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ABSTRACT. E. Bunch, P. Lofgren, A. Rapp and D. N. Yetter [4] pointed out that
by considering inner automorphism groups of quandles, one has a functor from the
category of quandles with surjective homomorphisms to that of groups with surjective
homomorphisms. In this paper, we focus on faithful quandles. As main results,
we give a category equivalence between the category of faithful quandles with surjec-
tive quandle homomorphisms and that of pairs of groups and their conjugation-stable
generators with suitable group homomorphisms. We are also interested in injective
quandle homomorphisms. By defining suitable morphisms among pairs of groups and
their conjugation-stable generators, we obtain a category which is equivalent to the
category of faithful quandles with injective quandle homomorphisms.

1. Introduction

The concept of quandles was introduced by Joyce ([13]). A quandle is a
set with a binary operator, whose axioms are corresponding to Reidemeister
moves of classical knots. Quandles have been studied actively from various
viewpoints ([2], [3], [4], [5], [6], [7], [10], [12], [17], [19]). From the view
point of differential geometry, quandles can be regarded as a generalization of
symmetric spaces. There have already been several studies of quandles that
transfer notations and ideas in the theory of symmetric spaces to that of
quandles ([11], [14], [15], [18]).

Let Q be a quandle. We denote by Aut(Q) the group of quandle auto-
morphisms of Q. For a point x of Q, a quandle automorphism s, : Q — Q is
defined as the right multiplication of x with respect to the binary operator, and
is called the symmetry at x on Q. The inner automorphism group Inn(Q) is
defined as the subgroup of Aut(Q) generated by s(Q) the set of all symmetries
on Q. The inner automorphism groups play important roles in the structure
theory of quandles.

We write Q for the category of quandles and quandle homomorphisms.
One may expect that the correspondence Inn : Q — Inn Q will become a func-
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tor Q — Grp, where Grp denotes the category of groups and group homo-
morphisms. As shown in [4], “Inn” becomes a functor for surjective quandle
homomorphisms, i.e. “Inn” is a functor between the category of quandles with
surjective quandle homomorphisms and Grp. It should be noted that such the
functor is not a category equivalence.

In this paper, we focus on faithful quandles. Let us denote by Qf the full
subcategory of Q consists of faithful quandles. We are interested in the sub-
categories stmj of Qf with surjective quandle homomorphisms and QifIlj of Qf
with injective quandle homomorphisms.

In order to study stmj and Qifnj, we define group theoretic categories
Grpsglﬁj'f and Grp®“f. The objects of Grpfl;fj‘f and those of Grp®“f are pairs
of groups and generators with certain conditions. The morphisms of Grpsgt;fj'f
are surjective group homomorphisms inducing surjective maps between fixed
generators. The morphisms of Grp®®f are defined more complicatedly (see
Sections 2.4, 4.1 and 4.2 for the details).

The main results of this paper are the following:

THEOREM 1.1.  There exists an equivalence Fq; : qurj

Faui(Q,s) = (Inn Q,s(Q)) for each faithful quandle (Q,s).

— Grpfl;fj‘f such that

THEOREM 1.2.  There exists an equivalence Fiy; Qifnj

Fini(Q,s) = (Inn Q,s(Q)) for each faithful quandle (Q,s).

— Grp#*! such that

In particular, for each pair of faithful quandles (Q;, Q,), we have the
following bijections:

Homeg (01, 2) & Homgyacr (Inn(Q1),5(Q1)), (1nn(02), 5(02), (L)

Homgy, (01, 0) + Homgeer (Inn(Q1), 5(01)), (Inn(Q2),5(0))).  (1.2)

This paper is organized as follows. In Section 2, we recall some notions
on categories and those on quandles. We also define several categories of
groups with generators. Theorems 1.1 and 1.2 will be discussed in Sections 3
and 4, respectively. In Section 5, as an easy application of Theorem 1.2,
we study the set of all injective quandle homomorphisms from the dihedral
quandle R; of order 3 to the dihedral quandle Ry of order 9.

2. Preliminaries

In this section, we recall some notions on categories and those on
quandles. We also define some categories of groups with generators.
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2.1. Notions on the category theory. In this subsection, we recall some
notions on the category theory. For details, see [16].

DErFINITION 2.1 (category). A (locally small) category C consists of the
following:
* A collection Obj(C) of objects.
* For each c¢j,c; € Obj(C), a set Home(cr,¢z) of morphisms from ¢
to os.
* For each ¢;, ¢; and ¢3 € Obj(C), a map:

Homc(cz, 03) X HOmc(Cl, Cz) — HOl’Ilc(Cl,C3)
(9,./) —  gof,

called composition.

* For each ¢ € Obj(C), an element id, of Hom¢(c, ¢), called the identity
on c,

where the following axioms hold:

* (Associativity) For each f e Homc(ci,c¢),9 € Home(cz,¢c3) and he
Homc(c3, ¢a), we have ho(go f) = (hog)o f.

* (Identity laws) For each f e Homc(ci,c2), we have foid, = f =
id, o f.

In Sections 2.2 and 2.4, we define some categories as subcategories or full
subcategories of several categories. The definitions of subcategories and full
subcategories are given as follows.

DEerNITION 2.2 (subcategory, full subcategory). Let C be a category. A
subcategory C' of C consists of a subclass Obj(C’) of Obj(C) together with,
for each ¢j,c; € Obj(C’), a subset Home(c1,¢z) of Home(cq,¢y) such that
C' is closed under the composition and identities. It is a full subcategory if
Homc¢ (1, ¢;) = Home(cy, ¢z) for all ¢, ¢, € Obj(C).

We recall notions of isomorphisms and functors in order to define category
equivalences.

DEFINITION 2.3 (isomorphism). (1) A morphism f € Hom¢(cy, ¢3) is called
an isomorphism from ¢; to ¢ in C if there exists a morphism g €
Hom¢(ca,¢;) such that go f =id,, and fog=id,. Such the mor-
phism g is called the inverse of f.

(2) An object ¢; € Obj(C) is said to be isomorphic to an object c¢; €
Obj(C) if there exists an isomorphism from ¢; to ¢;. For such ¢
and ¢, we write ¢ = ¢;.

DEerINITION 2.4 (functor, faithful functor, full functor). For two categories
C and D, a (covariant) functor # : C — D consists of the following:



64 Yasuki TADA

* A function Obj(C) — Obj(D), written as ¢ — ZFc.
* For each c¢|,¢; € Obj(C), a map Homc¢(cy, ) — Homp(Fcy, Zc),
written as f +— Zf,
where the following axioms hold:
* For each f € Homc(ci,c;) and g € Home(cz, ¢3), we have F(go f) =
Fgo Ff.
e For each ¢ e Obj(C), we have 7 id. = id .
A functor &# : C — D is said to be faithful (resp. full) if, for each c¢j,c; €
Obj(C), the following map is injective (resp. surjective):

Homc(cy,¢2) — Homp(Fcy, Fer)

A functor # : C — D is said to be essentially surjective on objects if, for all
d € Obj(D), there exists ¢ € Obj(C) such that F¢~d on D.

We also define category equivalences.

DEerINITION 2.5 (natural isomorphism, category equivalence). For two
functors #,% : C — D, a natural isomorphism 0 : ¥ = 4 is a family {0, : F¢ —
9c}cconj(cy of isomorphisms in D such that, for each morphism f : ¢; — ¢ in
C, the following diagram commutes:

O,
61 —> gcl

bl

19} Fey —— Yoy
()

7z

A category equivalence between C and D consists of a pair of functors C == D
together with natural isomorphisms 6 :id¢c = 9% and 5 : 9% = idp.

In Sections 3.2 and 4.4, we prove Theorem 1.1 and 1.2, respectively,
according to the definition of category equivalence above.

The following is a well known proposition on category theory, and induces
bijections (1.1) and (1.2) in Section 1 from Theorem 1.1 and 1.2.

ProposiTION 2.6 ([16, Proposition 1.3.18]). Let & : C — D be a functor.
Then F gives a category equivalence if and only if F is faithful, full and
essentially surjective on objects.

2.2. Notions on quandles. In this subsection, we fix our terminologies for
quandles, subquandles, faithful quandles and their categories.

Quandles are usually defined by sets with binary operators satisfying three
axioms, derived from the Reidemeister moves of classical knots. However,
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we employ a formulation in terms of symmetries as [13]. For a set Q, we
write

Map(Q, Q) :={f : @ — @ :a map}.

DerNITION 2.7 (quandle, quandle homomorphism). Let Q be a set. We
consider a map

s: 0 — Map(Q,0) : x— s,.

Then the pair (Q,s) is a quandle if

Q1) ¥xe 0 si(v) =x,

(Q2) VxeQ, s, is bijective,

(Q3) Vx,y€Q, sy08, = S5()) O Sx.
For a quandle (Q,s), the map s is called a guandle structure on Q. For each
x € Q, the map s, is called a symmetry at x on Q.

Let (Q1,52) and (Q»,5%) be quandles. Then f: Q) — Q, is called a
quandle homomorphism if, for any x| € Oy, it satisfies

fosl = sz(;) of.

We recall the notion of faithful quandles.

DEeriNiTION 2.8 (faithful quandle). A quandle (Q,s) is said to be faithful
if s, =s, implies x = y for all x,ye Q.

In this paper, we use the symbol Q for the category of quandles and
quandle homomorphisms. Let us define categories QF, sturj and Qif“j related
to faithful quandles as follows.

DEFINITION 2.9 (QF, stmj, Qifni). We write Q' for the full subcategory of
Q consists of faithful quandles and quandle homomorphisms. Furthermore,
we use the symbol sturj (resp. Qifnj) for the subcategory of Qf with surjective
(resp. injective) quandle homomorphisms.

Our goal in this paper is to study sturi and Qifnj in terms of the theory of
groups.
We also recall the notion of subquandles.

DEeriNITION 2.10 (subquandle). For a quandle (Q,s), a subset Q' in Q is
called a subquandle of (Q,s) if sc(y),s;'(y) e Q' for all x,ye Q'

A subquandle Q' of (Q,s) becomes a quandle with 5|y : Q" —
Map(Q', 0').

Here we set up our notation for conjugation quandles and their specific
subquandles.
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DEerNITION 2.11 (conjugation quandle). Let G be a group and define the
map s: G — Map(G, G) as follows:

sq(h) =ghg™  (g,he Q).

Then (G,s) is a quandle. Such the quandle is called a conjugation quandle,
and denoted by Conj(G). Furthermore let 2 be a union of some conjugacy
classes of G. Then € is a subquandle of Conj(G), which is written as
Conj;(2) or simply Conj(R).

One can easily see that the following lemma holds.

LemMmA 2.12. Let G be a group and Q a union of some conjugacy classes
of G. Then Conj,(Q) is faithful if the centralizer of Q in G is trivial.

REmMARK 2.13. It should be remarked that any morphism of Q has the
surjective-injective factorization, i.e. for any morphism f : Q; — @, of Q, there
exists an object Q of Q, a surjective morphism f;: Q] — Q and an injective
morphism f; : Q — O, such that /' = f;o f;. In fact, one can take Q as f(Q)),
f; as f and f; as the inclusion. However, some morphisms of Qf do not have
surjective-injective factorizations in Qf. Actually, let us consider the following
group homomorphism

f:Gy = G3/Ws gy Cr — Cs,

where &3 denotes the symmetric group of degree three, 23 the alternating
group of degree three, C, the cyclic group of order two, and we fix 1 as
any injective group homomorphism. Then Conj(Ss3) is a faithful quandle,
f : Conj(©3) — Conj(S3) is a morphism of QF and Image f =¢q Conj(C3) is
not faithful. In particular, the morphism f does not have the surjective-
injective factorization in QF.

2.3. The group of inner automorphisms. In this subsection, we recall the
notion of inner automorphism groups of quandles.

DEerFINITION 2.14 (inner automorphism group). Let (Q,s) be a quandle
and Q' a subquandle of Q. We use the symbol Inn(Q, Q') for the group
generated by the set s(Q') = {sx: Q0 — Q|xe Q'}. Inn(Q, Q) is denoted by
Inn Q. The group Inn Q is called the inner automorphism group of (Q,s).

One can easily show the following lemma.

LemMmA 2.15. Let (Q,s) be a quandle and Q' a subquandle of Q. Then
the generator s(Q') of Inn(Q, Q") is stable by the following Inn(Q, Q')-action
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on Aut(Q):
gb=gbg"  (9eIn(Q,Q), ¢ € Aut(Q)).
Furthermore, if Q is faithful, then the action Inn(Q) ~ s(Q) is faithful.

REMARK 2.16. Let us denote by Grp the category of groups and group
homomorphisms. One may expect that the correspondence Inn : Obj(Q) —
Obj(Grp) : Q — Inn Q extends to a functor from Q to Grp. As shown in [4],
“Inn” becomes a functor for surjective quandle homomorphisms, i.e. “Inn”
induces a functor Qguj — Grp, where Qg is the category of quandles with
surjective quandle homomorphisms, by considering the following correspon-
dence f +— Inn(f): For quandles Q;, Q> and a surjective quandle homomor-
phism f : Q) — O, there uniquely exists a group homomorphism Inn(f) such
that the following diagram commutes:

/

O ——— &

Inn(Q) m’* Inn(Q>).

However, for Q or QF instead of Q,uij> the following statement is not
always true: For objects Q;, 0> and a morphism f: Q; — Q> of Q or QF,

there exists a group homomorphism Inn(Q;) — Inn(Q;) such that the diagram
below commutes:

O —— O
Inn(Q;) —— Inn(Q»).

Actually, let 77 be the trivial quandle of order 1 and R; the dihedral
quandle of order 3. For any quandle homomorphism f : 7} — Rj, it is not
true that there exists a group homomorphism Inn(7}) — Inn(Rj3) such that the
following diagram commutes:

T, ————— R;
Inn(7;) —— Inn(R3).

Therefore, it is not easy to consider “Inn” as a functor from Q (or Q) to
Grp.
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REMARK 2.17 (associate groups). For any quandle Q, one can associate a
group As(Q) called the associate group (or adjoint group) of Q, which is defined
as an abstract group {ep|R), where eg = {e.|x€ O}, R={e;(,) = exey(ex)f1 |
x,y € Q}. The correspondence e, +— s, gives a surjective group homomor-
phism from As(Q) onto Inn(Q). It is known that “As” becomes a functor
Q — Grp, and Conj: Grp — Q gives a right adjoint functor of As ([13]). It
should be remarked that the associate group As(Q) is not needed to be finite
even for a finite quandle Q.

2.4. Definitions of some categories of groups with generators. In this subsec-

tion, we define categories Grp®®", Grp®*, Grpsm], Grpb“, Grp®*f and Grpsgu:j‘f.

gen

DeriNiTiON 2,18 (Grp®®"). We define a category Grp®" as follows.
Its object (G,Q) is a pair of a group G and its generator . Its morphism
¢:(G1,Q)) — (G2,2,) is a group homomorphism ¢: G; — G, such that
(ﬂ(.Ql) C 5.

We shall define the full subcategory Grp®¢ of Grp®™" as follows.

DeriNiTION 2.19 (Grp®€). We denote by Grp®© the full subcategory of
Grp®™" whose generators of objects are conjugation-stable. Here, for an object
(G, Q) of Grp®®™, the generator  is said to be conjugation-stable if gQg~"' C Q
for any ¢ of G.

Let us define the subcategories Grpsur! and Grp of Grp#" as below.

DEerINITION 2.20 (Grpsur], Grpbu) A category Grpsm] (resp. Grpbu) is
defined as follows. Let us put

Obj (GrpSurl ) := Obj(Grp#®*)
(resp. Obj(Grpbu) := Obj(Grp?©)).
Its morphism ¢ : (G1,Q;) — (G2,9,) is a morphism of Grp®¢ such that
9lo, : 21 — 2 is surjective (resp. bijective).

Note that for any morphism ¢ : (Gi, Q1) — (G2,2,) of Grply; or Grpg,
¢ : Gy — G, is surjective.
We also define the full subcategory Grp®<! of Grp®® as follows.

DErINITION 2.21 (Grpg'c'f). We denote by Grp®®' the full subcategory of
Grp®¢ whose generators of objects are faithful. Here, for an object (G, 2) of
Grp®¢, the generator Q is said to be faithful if the following action G ~ Q
is faithful:

g.0 = gwg " (9e G, we Q). (2.1
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Remark that for an object (G, Q) of Grp®©, the action G v Q is faithful if
and only if the centralizer of Q2 is trivial. Furthermore, these two conditions
on (G, Q) are also equivalent to the condition that the centralizer of G is trivial,
since 2 is a generator of G.

We shall define the subcategory Grp&:'

ef
wrj Of Grp¥*" as follows.

DEFINITION 2.22 (GrpES). We denote by GrpS' the full subcategory

sur] sur|
1 e 0 i

of GrpSurJ with objects of Grp

Let us note that for objects of these categories, the following hold:

Obj(Grp#<’) = Obj(GrpEsh

surj

C Obj(Grp*®*) = Obj(GrpZ:,

surj )

Obj (Grpbll )
C Obj(Grp®™").

The proposition below gives characterizations of isomorphisms in Grp®¢,
Grp®f or Grpsur!

ProposITION 2.23. (1) Let us put C=Grp® or Grp®f Let
¢ :(G1,21) — (G2,22) be a morphism of C. Then ¢ is an isomor-
phism in C if and only if ¢ : G| — G, is an isomorphism of Grp (ie. a
group isomorphism) and ¢(Q)) = Q,.

(2) Let ¢:(Gy,2)) — (GZ,QZ) be a morphism of Grpsur] Then ¢ is an
isomorphism in Grpsur] if and only if ¢ : Gy — G, is an isomorphism
of Grp (i.e. a group isomorphism).

Proor. First we show the “if”” part of the claim (1). Let y: G, — G be
the inverse of ¢ in Grp. Clearly, ¢(Q;) = Q, implies (2;) = 2;. Thus ¥ is
a morphism of C. It is obvious that ¢ =id(g, o,) and g =id(g, o,). Thus
Y is the inverse of ¢ in C.

Let us prove the “only if” part of the claim (1). There exists an iso-
morphism  : (G2,€>) — (G1,21) such that Y =id(g, ) and ¢y = idg,,o,)-
Since  is also a morphism of Grp, ¢ is an isomorphism of Grp. Furthermore,
we also have ¢(Q)) D p(¥(2;)) = Q,, and hence ¢(Q;) = Q,.

One can easily show the “only if”” part of the claim (2). Finally, we show
the “if”” part of the claim (2). Let Y : G — Gy be the inverse of ¢ in Grp.
Since ¢ is a morphism of Grpsm , one has ¢(Q;) = 2,. Hence Y (Q,) = Q
and thus y is a morphism of Grpsm] It is obvious that y¢ =id, o,) and
@Y =1id(G, 0,). Thus  is the inverse of ¢ in Grpg'c.'f. O

surj

Let (G,Q) be an object in Grp®#*'. By Lemma 2.15, (Inn(Conj(f)),
s(Conj(2))) is an object of Grp#<f. By the definition of Conj(£2), the action
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G ~ Q (see Definition 2.21 (2.1)) leads a group homomorphism

9,0 G— Inn(Conj(Q)) : g — (9(6,0)(9) : @ — gog ™).

Note that ¢ o)(w) = s, for each we Q.
The following proposition will be applied in Sections 3 and 4.

ProPOSITION 2.24. In the semng above, ¢ o) is an isomorphism from
nn(Conj(Q onj(Q2))) in Grp rp and Grp
G,Q Inn(C s(C Grp®®, Grp®*f and GrpEs'.

surj

Proor. By definition, ¢ o) : (G,2) — (Inn(Conj(£2)),s(Conj(2))) is a
morphism of Grp®®f. By Proposition 2.23, it is enough to show that
9.0+ G — Inn(Conj(2)) is bijective and ¢ o)(L2) = s(Conj(2)). It is ob-
vious that ¢ o)(2) = s(Conj(R)), and hence 9,0 + G — Inn(Conj(Q)) is
surjective. Since (G, Q) is an object of Grp®®', the action G ~ Q is faithful,
so we have ¢ o) : G — Inn(Conj(2)) is injective. O

3. Categories with surjective homomorphisms

Let us recall that the following two categories are introduced in Sections
2.2 and 2.4:
qur] the category of faithful quandles and surjective quandle homo-
morphisms.
. Grpfu'fj'f: the category of groups with conjugation-stable faithful gen-
erators, whose morphisms are surjective group homomorphisms induc-
ing surjective maps between fixed generators

In this section, we show that the categories qur] and Grpsur] are equivalent.

3.1. Functors between Q!
functors between QF

and Grpsurl In this subsection, we construct two
gcf
surj °

surj

and Grp

surj

3.1.1. A functor from Q gef

wrj - We construct a functor

to Grp,

surj
£
Fourj : qur; Grpsgu:j
for objects in Lemma 3.1, and for morphisms in Lemma 3.2. For the sim-
plicity, we just use the symbol & for F,; throughout Section 3.

LEmMMa 3.1. Let Q be an object of qurj Then 7Q := (Inn Q,s(Q)) is

an object of Grp&<!

surj °

Proor. It follows from Lemma 2.15. O

LemMMA 3.2. Let f: Q1 — Q> be a morphism of Q!
Ff is well-defined and a morphism of Grp&<':

surj *

F[: (Inn @y, 5(Q1)) — (Inn 02, 5(02)) = 83y = Sy(x,)-

Then the following

surj
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ProoF. Take any series {xi:};"),{yy;};.; C Q1. Assume sZ ---sin =

. X11 Xim
s;’,lll ~--s§'1* in Inn(Q;), where ¢,0;, =1 or —1. We show that

& Em _ O On

Srean) S Can) T ) T )
in Inn(Q,). Take any z; € Q,. Since f: Q) — Q> is surjective, there exists
z1 € Q) such that f(z;) =z,. We have

S e (22) = ) 8 (S (21)
= fo(s, - st )(z)
=/fo ( Sy fln)(zl)
= 57l Sl (1)
= S}SE}’H) “ 'S,?I(’ym)(zz)'

Hence #f : Inn Q; — Inn Q; is a well-defined group homomorphism. More-
over, since f is surjective, Zf] o, :s(Q1) — s(Q2) is surjective. O

ProrosiTION 3.3. The above F : su“ — GrpSllrJ is a functor.

Proor. It is obvious that # idp = id#p for each object Q of qur] Let

f1: 01— Oy and f> : QO — Q3 be morphisms of qur, By the definition of &,
we have F(fy0 fi) = Ffr0 Ffi. O

3.1.2. A functor from Grp®<' 10 Qf . We construct a functor

surj surj*

. gef
gSUU ' qur] Grpsurj

for objects in Lemma 3.4, and for morphisms in Lemma 3.5. For the sim-
plicity, we just use the symbol % for %, throughout Section 3.

LemMa 3.4, Let (G, Q) be an object of Grp&y'.  Then %(G, Q) := Conj(Q)
is an object of QF

surj’

Proor. It is enough to show that Conj(Q) is faithful. This follows from
Lemma 2.12. O]

LemMA 3.5. Let ¢ : (G1,Q1) — (Gz,Qz) be a morphism of Grpsgu‘:j'f. Then
the following ¢ is a morphism of Qf

Sl.ll‘_]
G : Conj(2;) — Conj(2,) : w; — ¢(w).

PrOOF. Since ¢|, : Q) — Q; is surjective, %¢ : Conj(Q2;) — Conj(£2,) is
surjective. Since ¢ is a group homomorphism and Conj(Q;) and Conj(£2,) are
conjugation quandles, %¢ is a quandle homomorphism. O
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8¢ f — f .
surj surj

ProOPOSITION 3.6. The above 9 : Grp is a functor.

Proor. It is obvious that % id( ) = idg( o) for each object (G,£) of
Grpsm. Let ¢, : (G,Q)) — (G2,2;) and ¢, : (GZ,QZ) (G5,93) be mor-
phisms of GrpES'. By the definition of %, we have %(p, 0 ¢,) = 99, 0 Gp,.

surj *

O
3.2. A category equivalence between qury and Grpsgu'f]:f. In this subsection, we
show that # and ¥ give a category equivalence between Qf . and Grpsgufj'f,

surj
where # and ¢ are defined in Sections 3.1.1 and 3.1.2.

First we prove that there exists a natural isomorphism 0 : 9.7 = idq; .

surj

ProposITION 3.7.  The following 0 is a natural isomorphism from 4F to
ldsturj.'
0={00:970— Q:5:,— X}Qeobj<Qf bE 19T = idgr .

surj

PrOOF. Recall that each object Q of QF . is faithful. Then one can

surj

easily see that 0p is well-defined and becomes an isomorphism of qu“ Take

any morphism f : Q1 — O, of Qsm. It is enough to show that the following
diagram commutes:

0 970 2. g
lf ml lf
O GF O — 0>.

%]

Take any x; € Q;. Then we have
(Og, © (97))(sx) = 00,(7(x,))
=/(x1)
= (f o bg,)(sx))-
The proof is completed. ]

Next we show that there exists a natural isomorphism # : #% = id .. _ges.

surj
ProrosiTiION 3.8.  The following n: % = 1dG gt IS a natural isomor-
phism from F9 to 1dGr gef! P

sur]

Grp,

n=Ane.e : 796G Q2) — (G,Q): 5, — v} (G,2)€Obj(Grpkr")

where, for each (G, Q) N(G,q) is the inverse of the isomorphism ¢ q) : (G,Q) —
FY9(G,Q) in Grpsur deﬁned in Lemma 2.24. Here, we remark that 7%9(G,Q)
= (Inn(Conj()), (COH_]( ))) for each (G,Q) eObJ(Grngf)

surj
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Proor. Take any morphism ¢: (G1,Q;) — (G2,9Q,) of Grp

enough to show that the following diagram commutes:

nGy.2p)

(G1,1) FY4(G1,2)) —— (G1,2))

Lo

(G2,9) FYG(Gr,2,) —— (G2,22).

Take any w; € ;. Then

gef

surj *

73

It is

Since Inn(%(Gy,Q;)) is generated by s(9(Gi,Q1)), the proof is completed.

The following theorem follows from Propositions 3.7 and 3.8.

O

THEOREM 3.9. The above (F,%,0,n) gives a category equivalence between

Qf . and Grp2-f

surj surj *

4. Categories with injective homomorphisms

gcf

In this section, we define a category Grp?

Grp®*! are equivalent as categories.

, and prove that Qifnj and

4.1. Definition of a category of groups with generators. Let us recall that the

following three categories are introduced in Section 2.4:

e Grp®°: the category of groups with conjugation-stable generators, whose
morphisms are group homomorphisms inducing maps between fixed

generators.

. Grpﬁi'jc : the category of groups with conjugation-stable generators, whose
morphisms are surjective group homomorphisms inducing bijective maps

between fixed generators.

e Grp®°': the category of groups with conjugation-stable faithful gen-
erators, whose morphisms are group homomorphisms inducing maps

between fixed generators.
In this subsection, we define a category Grp
above.

gcf
*

in terms of the three categories
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DerFNITION 4.1 (Grp®©f). We define a category Grp®“’ as follows.

We denote Grp®*' briefly by D in this subsection. Let us put Obj(D):=
Obj(Grp®ef). For objects (Gy,Q2)), (G2, 2,) € Obj(D), we define the set of
morphisms Homp ((Gy,Q1), (G2, Q) from (G, Q) to (G2,£;) in D as follows.

Homp((G1, 1), (G2,22))

H : a subgroup of G,
I :a subset of Q,,
(H,T) € Obj(Grp=*),
n:(H,I') — (Gi,Q) : a morphism in Grpg;

=< ((H,I),n)

We remark that each morphism is an opposite directional partial map, and
a diagram of a morphism can be written as Figure 4.1.

Flg. 41. &= ((H,F),Tl) € HomD((Gl,Ql), (Gz,gz)).

In Section 4.2, we define composition of morphisms in D and prove that D
becomes a category.

ReMARK 4.2. For a morphism ((H,I'),n) of Grp®®f the group homo-
morphism 7 is not needed to be injective on H. Actually, the following gives
an example of non injective 7: Let us denote by &, the symmetric group
of degree n for each n. Take a conjugation-stable faithful generator #3 of S3
as the set 73 = {(12),(13),(23)} of transpositions. For objects (S3,#;) and
(S6,S6) of Grp#', we define a morphism ((H,I'),7) by

*

H = &5 x {id, (456), (465)}, I =13 x {(456)},
7 : S5 x {id, (456), (465)} — S3: (g,¢) — g,

from (S3,1) to (Sg, S6) of Grp®°!. Then 7 is not injective.

*

4.2. On composition of morphisms in Grp®“f. Let us give a definition of

composition of morphisms in Grpf‘c'f by the following proposition.

PROPOSITION 4.3 (composition in Grp®®f). Let @, = ((Hy, I}),m):
(Gl,.Q]) — (GQ,QQ) and @2 = ((H3,F3),7Z3) : (GZ,QZ) — (G3,.Q3) be morphisms
of Grpfs'. Then ®;0 &y = ((Km| (1)), m| (I2)),m O 3| i (ray) 5 @
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morphism from (G, Q) to (Gs,Q23) of Grp®®'. The diagram of ®; o0 @ can
be written as Figure 4.2.

(G, ) === (G2, ) -~~~ (G3,023)
= U - U

(Hy,T'5) (Hs,T3)
7r3\< v

310y (12) 1 1
(m3lp, (I2)), 73|, (I2))

Fig. 4.2. Composition in Grp®*'.

Proor. It is obvious that 73| '(I) generates <n3|;31 (I,)). Take any
hs e <n3\,— (I,)), and y;€ ”3|r (I). Since n3(ys) € Iy, m3(hs) e dry=H,
and (H,I3) is an object of Grp*¢, we have r3(h3yshy!) = 3 (hs) 73 (73) w3 (h3) ™
€ I>. Thus h3pshy e7Z3|F (I';). Hence (<n;\EI(F2 >,7z3|,:31(1”2)) is an object

of Grp®¢. Since n3|,— Iy — ©, is bijective, 73] 7Z3|E1 (I;) — I is bijec-

7[‘7 1"2

tive. Hence 7, o 73] ”3\5 () — Q is b1]ect1ve So 7 0 n3| is

m| 2 ) F‘))

a morphism of Grpbu '

ReMARK 4.4. The following diagram is a part of the above diagram in
Proposition 4.3:

(G2,9,)

U Py
(H», I3) (H3,I3).

The following diagram is pullback of the above diagram in Grp®¢:

(G2,£)
U
(Hy, I) (H3,1%).

3
3 ‘<7!3 \;:W\ U

(sl (D) >, ma| 5 (112).

Hence, composition of morphisms in Grp#*’ leads from pullback in
Grp®°.

By Propositions 4.5 and 4.6 stated below, Grpf‘“‘f becomes a category with
respect to the composition.

PropoSITION 4.5. The above composition of morphisms in Grpng is
associative.
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ProOF. Let the following ®;, @, and ®; be morphisms of Grp&*':

CD] = ((Hz,Fz),TL’z) . (G],Q]) — (GQ,QQ),
D = ((H3,13),m3) : (G2,22) — (G3,93),
D3 = ((H4,F4),7‘L’4) : (G3,Q3) — (G4,Q4).

By the definition of composition in Grp®®f one has

1, -1 1, -1
D30 (Dy0Py) = ((Kmalp, (malp (12))), maly, (w3l (12))),
72 0 3| a1 (139 © Tl 7 Gl (130) )
—1 -1
(@30 ®2) 0 D1 = (KTl aley 1) (12)0, (W3l pmal )~ (12)),

o - .
T (n3n4|<(7!3\r3n4\,,4‘;1(r})) ](Fz)>)
(0

Figure 4.3 and 4.4 are diagrams of each of them.

(23 P2 D3
(G1,00) ----+ (G2, (%) ----+ (G3,823) -- -+ (G4, (&)

\U\U\U
T2 T3 T4

(Ho, I%) (Hs, I3) (Hyq, I'y)

| \ U
T3 mg 1 1) (12)

((ms| 7 (T2)), ms| 7 (T2) U

7T4<7\'4I“i(7\'3[‘;(1_‘2)i/>\

((mal p, (sl 1y (F2)))s 7al 1) (s 7y (T2)))
Fig. 4.3. A diagram of @30 (d,0Py).

Since 7|, (m3] 5 (I2)) = (n3|ﬁn4\mmm)*1(r2) in Iy, one has @;o
(@20@1):(@30@2)0@1. ]

PROPOSITION 4.6.  For each object (G,Q) of Grp#*', ((G,Q),ids) is the
identity of (G,Q) in Grp&ef

% .

Proor. Let &= ((H,I),n):(G1,21) — (G2,Q,) be a morphism of
Grp*g'c‘f~ Since 7 r_l(Ql) = I, the following holds:
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(3% P2 D3
(G1,821) -+ (Ga, k) ----> (G3,823) - -+ (Gy, ()

T2 3 T4

(Ha, I) (Hs, I3) (Ha, I'y)

| \ U
L mal 7} ()

((mal 7 (1)), mal 1) (1))

T34 —1n
((W3W4\W4‘;41(F3)) (I2))

(<(73|H37T4|ﬂ4|;;(r3))71(F2)>7 (7"3|F37T4|7r4\;41(['3))71(FQ))

Fig. 44. A diagram of (@30 ;)0 @y.

o ((G1,21),id,) = ((<alp ™ (@)D, 771 (@1)), 16yl g 1))

=((H,I'),m)
= Q.
Let ¥ = ((H',I"),7') : (Gy,Q0) — (G1,21) be a morphism of Grp&*f. Since
idg! (') = ’, we have
((G1,21),idg,) o ¥ = ((<idg (I'")>,idg! (")), 7" idg, | @zl )
= ((Hlvrl)an/)
=Y.
Hence ((Gy,Q)),idg,) is the identity of (Gj,Q2;) in Grp&*'. O

The following proposition gives a characterization of isomorphisms in the
category Grp®<'.

ProposITION 4.7. Let @ = ((H,I'),n):(G},2)) — (G2,2;) be a mor-
phism of Grp®t.  Then & = ((H,I'),n) is an isomorphism in Grp®<' if and
only if H=G,, I'=Q, and 7n:(Gy,Q,) — (G1,2) is an isomorphism in
Grp®©,

PrOOF. First we show the “if” part. One has that ((G;,Q;),z~!) is the
inverse of @ = ((G2,Q2),7).
Let us prove the “only if” part. There exists

Y = ((I‘I,7 F/), 77,',) € ISOl’nGrpE.c.f((Gz,.Qz), (G] y .Q]))
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such that Y& = id(Gl‘Ql) and QY = id<G2792>. By oV = id(Gbgz), one has that
Kal, ) 2l (), 7'7) = ((Ga, 22),idg,). Since @, =], '(I'") =T,
one has that Q, =1 and G, = H. Similarly one can show that G, = H'
and Q; =TI". Clearly n'z =idg, and #nn’ = idg,, thus = : G, — Gj is an iso-
morphism of Grp. Since 7 : (G2, Q:) — (G1,2)) is a morphism in Grp%i‘jc, one
has 7(€;) = Q,. By Proposition 2.23 (1), = is an isomorphism of Grp®*.

O

One can easily show the following lemma.

LemMA 4.8, Let (Go, Qo). (G1,21), (G2, 2,), (G3,Q3) be objects of Grp&<t
and ¢ an isomorphism from (G,,;) to (G1,Qy) in Grp®c. We shall consider
the isomorphism @ = ((G1,23),9) from (G1,Q)) to (G2,Q,) in Grp®*t.  Take
morphisms @y = ((Hy,I1),m1) : (Go,20) — (G1,Q1) and &, = ((H3,13),73) :
(G2, 2;) — (G3,9Q3) of GrpB<t.  Then the following hold:

*

®ody = ((p~ (H), ¢~ (1)), m 0 p),
@2 od = ((H3,F3),(oo 77.'3).

Those diagrams can be written as Figure 4.5.

(Go, %) —----2--- y (Gr, ) -y (G, ) — - » (G, 025)
T v R v T

(Hy, Ih) (G, ) (Hs, Is)

\ ; \ :

(™' (H1), o~ (1)) (Hs, I's)

Fig. 4.5. The diagram appeared in Lemma 4.8.

4.3. Functors between Q! . and Grp®“f. In this subsection, we construct two

inj *
functors between the categories Qf. and Grp#*'.

inj

43.1. A functor from Qf. to Grp®*f. We construct a functor

inj *

g . f .cf
Finj : Qi — Grp

*

for objects in Lemma 4.9, and for morphisms in Lemma 4.10. For the sim-
plicity, we just use the symbol .# for Z; throughout Section 4.

LemMmA 4.9. Let Q be an object of Qifnj. Then 7 (Q) := (Inn Q,s(Q)) is
an object of Grp®®T.

*
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Proor. It follows from Lemma 2.15. O

LemMA 4.10. Let f: Q1 — O, be a morphism of Qf
Ff: FQ — FOQy defines a morphism of Grp®<!:

Zf = ((Inn(Q, f(Q1)),s(f(Q1))), 7).
7 :Inn(Q,, f(Q1)) — Inn Q; : Sf(x) P Sy -

Proor. The diagram of Zf can be written as below.

Then the following

inj*

(Inn Q1,5(Q1)) —— 2/~ = (Inn 0s,5(02))
‘x U

(Inn(Q,, 1(Q1)),s(f(Q1)))-

We show that (Inn(Qa, f(Q1)),s(f(Q1))) is an object of Grp®¢ and
n: (Inn(Q2, £(Q1)),s(f(01))) — (Inn Q1,5(Q1)) is a morphism of Grpy.
By Proposition 2.15, (Inn(Q,, f(Q1)),s(f(Q1))) is an object of Obj(Grp*°),

since f(Q;) is a subquandle of Q,. Let us prove that n is well-defined.
& &m 0 On
Take any {x;}/2y, {yy};L, C Q1. Assume that s s = sfb“) : sf(y]”)

in Inn(Q», f(01)), where ¢,0; =1 or —1. We shall show that s& ...s& =

X11 X1m
s ---s% in Inn(Q;). Take any zje Q. It is enough to show that
Sfo(si st )(z1) = fo(s) ---s%)(z1) in Oy, since f is injective. One has
that

f o (Sj;lll .. .S;"m)(zl) = Sfel(X“) .. .s;/(nxm)(f(zl))
I O
- Sféyu) S )(f(Zl))

7f ( Y11 ;)’11,1)(21)'

Hence 7 :Inn(Qs, f(Q1)) — Inn Q; is a well-defined group homomorphism.

As 7(s(f(Q1))) € 5(Q1), = is a morphism from (Inn(Q, /(Q1)),s(f(Q1))) to
(Inn Q1,5(01)) in Grp*c. By the definition, 7|y /(o,) :5(/(Q1)) — s(Q1) i
surjective. Since Q is a faithful quandle, 7|y ;o,)) : s(f(Q1)) — s(Q1) is injec-
tive. Hence n is a morphism of Grpblj O

ProposiTION 4.11.  The above F :Qinj — Grp#*! is a functor.

Proor. It is obvious that & idp =id#¢ for each object Q of Qf;. Let

inj*

J1:01— 0y and f,: Oy — Q3 be morphisms of Qm! We show that
F(fro fi)=Ffr0Ffi. We describe

Zfi = ((Inn(Q2, £1(01)), s(f1(Q1))), m2),
F f» = ((Inn(Qs, /2(02)),5(f2(22))), 73
F (fr0 fi) = (Inn(Qs, /~£1(Q1)), s(f211(Q1))), ).
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By the definition of composition, Zf; o0 Zf; = (({I3),I5),m 0 n3|<,—3«>),
where I3 = 7r3|s<fZ(Q2>)71(s(fl(Ql))). It is clear that s(f2/fi(Q1)) C Iy. We
shall prove the inverse conclusion. Take any s;,(y,) € I's C 5(f2(Q2)) (x2 € 02).
Since 73(S,(x,)) € S(f1(Q1)), there exists x; € O such that 7m3(sps(y,) = sx, =
Sfi(x)- Q2 is faithful quandle, so x» = fi(x;). Hence s, belongs to

s(£2/1(Qu)), and I3 =s(f2/1(Q1). We have (I3 =Inn(Qs, £2/1(Q1)) and
m o M|y =n. Thus Ffro0 Ffy = F(fr0 /i), o

4.3.2. A functor from Grp#*' to Qf. We construct a functor

inj

. f .c.f
Yinj : Qipj — Grp

*

for objects in Lemma 4.12, and for morphisms in Lemma 4.13. For the
simplicity, we just use the symbol ¥ for %, throughout Section 4.

LemMa 4.12. Let (G,Q) be an object of Grp®*f. Then %(G,Q):=
Conj() is an object of Qifnj.

Proor. It is proved in the same way as Lemma 3.4, since Obj( ifnj) =
Obj(QY,;) and Obj(Grp#*’) = Obj(Grpfy). O

LemMA 4.13. Let (G, Q) and (G,,Q,) be objects of Grp®*t and & =
(H,I),7): (G1,21) = (G2,25) a morphism in Grp¥“t.  Then the following
Y& is a morphism of Qifnj.'

G : Conj(2,) — Conj(Q2,) : ) — 7|, (w1).

Proor. Take any w;,w{ € Conj(2;). By direct calculation, one has
that 9@ o s, (0]) = Syap(w,) © GP(w)). Thus 4@ is a quandle homomorphism.
Since x| : I' — Q) is bijective, 4@ is injective. O

PROPOSITION 4.14.  The above % : Grp®*t — Qf. is a functor.

inj

idg( o). Since idg, o) = ((G,Q),idg), one has ¥ id g, o)(w) = idG|Qfl(a)) =w
for each e Conj(R2). Thus % id(s, o) = idg(G,q)-

Let &, = ((Hz,Fz),T[z) : (Gl,.Ql) — (Gz,Qz) and &, = ((H3,F3),71’2) :
(G2,2;) — (G3,Q23) be morphisms of Grp®®'. We show that %(&, 0 &) =

GDy,0%9d,. Take any w; € Conj(2;) = 9(G,,Q;). By the definition of com-

position in Grp®<f one has that

Proor. Take any object (G,Q2) of Grp®“f. We show that ¥ idg o) =

-1 -1
Dy 0Dy = ((Kmslpy (12)), 730y, (12)), M2 0 sl 1 ys)-

-1
I3

We have
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G(Dy 0 Dp)(w1) = ((m20 713)|n3|;3‘(r2))_1(w1)

—1 -1
=mlp  (mln (01))

= (g¢2 o g(bl)(wl)
Hence g(@z o @1) =9P, 0 4P,. O
4.4. A category equivalence between Qifni and Grp
show that # and ¥ give a category equivalence between Q

where # and % are defined in Sections 4.3.1 and 4.3.2.
First we show that there exists a natural isomorphism 0 : 47 = id .

inj

gcf
.

In this subsection, we
f and GrpgAc.f

inj x

ProposITION 4.15.  The following 0 is a natural isomorphism from 9% to
ld [
or -

inj

0={0p:97Q — Q:5,+— x}Qeobj<Qifnj) 19T = idgs

inj
Proor. Recall that each object Q of Qifnj is faithful, thus 0y is a well-
defined isomorphism. Take any morphism f : Q; — @, in Qifnj. It is enough

to show that the following diagram commutes:

T HQI
O Y701 —— O
l] ﬁ/’/l J/
0> GF Q) —— O
HQz

Take any sy, € 9Z7Q; (x1 € Q1). Then we have

(Og, © (97 1)) (sx) = 00, (7(x,))
= f(x1)
= (folg,)(sx)-
The proof is completed. ]
Next we show that there exists a natural isomorphism 7 : 7% = id, pEeT-

ProrosITION 4.16.  The following n : 9 = idGrpg.cI is a natural isomor-
phism from F%9 to idGrpf.c.l'.'

n= {77(6,.(2) = ((G, Q)W”(G,.Q)) : *%{q(Gv 'Q) - (G, Q)}(GﬁQ)EObj(Grpf-c-fy

where ¢ g is the isomorphism of Grp®* in Lemma 2.24.  We shall remark that
F9(G, Q) = (Inn(Conj(R)), s(Conj(RQ))) for each (G,Q) e Obj(Grp&*F).
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Proor. By Proposition 4.7, 16,0 is an isomorphism in Grpf'c'f for each
object (G,Q) of Grp#“f. Take any morphism & = ((H,I),7n): (G}, Q) —

*

(Gy,2,) in Grp®“f. Let us denote by #%® = ((H',I""),n') where
H' =Inn(9(G,,2,),9®(%(Gy,21))),
I' =s5(90(%(G1,21))),
n' s (H' T') = FG(G1, Q1) 18,1 — So-

It is enough to show that the diagram in Figure 4.6 commutes i.e. Do, o,
= ’7(62792) o gg¢:

(a1, 21) (G, &)
N
(Gla‘Ql) \Fg(Glagl) W (Ghﬁl)
T ® ™ FGo a \
NGy, 829)

(H, ') C (Go,$%) (H',I")C FG(Go, %) (G2, ) S (H,D)

\ U
P(Ga,92)

(G27 02)

Fig. 4.6. The diagram appeared in the proof of Proposition 4.16.
By Lemma 4.8, we have @& o NGy, 0) = ((H, F),go(GhQ]) on) and Gy, @) ©
TGP = (96,0, (H'),0G,.0,) '(I"): 7' ©9(G,.0,))- Then one has I =
s(9P(Conj(21))) = {3y 1, |1 €21} ={s;[7eT}. So 9@, 0, '(I")=T

in ©,, and hence (P(GZ.QZ)—l(H/) = H in G,. We show that PG, o) O =
”IO(P(GZ,QZ). Take any y e I'. Then one has

(06,2, © () = Sa(y)
o
= (821 (a()
= ”/(Sy)
= (”/ o (P<Gz,92))(?’)~

Since [I" generates H, we have that ¢, o)°on=7"0¢4, o, Hence
DonG, 0 = NG, o) © F GP. -



On categories of faithful quandles with surjective or injective quandle homomorphisms 83

Propositions 4.15 and 4.16 imply the following theorem.

THEOREM 4.17. The above (F,%,0,n) gives a category equivalence be-
tween Q. and Grp&t.

inj *

5. Applications and examples

In this section, as an application of Theorem 1.2, we study the set of all
injective quandle homomorphisms from Rj into Ry. Here we denote by R, the
dihedral quandle of order n.

5.1. Applications. One has that the functor Fiy :Qi’;1j — Grp#*' defined in
Section 4 implies the following proposition.

PrOPOSITION 5.1.  For finite faithful quandles Q and Q,, if there exists an
injective quandle homomorphism f : Q1 — Qa, then #Inn(Q)) divides #Inn(Q,).

Let us apply Proposition 5.1 to a more concrete case. We set up our
terminologies for Alexander quandles.

ExampLE 5.2 (Alexander quandles). For an additive abelian group A
and its group automorphism ¢ € Aut(A4), the following s is a quandle structure
on A. For each a,be A, s,(b) = ¢(b)+ (id4 — ¢)(a). This quandle is called
the Alexander quandle of A with respect to ¢ and denoted by Alex(A,p). It is
well known (cf. |9, Section 1]) that a quandle Alex(A,¢) is faithful if and only
if ¢ is fixed-point free (i.e. p(a) = a implies that a is equal to the unit of A).

ExampLE 5.3 (Dihedral quandles). For Z/nZ the cyclic group of order
n and its automorphism —id, the Alexander quandle Alex(Z/nZ,—id) is called
the dihedral quandle of order n and denoted by R,. The dihedral quandle R, is
faithful if and only if n is odd.

THEOREM 5.4 ([1, Theorem 6.1.(3)]). Let A be a finite additive abelian
group and ¢ € Aut(A) a fixed-point free automorphism. Then Inn(Alex(4, ¢)) is
isomorphic to A X {p) as groups.

For finite Alexander quandles and dihedral quandles, Proposition 5.1 and
Theorem 5.4 imply the following corollary.

COROLLARY 5.5. Let A and B be both finite abelian groups. We take
@€ Aut(A4) and y € Aut(B) as fixed-point free automorphisms which have the
same order. If there exists an injective quandle homomorphism f : Alex(4,¢) —
Alex(B, ), then #A divides #B. In particular, for odd numbers m and n, if
there exists an injective quandle homomorphism f : R, — R,, then m divides n.
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5.2. Injective quandle homomorphisms from R; to R9. In this subsection, we
study the set of all injective quandle homomorphisms from Rj3 into Ry i.e.
HoinLi(R3,R9).

First, we observe that the proposition below holds.

ProOPOSITION 5.6. For each ceZ/9Z, ece{+1}, the following map
Jfe.e : R3 — Ro is an injective quandle homomorphism:
Jeoe 1 Z)3L — L)L : [k]y — ¢+ ¢[3k],,

where we put [k| =k+nZ in Z/nZ.

n

By Proposition 5.6, we have
Hoinf.;(R3’R9) D{fece|lc€EZ/IZ, e {£+1}}
and #Homgr (R3, Ry) > 18.  Let us prove that
inj
HOinf“j(R37R9) ={fe:|c€Z/IZ, ec{£1}}.

Note that the equality could be shown directly. However, we shall give a
group theoretic proof of it as below.

As in Section 4, let us denote by Fiy; : Qifnj — Grp the category equiv-
alence (see Theorem 4.17). For the equality above, by Proposition 2.6, it is
enough to show that

gcf
*

#Hom ,7"1an3, e?.”iang) = 18.

et

For inner automorphism groups of dihedral quandles, the following
theorem is well known.

THEOREM 5.7. Let n be an odd integer. Then the inner automorphism
group Inn(R,) is isomorphic to the dihedral group Dy, of order 2n, that is,

Dy, =<{a,x|a" =x* =1, xax =a").
Let us put
Dig=<a,x|d® =x*=1,xax=a""),
A={d"x|k=0,...,8} C Dy,
Do =<b,y|b*=p*=1,pby=0b""y  and
B = {y,by,b*y} C Ds.

One has that Fj,jRy =~ (D13, 4) and FiyjR3 = (Ds, B). We shall determine
Homg, oei((De, B), (D15, 4)). We put Hj:= (a*,x), H,:=<a’ a*x) and
H; :={a’,a’x) as subgroups of Djg, and take conjugation-stable generators



On categories of faithful quandles with surjective or injective quandle homomorphisms

of them as [I7:={x,a’x,a®x} C H;, I :={ax,a*x,a’x} C H, and I}:

{a’x,a’x,a®x} C H;. One can see that I3, I> and I3 are conjugate

each other in D;g, hence Hy, H, and H; are conjugate subgroups in Dig.

For sets I" and Q, we use the symbol Bij(I", Q) for the set of bijective
maps from I to Q. By direct calculation, one has the following observation:
For i=1,2,3 and any f € Bij({}, B), there exists a unique surjective group

homomorphism f : H; — Dg such that f] =
By a computer search on GAP ([8]), we have

3

HomGrpf'c’f((DévB)v (Dlst)) = |_| {((H17E)7f) |f € BIJ(FHB)}
i=1

Hence the following holds:

3
#Homg, ser((Ds, B), (D1s, A Z ((H»I;), /)| f € Bij(I}, B)}

3
Z #Bij(I';, B) = 18.

Therefore, we have

Hoinfnj(R3,R9) ={fe:|c€Z/IZ, e {£1}}.
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