,

we use the symbol Qf
surj (resp. Q

f
inj) for the subcategory of Qf with surjective

(resp. injective) quandle homomorphisms.

Our goal in this paper is to study Qf
surj and Qf

inj in terms of the theory of

groups.

We also recall the notion of subquandles.

Definition 2.10 (subquandle). For a quandle ðQ; sÞ, a subset Q 0 in Q is

called a subquandle of ðQ; sÞ if sxðyÞ; s�1x ðyÞ A Q 0 for all x; y A Q 0.

A subquandle Q 0 of ðQ; sÞ becomes a quandle with sjQ 0 : Q 0 !
MapðQ 0;Q 0Þ.

Here we set up our notation for conjugation quandles and their specific

subquandles.
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Definition 2.11 (conjugation quandle). Let G be a group and define the

map s : G !MapðG;GÞ as follows:

sgðhÞ ¼ ghg�1 ðg; h A GÞ:

Then ðG; sÞ is a quandle. Such the quandle is called a conjugation quandle,

and denoted by ConjðGÞ. Furthermore let W be a union of some conjugacy

classes of G. Then W is a subquandle of ConjðGÞ, which is written as

ConjGðWÞ or simply ConjðWÞ.

One can easily see that the following lemma holds.

Lemma 2.12. Let G be a group and W a union of some conjugacy classes

of G. Then ConjGðWÞ is faithful if the centralizer of W in G is trivial.

Remark 2.13. It should be remarked that any morphism of Q has the

surjective-injective factorization, i.e. for any morphism f : Q1 ! Q2 of Q, there

exists an object Q of Q, a surjective morphism fs : Q1 ! Q and an injective

morphism fi : Q! Q2 such that f ¼ fi � fs. In fact, one can take Q as f ðQ1Þ,
fs as f and fi as the inclusion. However, some morphisms of Qf do not have

surjective-injective factorizations in Qf . Actually, let us consider the following

group homomorphism

f : S3 ! S3=A3 GGrp C2 ,!
i
S3;

where S3 denotes the symmetric group of degree three, A3 the alternating

group of degree three, C2 the cyclic group of order two, and we fix i as

any injective group homomorphism. Then ConjðS3Þ is a faithful quandle,

f : ConjðS3Þ ! ConjðS3Þ is a morphism of Qf and Image f GQ ConjðC2Þ is

not faithful. In particular, the morphism f does not have the surjective-

injective factorization in Qf .

2.3. The group of inner automorphisms. In this subsection, we recall the

notion of inner automorphism groups of quandles.

Definition 2.14 (inner automorphism group). Let ðQ; sÞ be a quandle

and Q 0 a subquandle of Q. We use the symbol InnðQ;Q 0Þ for the group

generated by the set sðQ 0Þ ¼ fsx : Q! Q j x A Q 0g. InnðQ;QÞ is denoted by

Inn Q. The group Inn Q is called the inner automorphism group of ðQ; sÞ.

One can easily show the following lemma.

Lemma 2.15. Let ðQ; sÞ be a quandle and Q 0 a subquandle of Q. Then

the generator sðQ 0Þ of InnðQ;Q 0Þ is stable by the following InnðQ;Q 0Þ-action
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on AutðQÞ:

g:f ¼ gfg�1 ðg A InnðQ;Q 0Þ; f A AutðQÞÞ:

Furthermore, if Q is faithful, then the action InnðQÞ1 sðQÞ is faithful.

Remark 2.16. Let us denote by Grp the category of groups and group

homomorphisms. One may expect that the correspondence Inn : ObjðQÞ !
ObjðGrpÞ : Q 7! Inn Q extends to a functor from Q to Grp. As shown in [4],

‘‘Inn’’ becomes a functor for surjective quandle homomorphisms, i.e. ‘‘Inn’’

induces a functor Qsurj ! Grp, where Qsurj is the category of quandles with

surjective quandle homomorphisms, by considering the following correspon-

dence f 7! Innð f Þ: For quandles Q1, Q2 and a surjective quandle homomor-

phism f : Q1 ! Q2, there uniquely exists a group homomorphism Innð f Þ such
that the following diagram commutes:

Q1 Q2

s

???y
???ys

InnðQ1Þ ����!����!
Innð f Þ

InnðQ2Þ:

��������!��������!f

However, for Q or Qf instead of Qsurj, the following statement is not

always true: For objects Q1, Q2 and a morphism f : Q1 ! Q2 of Q or Qf ,

there exists a group homomorphism InnðQ1Þ ! InnðQ2Þ such that the diagram

below commutes:

Q1 Q2

s

???y
???ys

InnðQ1Þ ���! InnðQ2Þ:

�������!f

Actually, let T1 be the trivial quandle of order 1 and R3 the dihedral

quandle of order 3. For any quandle homomorphism f : T1 ! R3, it is not

true that there exists a group homomorphism InnðT1Þ ! InnðR3Þ such that the

following diagram commutes:

T1 R3

s

???y
???ys

InnðT1Þ ���! InnðR3Þ:

�������!f

Therefore, it is not easy to consider ‘‘Inn’’ as a functor from Q (or Qf ) to

Grp.
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Remark 2.17 (associate groups). For any quandle Q, one can associate a

group AsðQÞ called the associate group (or adjoint group) of Q, which is defined

as an abstract group heQjRi, where eQ ¼ fex j x A Qg, R ¼ fesxðyÞ ¼ exeyðexÞ�1 j
x; y A Qg. The correspondence ex 7! sx gives a surjective group homomor-

phism from AsðQÞ onto InnðQÞ. It is known that ‘‘As’’ becomes a functor

Q! Grp, and Conj : Grp! Q gives a right adjoint functor of As ([13]). It

should be remarked that the associate group AsðQÞ is not needed to be finite

even for a finite quandle Q.

2.4. Definitions of some categories of groups with generators. In this subsec-

tion, we define categories Grpgen, Grpg:c, Grp
g:c
surj, Grp

g:c
bij , Grpg:c:f and Grp

g:c:f
surj .

Definition 2.18 (Grpgen). We define a category Grpgen as follows.

Its object ðG;WÞ is a pair of a group G and its generator W. Its morphism

j : ðG1;W1Þ ! ðG2;W2Þ is a group homomorphism j : G1 ! G2 such that

jðW1Þ � W2.

We shall define the full subcategory Grpg:c of Grpgen as follows.

Definition 2.19 (Grpg:c). We denote by Grpg:c the full subcategory of

Grpgen whose generators of objects are conjugation-stable. Here, for an object

ðG;WÞ of Grpgen, the generator W is said to be conjugation-stable if gWg�1 � W

for any g of G.

Let us define the subcategories Grp
g:c
surj and Grp

g:c
bij of Grpgen as below.

Definition 2.20 (Grp
g:c
surj, Grp

g:c
bij ). A category Grp

g:c
surj (resp. Grp

g:c
bij ) is

defined as follows. Let us put

ObjðGrp
g:c
surjÞ :¼ ObjðGrpg:cÞ

ðresp: ObjðGrp
g:c
bij Þ :¼ ObjðGrpg:cÞÞ:

Its morphism j : ðG1;W1Þ ! ðG2;W2Þ is a morphism of Grpg:c such that

jjW1
: W1 ! W2 is surjective (resp. bijective).

Note that for any morphism j : ðG1;W1Þ ! ðG2;W2Þ of Grp
g:c
surj or Grp

g:c
bij ,

j : G1 ! G2 is surjective.

We also define the full subcategory Grpg:c:f of Grpg:c as follows.

Definition 2.21 (Grpg:c:f ). We denote by Grpg:c:f the full subcategory of

Grpg:c whose generators of objects are faithful. Here, for an object ðG;WÞ of
Grpg:c, the generator W is said to be faithful if the following action G 1 W

is faithful:

g:o ¼ gog�1 ðg A G; o A WÞ: ð2:1Þ
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Remark that for an object ðG;WÞ of Grpg:c, the action G 1 W is faithful if

and only if the centralizer of W is trivial. Furthermore, these two conditions

on ðG;WÞ are also equivalent to the condition that the centralizer of G is trivial,

since W is a generator of G.

We shall define the subcategory Grp
g:c:f
surj of Grpg:c:f as follows.

Definition 2.22 (Grp
g:c:f
surj ). We denote by Grp

g:c:f
surj the full subcategory

of Grp
g:c
surj with objects of Grpg:c:f .

Let us note that for objects of these categories, the following hold:

ObjðGrpg:c:fÞ ¼ ObjðGrp
g:c:f
surj Þ

� ObjðGrpg:cÞ ¼ ObjðGrp
g:c
surjÞ ¼ ObjðGrp

g:c
bij Þ

� ObjðGrpgenÞ:

The proposition below gives characterizations of isomorphisms in Grpg:c,

Grpg:c:f or Grp
g:c:f
surj .

Proposition 2.23. (1) Let us put C ¼ Grpg:c or Grpg:c:f . Let

j : ðG1;W1Þ ! ðG2;W2Þ be a morphism of C. Then j is an isomor-

phism in C if and only if j : G1 ! G2 is an isomorphism of Grp (i.e. a

group isomorphism) and jðW1Þ ¼ W2.

(2) Let j : ðG1;W1Þ ! ðG2;W2Þ be a morphism of Grp
g:c:f
surj . Then j is an

isomorphism in Grp
g:c:f
surj if and only if j : G1 ! G2 is an isomorphism

of Grp (i.e. a group isomorphism).

Proof. First we show the ‘‘if ’’ part of the claim (1). Let c : G2 ! G1 be

the inverse of j in Grp. Clearly, jðW1Þ ¼ W2 implies cðW2Þ ¼ W1. Thus c is

a morphism of C. It is obvious that cj ¼ idðG1;W1Þ and jc ¼ idðG2;W2Þ. Thus

c is the inverse of j in C.

Let us prove the ‘‘only if ’’ part of the claim (1). There exists an iso-

morphism c : ðG2;W2Þ ! ðG1;W1Þ such that cj ¼ idðG1;W1Þ and jc ¼ idðG2;W2Þ.

Since c is also a morphism of Grp, j is an isomorphism of Grp. Furthermore,

we also have jðW1Þ � jðcðW2ÞÞ ¼ W2, and hence jðW1Þ ¼ W2.

One can easily show the ‘‘only if ’’ part of the claim (2). Finally, we show

the ‘‘if ’’ part of the claim (2). Let c : G2 ! G1 be the inverse of j in Grp.

Since j is a morphism of Grp
g:c:f
surj , one has jðW1Þ ¼ W2. Hence cðW2Þ ¼ W1

and thus c is a morphism of Grp
g:c:f
surj . It is obvious that cj ¼ idðG1;W1Þ and

jc ¼ idðG2;W2Þ. Thus c is the inverse of j in Grp
g:c:f
surj . r

Let ðG;WÞ be an object in Grpg:c:f . By Lemma 2.15, ðInnðConjðWÞÞ,
sðConjðWÞÞÞ is an object of Grpg:c:f . By the definition of ConjðWÞ, the action
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G 1 W (see Definition 2.21 (2.1)) leads a group homomorphism

jðG;WÞ : G ! InnðConjðWÞÞ : g 7! ðjðG;WÞðgÞ : o 7! gog�1Þ:

Note that jðG;WÞðoÞ ¼ so for each o A W.

The following proposition will be applied in Sections 3 and 4.

Proposition 2.24. In the setting above, jðG;WÞ is an isomorphism from

ðG;WÞ to ðInnðConjðWÞÞ; sðConjðWÞÞÞ in Grpg:c, Grpg:c:f and Grp
g:c:f
surj .

Proof. By definition, jðG;WÞ : ðG;WÞ ! ðInnðConjðWÞÞ; sðConjðWÞÞÞ is a

morphism of Grpg:c:f . By Proposition 2.23, it is enough to show that

jðG;WÞ : G ! InnðConjðWÞÞ is bijective and jðG;WÞðWÞ ¼ sðConjðWÞÞ. It is ob-

vious that jðG;WÞðWÞ ¼ sðConjðWÞÞ, and hence jðG;WÞ : G ! InnðConjðWÞÞ is

surjective. Since ðG;WÞ is an object of Grpg:c:f , the action G 1 W is faithful,

so we have jðG;WÞ : G ! InnðConjðWÞÞ is injective. r

3. Categories with surjective homomorphisms

Let us recall that the following two categories are introduced in Sections

2.2 and 2.4:
� Qf

surj: the category of faithful quandles and surjective quandle homo-

morphisms.
� Grp

g:c:f
surj : the category of groups with conjugation-stable faithful gen-

erators, whose morphisms are surjective group homomorphisms induc-

ing surjective maps between fixed generators.

In this section, we show that the categories Qf
surj and Grp

g:c:f
surj are equivalent.

3.1. Functors between Qf
surj and Grp

g:c:f
surj . In this subsection, we construct two

functors between Qf
surj and Grp

g:c:f
surj .

3.1.1. A functor from Qf
surj to Grp

g:c:f
surj . We construct a functor

Fsurj : Q
f
surj ! Grp

g:c:f
surj

for objects in Lemma 3.1, and for morphisms in Lemma 3.2. For the sim-

plicity, we just use the symbol F for Fsurj throughout Section 3.

Lemma 3.1. Let Q be an object of Qf
surj. Then FQ :¼ ðInn Q; sðQÞÞ is

an object of Grp
g:c:f
surj .

Proof. It follows from Lemma 2.15. r

Lemma 3.2. Let f : Q1 ! Q2 be a morphism of Qf
surj. Then the following

Ff is well-defined and a morphism of Grp
g:c:f
surj :

Ff : ðInn Q1; sðQ1ÞÞ ! ðInn Q2; sðQ2ÞÞ : sx1 7! sf ðx1Þ:
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Proof. Take any series fx1igmi¼1; fy1jg
n
j¼1 � Q1. Assume se1x11 � � � s

em
x1m
¼

sd1y11 � � � s
dn
y1n

in InnðQ1Þ, where ei; dj ¼ 1 or �1. We show that

s e1
f ðx11Þ � � � s

em
f ðx1mÞ ¼ sd1

f ðy11Þ � � � s
dn
f ðy1nÞ

in InnðQ2Þ. Take any z2 A Q2. Since f : Q1 ! Q2 is surjective, there exists

z1 A Q1 such that f ðz1Þ ¼ z2. We have

s e1
f ðx11Þ � � � s

em
f ðx1mÞðz2Þ ¼ se1

f ðx11Þ � � � s
em
f ðx1mÞð f ðz1ÞÞ

¼ f � ðs e1x11 � � � s
em
x1m
Þðz1Þ

¼ f � ðsd1y11 � � � s
dn
y1n
Þðz1Þ

¼ sd1
f ðy11Þ � � � s

dn
f ðy1nÞð f ðz1ÞÞ

¼ sd1
f ðy11Þ � � � s

dn
f ðy1nÞðz2Þ:

Hence Ff : Inn Q1 ! Inn Q2 is a well-defined group homomorphism. More-

over, since f is surjective, Ff jsðQ1Þ : sðQ1Þ ! sðQ2Þ is surjective. r

Proposition 3.3. The above F : Qf
surj ! Grp

g:c:f
surj is a functor.

Proof. It is obvious that F idQ ¼ idFQ for each object Q of Qf
surj. Let

f1 : Q1 ! Q2 and f2 : Q2 ! Q3 be morphisms of Qf
surj. By the definition of F,

we have Fð f2 � f1Þ ¼Ff2 �Ff1. r

3.1.2. A functor from Grp
g:c:f
surj to Qf

surj. We construct a functor

Gsurj : Q
f
surj  Grp

g:c:f
surj

for objects in Lemma 3.4, and for morphisms in Lemma 3.5. For the sim-

plicity, we just use the symbol G for Gsurj throughout Section 3.

Lemma 3.4. Let ðG;WÞ be an object of Grp
g:c:f
surj . Then GðG;WÞ :¼ ConjðWÞ

is an object of Qf
surj.

Proof. It is enough to show that ConjðWÞ is faithful. This follows from

Lemma 2.12. r

Lemma 3.5. Let j : ðG1;W1Þ ! ðG2;W2Þ be a morphism of Grp
g:c:f
surj . Then

the following Gj is a morphism of Qf
surj:

Gj : ConjðW1Þ ! ConjðW2Þ : o1 7! jðo1Þ:

Proof. Since jjW1
: W1 ! W2 is surjective, Gj : ConjðW1Þ ! ConjðW2Þ is

surjective. Since j is a group homomorphism and ConjðW1Þ and ConjðW2Þ are
conjugation quandles, Gj is a quandle homomorphism. r
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Proposition 3.6. The above G : Grp
g:c:f
surj ! Qf

surj is a functor.

Proof. It is obvious that G idðG;WÞ ¼ idGðG;WÞ for each object ðG;WÞ of

Grp
g:c:f
surj . Let j1 : ðG1;W1Þ ! ðG2;W2Þ and j2 : ðG2;W2Þ ! ðG3;W3Þ be mor-

phisms of Grp
g:c:f
surj . By the definition of G, we have Gðj2 � j1Þ ¼ Gj2 � Gj1.

r

3.2. A category equivalence between Qf
surj and Grp

g:c:f
surj . In this subsection, we

show that F and G give a category equivalence between Qf
surj and Grp

g:c:f
surj ,

where F and G are defined in Sections 3.1.1 and 3.1.2.

First we prove that there exists a natural isomorphism y : GF) idQf
surj
.

Proposition 3.7. The following y is a natural isomorphism from GF to

idQf
surj
:

y ¼ fyQ : GFQ! Q : sx 7! xgQ AObjðQf
surjÞ

: GF) idQf
surj
:

Proof. Recall that each object Q of Qf
surj is faithful. Then one can

easily see that yQ is well-defined and becomes an isomorphism of Qf
surj. Take

any morphism f : Q1 ! Q2 of Qf
surj. It is enough to show that the following

diagram commutes:

Q1???y f

Q2

GFQ1 ���!yQ1
Q1

GFf

???y
???y f

GFQ2 ���!
yQ2

Q2:

Take any x1 A Q1. Then we have

ðyQ2
� ðGFf ÞÞðsx1Þ ¼ yQ2

ðsf ðx1ÞÞ

¼ f ðx1Þ

¼ ð f � yQ1
Þðsx1Þ:

The proof is completed. r

Next we show that there exists a natural isomorphism h : FG) id
Grp

g:c:f
surj

.

Proposition 3.8. The following h : FG) id
Grp

g:c:f
surj

is a natural isomor-

phism from FG to id
Grp

g:c:f
surj

:

h ¼ fhðG;WÞ : FGðG;WÞ ! ðG;WÞ : so 7! ogðG;WÞ AObjðGrp
g:c:f
surj
Þ;

where, for each ðG;WÞ, hðG;WÞ is the inverse of the isomorphism jðG;WÞ : ðG;WÞ !
FGðG;WÞ in Grp

g:c:f
surj defined in Lemma 2.24. Here, we remark that FGðG;WÞ

¼ ðInnðConjðWÞÞ; sðConjðWÞÞÞ for each ðG;WÞ A ObjðGrp
g:c:f
surj Þ.
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Proof. Take any morphism j : ðG1;W1Þ ! ðG2;W2Þ of Grp
g:c:f
surj . It is

enough to show that the following diagram commutes:

ðG1;W1Þ???yj

ðG2;W2Þ

FGðG1;W1Þ ����!hðG1 ;W1Þ ðG1;W1Þ

FGj

???y
???yj

FGðG2;W2Þ ����!
hðG2 ;W2Þ

ðG2;W2Þ:

Take any o1 A W1. Then

ðhðG2;W2Þ �FGjÞðso1
Þ ¼ hðG2;W2Þðsjðo1ÞÞ

¼ jðo1Þ

¼ ðj � hðG1;W1ÞÞðso1
Þ:

Since InnðGðG1;W1ÞÞ is generated by sðGðG1;W1ÞÞ, the proof is completed.

r

The following theorem follows from Propositions 3.7 and 3.8.

Theorem 3.9. The above ðF;G; y; hÞ gives a category equivalence between

Qf
surj and Grp

g:c:f
surj .

4. Categories with injective homomorphisms

In this section, we define a category Grpg:c:f
? , and prove that Qf

inj and

Grpg:c:f
? are equivalent as categories.

4.1. Definition of a category of groups with generators. Let us recall that the

following three categories are introduced in Section 2.4:
� Grpg:c: the category of groups with conjugation-stable generators, whose

morphisms are group homomorphisms inducing maps between fixed

generators.
� Grp

g:c
bij : the category of groups with conjugation-stable generators, whose

morphisms are surjective group homomorphisms inducing bijective maps

between fixed generators.
� Grpg:c:f : the category of groups with conjugation-stable faithful gen-

erators, whose morphisms are group homomorphisms inducing maps

between fixed generators.

In this subsection, we define a category Grpg:c:f
? in terms of the three categories

above.
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Definition 4.1 (Grpg:c:f
? ). We define a category Grpg:c:f

? as follows.

We denote Grpg:c:f
? briefly by D in this subsection. Let us put ObjðDÞ :¼

ObjðGrpg:c:fÞ. For objects ðG1;W1Þ; ðG2;W2Þ A ObjðDÞ, we define the set of

morphisms HomDððG1;W1Þ; ðG2;W2ÞÞ from ðG1;W1Þ to ðG2;W2Þ in D as follows.

HomDððG1;W1Þ; ðG2;W2ÞÞ

:¼ ððH;GÞ; pÞ

H : a subgroup of G2;

G : a subset of W2;

ðH;GÞ A ObjðGrpg:cÞ;
p : ðH;GÞ ! ðG1;W1Þ : a morphism in Grp

g:c
bij

���������

8>>><
>>>:

9>>>=
>>>;
:

We remark that each morphism is an opposite directional partial map, and

a diagram of a morphism can be written as Figure 4.1.

In Section 4.2, we define composition of morphisms in D and prove that D

becomes a category.

Remark 4.2. For a morphism ððH;GÞ; pÞ of Grpg:c:f
? , the group homo-

morphism p is not needed to be injective on H. Actually, the following gives

an example of non injective p: Let us denote by Sn the symmetric group

of degree n for each n. Take a conjugation-stable faithful generator t3 of S3

as the set t3 ¼ fð12Þ; ð13Þ; ð23Þg of transpositions. For objects ðS3; t3Þ and

ðS6;S6Þ of Grpg:c:f
? , we define a morphism ððH;GÞ; pÞ by

H ¼ S3 � fid; ð456Þ; ð465Þg; G ¼ t3 � fð456Þg;

p : S3 � fid; ð456Þ; ð465Þg ! S3 : ðg; cÞ 7! g;

from ðS3; t3Þ to ðS6;S6Þ of Grpg:c:f
? . Then p is not injective.

4.2. On composition of morphisms in Grpg:c:f
? . Let us give a definition of

composition of morphisms in Grpg:c:f
? by the following proposition.

Proposition 4.3 (composition in Grpg:c:f
? ). Let F1 ¼ ððH2;G2Þ; p2Þ :

ðG1;W1Þ ! ðG2;W2Þ and F2 ¼ ððH3;G3Þ; p3Þ : ðG2;W2Þ ! ðG3;W3Þ be morphisms

of Grpg:c:f
? . Then F2 �F1 :¼ ððhp3j�1G3

ðG2Þi; p3j�1G3
ðG2ÞÞ; p2 � p3jhp3j�1G3

ðG2ÞiÞ is a

Fig. 4.1. F ¼ ððH;GÞ; pÞ A HomDððG1;W1Þ; ðG2;W2ÞÞ.
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morphism from ðG1;W1Þ to ðG3;W3Þ of Grpg:c:f
? . The diagram of F2 �F1 can

be written as Figure 4.2.

Proof. It is obvious that p3j�1G3
ðG2Þ generates hp3j�1G3

ðG2Þi. Take any

h3 A hp3j�1G3
ðG2Þi, and g3 A p3j�1G3

ðG2Þ. Since p3ðg3Þ A G2, p3ðh3Þ A hG2i ¼ H2

and ðH2;G2Þ is an object of Grpg:c, we have p3ðh3g3h�13 Þ ¼ p3ðh3Þp3ðg3Þp3ðh3Þ
�1

A G2. Thus h3g3h
�1
3 A p3j�1G3

ðG2Þ. Hence ðhp3j�1G3
ðG2Þi; p3j�1G3

ðG2ÞÞ is an object

of Grpg:c. Since p3jG3 : G3 ! W2 is bijective, p3jp3j�1G3
ðG2Þ : p3j

�1
G3
ðG2Þ ! G2 is bijec-

tive. Hence p2 � p3jp3j�1G3
ðG2Þ : p3j

�1
G3
ðG2Þ ! W1 is bijective. So p2 � p3jp3j�1G3

ðG2Þ is

a morphism of Grp
g:c
bij . r

Remark 4.4. The following diagram is a part of the above diagram in

Proposition 4.3:

ðG2;W2Þ
[

ðH2;G2Þ ðH3;G3Þ:
p3 ������

���! ������
���!

The following diagram is pullback of the above diagram in Grpg:c:

ðG2;W2Þ
[

ðH2;G2Þ ðH3;G3Þ:
[

ðhp3j�1G3
ðG2Þi; p3j�1G3

ðG2ÞÞ:

p3

p3jhp3 j�1G3
ðG2Þi

�������
����!

�������
����!

�������
�! �������
�!

Hence, composition of morphisms in Grpg:c:f
? leads from pullback in

Grpg:c.

By Propositions 4.5 and 4.6 stated below, Grpg:c:f
? becomes a category with

respect to the composition.

Proposition 4.5. The above composition of morphisms in Grpg:c:f
? is

associative.

Fig. 4.2. Composition in Grpg:c:f
? .
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Proof. Let the following F1, F2 and F3 be morphisms of Grpg:c:f
? :

F1 ¼ ððH2;G2Þ; p2Þ : ðG1;W1Þ ! ðG2;W2Þ;

F2 ¼ ððH3;G3Þ; p3Þ : ðG2;W2Þ ! ðG3;W3Þ;

F3 ¼ ððH4;G4Þ; p4Þ : ðG3;W3Þ ! ðG4;W4Þ:

By the definition of composition in Grpg:c:f
? , one has

F3 � ðF2 �F1Þ ¼ ððhp4j�1G4
ðp3j�1G3

ðG2ÞÞi; p4j�1G4
ðp3j�1G3

ðG2ÞÞÞ;

p2 � p3jhp3j�1G3
ðG2Þi � p4jhp4j�1G4

ðp3j�1G3
ðG2ÞÞiÞ;

ðF3 �F2Þ �F1 ¼ ððhðp3jG3p4jp4j�1G4
ðG3ÞÞ

�1ðG2Þi; ðp3jG3p4jp4j�1G4
ðG3ÞÞ

�1ðG2ÞÞ;

p2 � ðp3p4jhðp3jG3p4jp4 j�1G4
ðG3Þ
Þ�1ðG2ÞiÞ:

Figure 4.3 and 4.4 are diagrams of each of them.

Since p4j�1G4
ðp3j�1G3

ðG2ÞÞ ¼ ðp3jG3p4jp4j�1G4
ðG3ÞÞ

�1ðG2Þ in G4, one has F3 �
ðF2 �F1Þ ¼ ðF3 �F2Þ �F1. r

Proposition 4.6. For each object ðG;WÞ of Grpg:c:f
? , ððG;WÞ; idGÞ is the

identity of ðG;WÞ in Grpg:c:f
? .

Proof. Let F ¼ ððH;GÞ; pÞ : ðG1;W1Þ ! ðG2;W2Þ be a morphism of

Grpg:c:f
? . Since pjG

�1ðW1Þ ¼ G , the following holds:

Fig. 4.3. A diagram of F3 � ðF2 �F1Þ.
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F � ððG1;W1Þ; idG1
Þ ¼ ððhpjG

�1ðW1Þi; pjG
�1ðW1ÞÞ; idG1

pjhpjG �1ðW1ÞiÞ

¼ ððH;GÞ; pÞ

¼ F:

Let C ¼ ððH 0;G 0Þ; p 0Þ : ðG0;W0Þ ! ðG1;W1Þ be a morphism of Grpg:c:f
? . Since

id�1G1
ðG 0Þ ¼ G 0, we have

ððG1;W1Þ; idG1
Þ �C ¼ ððhid�1G1

ðG 0Þi; id�1G1
ðG 0ÞÞ; p 0 idG1

jhid�1G1
ðG 0ÞiÞ

¼ ððH 0;G 0Þ; p 0Þ

¼ C :

Hence ððG1;W1Þ; idG1
Þ is the identity of ðG1;W1Þ in Grpg:c:f

? . r

The following proposition gives a characterization of isomorphisms in the

category Grpg:c:f
? .

Proposition 4.7. Let F ¼ ððH;GÞ; pÞ : ðG1;W1Þ ! ðG2;W2Þ be a mor-

phism of Grpg:c:f
? . Then F ¼ ððH;GÞ; pÞ is an isomorphism in Grpg:c:f

? if and

only if H ¼ G2, G ¼ W2 and p : ðG2;W2Þ ! ðG1;W1Þ is an isomorphism in

Grpg:c.

Proof. First we show the ‘‘if ’’ part. One has that ððG1;W1Þ; p�1Þ is the

inverse of F ¼ ððG2;W2Þ; pÞ.
Let us prove the ‘‘only if ’’ part. There exists

C ¼ ððH 0;G 0Þ; p 0Þ A Isom
Grp

g:c:f
?
ððG2;W2Þ; ðG1;W1ÞÞ

Fig. 4.4. A diagram of ðF3 �F2Þ �F1.
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such that CF ¼ idðG1;W1Þ and FC ¼ idðG2;W2Þ. By FC ¼ idðG2;W2Þ, one has that

ðhpjG
�1ðG 0Þi; pjG

�1ðG 0Þ; p 0pÞ ¼ ððG2;W2Þ; idG2
Þ. Since W2 ¼ pjG

�1ðG 0Þ ¼ G ,

one has that W2 ¼ G and G2 ¼ H. Similarly one can show that G1 ¼ H 0

and W1 ¼ G 0. Clearly p 0p ¼ idG2
and pp 0 ¼ idG1

, thus p : G2 ! G1 is an iso-

morphism of Grp. Since p : ðG2;W2Þ ! ðG1;W1Þ is a morphism in Grp
g:c
bij , one

has pðW2Þ ¼ W1. By Proposition 2.23 (1), p is an isomorphism of Grpg:c.

r

One can easily show the following lemma.

Lemma 4.8. Let ðG0;W0Þ, ðG1;W1Þ, ðG2;W2Þ, ðG3;W3Þ be objects of Grpg:c:f
?

and j an isomorphism from ðG2;W2Þ to ðG1;W1Þ in Grpg:c. We shall consider

the isomorphism F ¼ ððG2;W2Þ; jÞ from ðG1;W1Þ to ðG2;W2Þ in Grpg:c:f
? . Take

morphisms F0 ¼ ððH1;G1Þ; p1Þ : ðG0;W0Þ ! ðG1;W1Þ and F2 ¼ ððH3;G3Þ; p3Þ :
ðG2;W2Þ ! ðG3;W3Þ of Grpg:c:f

? . Then the following hold:

F �F0 ¼ ððj�1ðH1Þ; j�1ðG1ÞÞ; p1 � jÞ;

F2 �F ¼ ððH3;G3Þ; j � p3Þ:

Those diagrams can be written as Figure 4.5.

4.3. Functors between Qf
inj and Grpg:c:f

? . In this subsection, we construct two

functors between the categories Qf
inj and Grpg:c:f

? .

4.3.1. A functor from Qf
inj to Grpg:c:f

? . We construct a functor

Finj : Q
f
inj ! Grpg:c:f

?

for objects in Lemma 4.9, and for morphisms in Lemma 4.10. For the sim-

plicity, we just use the symbol F for Finj throughout Section 4.

Lemma 4.9. Let Q be an object of Qf
inj. Then FðQÞ :¼ ðInn Q; sðQÞÞ is

an object of Grpg:c:f
? .

Fig. 4.5. The diagram appeared in Lemma 4.8.
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Proof. It follows from Lemma 2.15. r

Lemma 4.10. Let f : Q1 ! Q2 be a morphism of Qf
inj. Then the following

Ff : FQ1 !FQ2 defines a morphism of Grpg:c:f
? :

Ff :¼ ððInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ; pÞ;

p : InnðQ2; f ðQ1ÞÞ ! Inn Q1 : sf ðx1Þ 7! sx1 :

Proof. The diagram of Ff can be written as below.

ðInn Q1; sðQ1ÞÞ ðInn Q2; sðQ2ÞÞ
[

ðInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ:

����!Ff

p ��������
! ��������
!

We show that ðInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ is an object of Grpg:c and

p : ðInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ ! ðInn Q1; sðQ1ÞÞ is a morphism of Grp
g:c
bij .

By Proposition 2.15, ðInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ is an object of ObjðGrpg:cÞ,
since f ðQ1Þ is a subquandle of Q2. Let us prove that p is well-defined.

Take any fx1igmi¼1; fy1jg
n
j¼1 �Q1. Assume that se1

f ðx11Þ � � � s
em
f ðx1mÞ ¼ sd1

f ðy11Þ � � � s
dn
f ðy1nÞ

in InnðQ2; f ðQ1ÞÞ, where ei; dj ¼ 1 or �1. We shall show that se1x11 � � � s
em
x1m
¼

sd1y11 � � � s
dn
y1n

in InnðQ1Þ. Take any z1 A Q1. It is enough to show that

f � ðse1x11 � � � s
em
x1m
Þðz1Þ ¼ f � ðsd1y11 � � � s

dn
y1n
Þðz1Þ in Q2, since f is injective. One has

that

f � ðs e1x11 � � � s
em
x1m
Þðz1Þ ¼ s e1

f ðx11Þ � � � s
em
f ðx1mÞð f ðz1ÞÞ

¼ sd1
f ðy11Þ � � � s

dn
f ðy1nÞð f ðz1ÞÞ

¼ f � ðsd1y11 � � � s
dn
y1n
Þðz1Þ:

Hence p : InnðQ2; f ðQ1ÞÞ ! Inn Q1 is a well-defined group homomorphism.

As pðsð f ðQ1ÞÞÞ � sðQ1Þ, p is a morphism from ðInnðQ2; f ðQ1ÞÞ; sð f ðQ1ÞÞÞ to

ðInn Q1; sðQ1ÞÞ in Grpg:c. By the definition, pjsð f ðQ1ÞÞ : sð f ðQ1ÞÞ ! sðQ1Þ is

surjective. Since Q1 is a faithful quandle, pjsð f ðQ1ÞÞ : sð f ðQ1ÞÞ ! sðQ1Þ is injec-

tive. Hence p is a morphism of Grp
g:c
bij . r

Proposition 4.11. The above F : Qf
inj ! Grpg:c:f

? is a functor.

Proof. It is obvious that F idQ ¼ idFQ for each object Q of Qf
inj. Let

f1 : Q1 ! Q2 and f2 : Q2 ! Q3 be morphisms of Qf
inj. We show that

Fð f2 � f1Þ ¼Ff2 �Ff1. We describe

Ff1 ¼ ððInnðQ2; f1ðQ1ÞÞ; sð f1ðQ1ÞÞÞ; p2Þ;

Ff2 ¼ ððInnðQ3; f2ðQ2ÞÞ; sð f2ðQ2ÞÞÞ; p3Þ;

Fð f2 � f1Þ ¼ ððInnðQ3; f2 f1ðQ1ÞÞ; sð f2 f1ðQ1ÞÞÞ; pÞ:

79On categories of faithful quandles with surjective or injective quandle homomorphisms



By the definition of composition, Ff2 �Ff1 ¼ ððhG 03i;G 03Þ; p2 � p3jhG 03 iÞ,
where G 03 ¼ p3jsð f2ðQ2ÞÞ

�1ðsð f1ðQ1ÞÞÞ. It is clear that sð f2 f1ðQ1ÞÞ � G 03 . We

shall prove the inverse conclusion. Take any sf2ðx2Þ A G 03 � sð f2ðQ2ÞÞ ðx2 A Q2Þ.
Since p3ðsf2ðx2ÞÞ A sð f1ðQ1ÞÞ, there exists x1 A Q1 such that p3ðsf2ðx2ÞÞ ¼ sx2 ¼
sf1ðx1Þ. Q2 is faithful quandle, so x2 ¼ f1ðx1Þ. Hence sf2ðx2Þ belongs to

sð f2 f1ðQ1ÞÞ, and G 03 ¼ sð f2 f1ðQ1ÞÞ. We have hG 03i ¼ InnðQ3; f2 f1ðQ1ÞÞ and

p2 � p3jhG 03 i ¼ p. Thus Ff2 �Ff1 ¼Fð f2 � f1Þ. r

4.3.2. A functor from Grpg:c:f
? to Qf

inj. We construct a functor

Ginj : Q
f
inj  Grpg:c:f

?

for objects in Lemma 4.12, and for morphisms in Lemma 4.13. For the

simplicity, we just use the symbol G for Ginj throughout Section 4.

Lemma 4.12. Let ðG;WÞ be an object of Grpg:c:f
? . Then GðG;WÞ :¼

ConjðWÞ is an object of Qf
inj.

Proof. It is proved in the same way as Lemma 3.4, since ObjðQf
injÞ ¼

ObjðQf
surjÞ and ObjðGrpg:c:f

? Þ ¼ ObjðGrp
g:c:f
surj Þ. r

Lemma 4.13. Let ðG1;W1Þ and ðG2;W2Þ be objects of Grpg:c:f
? and F ¼

ððH;GÞ; pÞ : ðG1;W1Þ ! ðG2;W2Þ a morphism in Grpg:c:f
? . Then the following

GF is a morphism of Qf
inj:

GF : ConjðW1Þ ! ConjðW2Þ : o1 7! pj�1G ðo1Þ:

Proof. Take any o1;o
0
1 A ConjðW1Þ. By direct calculation, one has

that GF � so1
ðo 01Þ ¼ sGFðo1Þ � GFðo 01Þ. Thus GF is a quandle homomorphism.

Since pjG : G ! W1 is bijective, GF is injective. r

Proposition 4.14. The above G : Grpg:c:f
? ! Qf

inj is a functor.

Proof. Take any object ðG;WÞ of Grpg:c:f
? . We show that G idðG;WÞ ¼

idGðG;WÞ. Since idðG;WÞ ¼ ððG;WÞ; idGÞ, one has G idðG;WÞðoÞ ¼ idGjW
�1ðoÞ ¼ o

for each o A ConjðWÞ. Thus G idðG;WÞ ¼ idGðG;WÞ.

Let F1 ¼ ððH2;G2Þ; p2Þ : ðG1;W1Þ ! ðG2;W2Þ and F2 ¼ ððH3;G3Þ; p2Þ :
ðG2;W2Þ ! ðG3;W3Þ be morphisms of Grpg:c:f

? . We show that GðF2 �F1Þ ¼
GF2 � GF1. Take any o1 A ConjðW1Þ ¼ GðG1;W1Þ. By the definition of com-

position in Grpg:c:f
? , one has that

F2 �F1 ¼ ððhp3j�1G3
ðG2Þi; p3j�1G3

ðG2ÞÞ; p2 � p3jhp3j�1G3
ðG2ÞiÞ:

We have
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GðF2 �F1Þðo1Þ ¼ ððp2 � p3Þjp3j�1G3
ðG2ÞÞ

�1ðo1Þ

¼ p3jG2

�1ðp2jG1
�1ðo1ÞÞ

¼ ðGF2 � GF1Þðo1Þ:

Hence GðF2 �F1Þ ¼ GF2 � GF1. r

4.4. A category equivalence between Qf
inj and Grpg:c:f

? . In this subsection, we

show that F and G give a category equivalence between Qf
inj and Grpg:c:f

? ,

where F and G are defined in Sections 4.3.1 and 4.3.2.

First we show that there exists a natural isomorphism y : GF) idQf
inj
.

Proposition 4.15. The following y is a natural isomorphism from GF to

idQf
inj
:

y ¼ fyQ : GFQ! Q : sx 7! xgQ AObjðQf
injÞ

: GF) idQf
inj
:

Proof. Recall that each object Q of Qf
inj is faithful, thus yQ is a well-

defined isomorphism. Take any morphism f : Q1 ! Q2 in Qf
inj. It is enough

to show that the following diagram commutes:

Q1???y f

Q2

GFQ1 ���!yQ1
Q1

GFf

???y
???y f

GFQ2 ���!
yQ2

Q2:

Take any sx1 A GFQ1 ðx1 A Q1Þ. Then we have

ðyQ2
� ðGFf ÞÞðsx1Þ ¼ yQ2

ðsf ðx1ÞÞ

¼ f ðx1Þ

¼ ð f � yQ1
Þðsx1Þ:

The proof is completed. r

Next we show that there exists a natural isomorphism h : FG) id
Grp

g:c:f
?

.

Proposition 4.16. The following h : FG) id
Grp

g:c:f
?

is a natural isomor-

phism from FG to id
Grp

g:c:f
?

:

h ¼ fhðG;WÞ ¼ ððG;WÞ; jðG;WÞÞ : FGðG;WÞ ! ðG;WÞgðG;WÞ AObjðGrp
g:c:f
? Þ;

where jðG;WÞ is the isomorphism of Grpg:c in Lemma 2.24. We shall remark that

FGðG;WÞ ¼ ðInnðConjðWÞÞ; sðConjðWÞÞÞ for each ðG;WÞ A ObjðGrpg:c:f
? Þ.
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Proof. By Proposition 4.7, hðG;WÞ is an isomorphism in Grpg:c:f
? for each

object ðG;WÞ of Grpg:c:f
? . Take any morphism F ¼ ððH;GÞ; pÞ : ðG1;W1Þ !

ðG2;W2Þ in Grpg:c:f
? . Let us denote by FGF ¼ ððH 0;G 0Þ; p 0Þ where

H 0 ¼ InnðGðG2;W2Þ;GFðGðG1;W1ÞÞÞ;

G 0 ¼ sðGFðGðG1;W1ÞÞÞ;

p 0 : ðH 0;G 0Þ !FGðG1;W1Þ : spj�1G ðo1Þ 7! so1
:

It is enough to show that the diagram in Figure 4.6 commutes i.e. F � hðG1;W1Þ
¼ hðG2;W2Þ �FGF:

By Lemma 4.8, we have F � hðG1;W1Þ ¼ ððH;GÞ; jðG1;W1Þ � pÞ and hðG2;W2Þ �
FGF ¼ ððjðG2;W2Þ

�1ðH 0Þ; jðG2;W2Þ
�1ðG 0ÞÞ; p 0 � jðG2;W2ÞÞ. Then one has G 0 ¼

sðGFðConjðW1ÞÞÞ ¼ fspj�1G ðo1Þ jo1 A W1g ¼ fsg j g A Gg. So jðG2;W2Þ
�1ðG 0Þ ¼ G

in W2, and hence jðG2;W2Þ
�1ðH 0Þ ¼ H in G2. We show that jðG1;W1Þ � p ¼

p 0 � jðG2;W2Þ. Take any g A G . Then one has

ðjðG1;W1Þ � pÞðgÞ ¼ spðgÞ

¼ p 0ðs
pj�1G ðpðgÞÞ

Þ

¼ p 0ðsgÞ

¼ ðp 0 � jðG2;W2ÞÞðgÞ:

Since G generates H, we have that jðG1;W1Þ � p ¼ p 0 � jðG2;W2Þ. Hence

F � hðG1;W1Þ ¼ hðG2;W2Þ �FGF. r

Fig. 4.6. The diagram appeared in the proof of Proposition 4.16.
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Propositions 4.15 and 4.16 imply the following theorem.

Theorem 4.17. The above ðF;G; y; hÞ gives a category equivalence be-

tween Qf
inj and Grpg:c:f

? .

5. Applications and examples

In this section, as an application of Theorem 1.2, we study the set of all

injective quandle homomorphisms from R3 into R9. Here we denote by Rn the

dihedral quandle of order n.

5.1. Applications. One has that the functor Finj : Q
f
inj ! Grpg:c:f

? defined in

Section 4 implies the following proposition.

Proposition 5.1. For finite faithful quandles Q1 and Q2, if there exists an

injective quandle homomorphism f : Q1 ! Q2, then aInnðQ1Þ divides aInnðQ2Þ.

Let us apply Proposition 5.1 to a more concrete case. We set up our

terminologies for Alexander quandles.

Example 5.2 (Alexander quandles). For an additive abelian group A

and its group automorphism j A AutðAÞ, the following s is a quandle structure

on A. For each a; b A A, saðbÞ ¼ jðbÞ þ ðidA � jÞðaÞ. This quandle is called

the Alexander quandle of A with respect to j and denoted by AlexðA; jÞ. It is

well known (cf. [9, Section 1]) that a quandle AlexðA; jÞ is faithful if and only

if j is fixed-point free (i.e. jðaÞ ¼ a implies that a is equal to the unit of A).

Example 5.3 (Dihedral quandles). For Z=nZ the cyclic group of order

n and its automorphism �id, the Alexander quandle AlexðZ=nZ;�idÞ is called

the dihedral quandle of order n and denoted by Rn. The dihedral quandle Rn is

faithful if and only if n is odd.

Theorem 5.4 ([1, Theorem 6.1.(3)]). Let A be a finite additive abelian

group and j A AutðAÞ a fixed-point free automorphism. Then InnðAlexðA; jÞÞ is
isomorphic to Az hji as groups.

For finite Alexander quandles and dihedral quandles, Proposition 5.1 and

Theorem 5.4 imply the following corollary.

Corollary 5.5. Let A and B be both finite abelian groups. We take

j A AutðAÞ and c A AutðBÞ as fixed-point free automorphisms which have the

same order. If there exists an injective quandle homomorphism f : AlexðA; jÞ !
AlexðB;cÞ, then aA divides aB. In particular, for odd numbers m and n, if

there exists an injective quandle homomorphism f : Rm ! Rn, then m divides n.
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5.2. Injective quandle homomorphisms from R3 to R9. In this subsection, we

study the set of all injective quandle homomorphisms from R3 into R9 i.e.

HomQf
inj
ðR3;R9Þ.

First, we observe that the proposition below holds.

Proposition 5.6. For each c A Z=9Z, e A fG1g, the following map

fc; e : R3 ! R9 is an injective quandle homomorphism:

fc; e : Z=3Z! Z=9Z : ½k�3 7! cþ e½3k�9;

where we put ½k�n :¼ k þ nZ in Z=nZ.

By Proposition 5.6, we have

HomQf
inj
ðR3;R9Þ � f fc; e j c A Z=9Z; e A fG1gg

and aHomQf
inj
ðR3;R9Þb 18. Let us prove that

HomQf
inj
ðR3;R9Þ ¼ f fc; e j c A Z=9Z; e A fG1gg:

Note that the equality could be shown directly. However, we shall give a

group theoretic proof of it as below.

As in Section 4, let us denote by Finj : Q
f
inj ! Grpg:c:f

? the category equiv-

alence (see Theorem 4.17). For the equality above, by Proposition 2.6, it is

enough to show that

aHom
Grp

g:c:f
?
ðFinjR3;FinjR9Þ ¼ 18:

For inner automorphism groups of dihedral quandles, the following

theorem is well known.

Theorem 5.7. Let n be an odd integer. Then the inner automorphism

group InnðRnÞ is isomorphic to the dihedral group D2n of order 2n, that is,

D2n ¼ ha; x j an ¼ x2 ¼ 1; xax ¼ a�1i:

Let us put

D18 ¼ ha; x j a9 ¼ x2 ¼ 1; xax ¼ a�1i;

A ¼ fakx j k ¼ 0; . . . ; 8g � D18;

D6 ¼ hb; y j b3 ¼ y2 ¼ 1; yby ¼ b�1i and

B ¼ fy; by; b2yg � D6:

One has that FinjR9 G ðD18;AÞ and FinjR3 G ðD6;BÞ. We shall determine

Hom
Grp

g:c:f
?
ððD6;BÞ; ðD18;AÞÞ. We put H1 :¼ ha3; xi, H2 :¼ ha3; a4xi and

H3 :¼ ha3; a2xi as subgroups of D18, and take conjugation-stable generators
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of them as G1 :¼ fx; a3x; a6xg � H1, G2 :¼ fax; a4x; a7xg � H2 and G3 :¼
fa2x; a5x; a8xg � H3. One can see that G1, G2 and G3 are conjugate to

each other in D18, hence H1, H2 and H3 are conjugate subgroups in D18.

For sets G and W, we use the symbol BijðG ;WÞ for the set of bijective

maps from G to W. By direct calculation, one has the following observation:

For i ¼ 1; 2; 3 and any f A BijðGi;BÞ, there exists a unique surjective group

homomorphism ~ff : Hi ! D6 such that ~ff jGi
¼ f .

By a computer search on GAP ([8]), we have

Hom
Grp

g:c:f
?
ððD6;BÞ; ðD18;AÞÞ ¼

G3
i¼1
fððHi;GiÞ; ~ff Þ j f A BijðGi;BÞg:

Hence the following holds:

aHom
Grp

g:c:f
?
ððD6;BÞ; ðD18;AÞÞ ¼

X3

i¼1
afððHi;GiÞ; ~ff Þ j f A BijðGi;BÞg

¼
X3

i¼1
aBijðGi;BÞ ¼ 18:

Therefore, we have

HomQf
inj
ðR3;R9Þ ¼ f fc; e j c A Z=9Z; e A fG1gg:
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groups, J. Pure Appl. Algebra, 220 (2016), 735–758.

[11] Y. Ishihara and H. Tamaru, Flat connected finite quandles, Proc. Amer. Math. Soc., 144

(2016), 4959–4971.
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