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Abstract. Let G be a group. If an equation xn ¼ yn in G implies x ¼ y for any

elements x and y, then G is called an R-group. It is completely understood which

knot groups are R-groups. Fay and Walls introduced R-group in which the normalizer

and the centralizer of an isolator of hxi coincide for any non-trivial element x. It is

known that R-groups and R-groups share many interesting properties and R-groups are

necessarily R-groups. However, in general, the converse does not hold. We will prove

that these classes are the same for knot groups. In the course of the proof, we will

determine knot groups with generalized torsion of order two.

1. Introduction

Let G be a group. Then the most elementary equation xn ¼ yn leads us

to the notion of R-groups ([3, 25]).

Definition 1 (R-group). A group G is called an R-group if it has the

unique root property: an equation xn ¼ yn for some non-zero integer n in G

implies x ¼ y.

R-groups form an important class of torsion-free groups, and some relation

to abstract commensurators is studied in [2]. It is known that any torsion-free

word-hyperbolic group is an R-group (for example, see [2, Lemma 2.2]).

It is easy to observe that the knot group of a torus knot is not an R-group.

Let GðKÞ be the knot group of a torus knot K ¼ Tðp; qÞ. Then GðKÞ has a

presentation ha; b j ap ¼ bqi. Thus the equation x p ¼ ap has solutions x ¼ a,

ðbaÞ�1
aðbaÞ, ðbaÞ�2

aðbaÞ2, and so on.

The second named author has been partially supported by JSPS KAKENHI Grant Number

19K03502 and Joint Research Grant of Institute of Natural Sciences at Nihon University for 2022.

The third named author has been partially supported by JSPS KAKENHI Grant Number

JP20K03587.

2020 Mathematics Subject Classification. Primary 57M05; Secondary 57K10, 57M07, 20F19,

20F38, 20F60, 20F65, 06F15.

Key words and phrases. Knot group, unique root property, R-group, R-group, R�-group, bi-

ordering, generalized torsion, stable commutator length.



In 1974, Murasugi [30] gave a su‰cient condition for the knot group of a

fibered knot to be an R-group. In particular, he showed that the knot group

of the figure-eight knot is an R-group. We should remark that Murasugi’s

work locates before the works of Jaco–Shalen [22], Johannson [23].

A complete characterization of knot groups which are R-groups is con-

tained in [23, Proposition 32.4]. (Johannson discusses the fundamental groups

of Haken manifolds, more generally.) It also follows from [22], although it is

not explicitly stated.

Theorem 1 ([22, 23]). Let K be a knot in the 3-sphere S3, and let EðKÞ
be the exterior and GðKÞ ¼ p1ðEðKÞÞ. Then GðKÞ is an R-group if and only if

EðKÞ contains neither a torus knot space nor a cable space as a decomposing

piece of the torus decomposition. In particular, the knot group of any hyperbolic

knot is an R-group.

In 1999, Fay and Walls [14] introduced R-groups, which share many

interesting properties with R-groups.

Definition 2 (R-group). A group G is called an R-group if G is torsion-

free and the normalizer and the centralizer of the isolator subset

Ihxi ¼ fg A G j gn A hxi for some positive integer ng

of the cyclic group hxi coincide for any x A G.

It is known that any R-group is an R-group [14]; see also Lemma 1.

However, in general, there exist R-groups which are not R-groups ([14]). We

prove that this is not the case among knot groups.

Theorem 2. For knot groups, the two classes of R-groups and R-groups

coincide.

In the proof of Theorem 2, we use a characterization of R-groups using

Baumslag–Solitar relation. See Section 2 for the characterization. This char-

acterization enables us to relate a knot group GðKÞ being an R-group and

being R-group using generalized torsion elements defined below.

In G, a non-trivial element g is called a generalized torsion element if some

non-empty finite product of its conjugates yields the identity. That is, the

equation

ga1ga2 � � � gan ¼ 1 ð1Þ

holds for some a1; a2; . . . ; an A G and nb 2, where ga ¼ a�1ga. The minimum

number of conjugates yielding the identity is called the order of g ([21]). Since

a generalized torsion element is not the identity, its order is at least two. A
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typical example is the fundamental group of the Klein bottle. It has a pre-

sentation ha; b j a�1ba ¼ b�1i. The relation shows bab ¼ 1, so the generator b

is a generalized torsion element of order two.

As a generalization of torsion-free groups, Fuchs [15] introduced R�-

groups.

Definition 3 (R�-group). A group G is called an R�-group if it has no

generalized torsion.

Now it should be worth noting some relation among ordering of groups,

generalized torsion and R-groups. Recall that a bi-ordering in a group G is a

strict total ordering < which is invariant under left and right multiplications,

that is,

x < y ) gxh < gyh for g; h A G:

If G admits a bi-ordering, then it is said to be bi-orderable. Bi-orderable

groups are R-groups (see [12]), but the converse is not true ([29, p. 127]).

If we require only the invariance under left multiplication, then G is said

to be left-orderable. It is well known that all knot groups are left-orderable

[6, 18]. In [32], Neuwirth asked if a knot group can be bi-orderable. Perron

and Rolfsen [33] gave a su‰cient condition for the knot group of a fibered

knot to be bi-orderable, and showed that the group of the figure-eight knot is

bi-orderable. Since then, there are various results on bi-orderable knot groups

([10, 11, 12, 13, 19, 20, 24, 37]), but there seems to be no characterization of

them.

It is well known that bi-orderable groups are R�-groups, but there are

R�-groups which are not bi-orderable ([4, 5, 29]). Also, it is not known

whether any R�-group is left-orderable or not.

For 3-manifold groups, including knot groups, we conjecture that the two

classes of R�-groups and bi-orderable groups coincide [27]. Although this con-

jecture is verified for various knot groups ([17, 28]), it still remains to be open,

in general.

For the relation between R�-groups and R-groups, it is easy to show that if

a knot group is an R�-group then it is an R-group (Corollary 2), and we can

state the following from precedent works [17, 27, 36].

Theorem 3. There exist infinitely many hyperbolic knots whose knot groups

are not R�-groups but R-groups.

Suppose that GðKÞ is not an R�-group, namely it has a generalized torsion

element. In the course of the proof of Theorem 2, we will prove Theorem 4

below which determines knot groups with generalized torsion elements of order

two. Before stating the result, we need a few definitions.
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A torus knot space is said to be of even type if it is the exterior of a torus

knot Tðp; qÞ with p or q even. It is of odd type otherwise. Similarly, a cable

space of even type is defined as the exterior of Tðp; qÞ with p even, which lies

on a torus S1 � qD0 and runs p times along S1 in a solid torus S1 �D2, where

D0 � D is a smaller disk. Also, it is of odd type otherwise.

Theorem 4. Let GðKÞ be the knot group of a knot K. Then GðKÞ has

a generalized torsion element of order two if and only if EðKÞ contains either a

torus knot space of even type or a cable space of even type as a decomposing

piece of the torus decomposition. In particular, such a knot group is not an

R-group.

As a direct consequence of Theorem 4, we have the following.

Corollary 1. The knot group of a hyperbolic knot does not admit a

generalized torsion element of order two.

In the forthcoming paper [16], we will classify generalized torsion elements

of order two in 3-manifold groups from a geometric viewpoint.

2. R-groups and R�-groups

Let us recall a characterization of R-groups given in [14]. Theorem 3.2 of

[14] claims that G is an R-group if and only if G is an R-group and for every

x, y with y0 1 of G and m; n A Z, the Baumslag–Solitar relation x�1ymx ¼ yn

implies m ¼ n. Throughout the paper, we use this description.

Lemma 1 ([14]). If a group G is an R-group, then G is an R-group.

Proof. Assume that xn ¼ yn for some n0 0. We may assume n > 0,

and show that x ¼ y.

Since G is torsion-free (see Section 1), we may assume that x; y0 1. Let

us consider the isolator subset Ihxi of the cyclic group hxi. Then y A Ihxi.
We claim that y lies in the normalizer of Ihxi. If g A Ihxi, then gi ¼ x j

for some integers i > 0 and j. Thus

ðy�1gyÞ in ¼ y�1giny ¼ y�1x jny ¼ y�1y jny ¼ y jn ¼ x jn A hxi;

so y�1gy A Ihxi.
By the definition of R-group, the normalizer and the centralizer of Ihxi

coincide. Hence y lies in the centralizer of Ihxi.
Clearly, x A Ihxi, so x and y commute. This implies

ðxy�1Þn ¼ xny�n ¼ 1:

Again, since G is torsion-free, we have x ¼ y.
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Thus, the class of R-groups is contained in that of R-groups. Proposi-

tion 3.11 of [14] shows that there is a di¤erence between these two classes.

(Certain extensions of a torsion-free abelian group of rank one by Z are typical

examples.)

In this section, we will prove Theorems 2 and 3 after discussing the

relationship between R�-groups and R-groups. Throughout the paper, ½x; y� ¼
x�1y�1xy.

Lemma 2. If a group G is an R�-group, then G is an R-group.

Proof. Suppose that xn ¼ yn for some n0 0. Then ½x; yn� ¼ 1. The

commutator identity implies that ½x; yn� is a product of conjugates of ½x; y�
(see [31]). Hence if ½x; y�0 1, then ½x; y� is a generalized torsion element, a

contradiction.

If ½x; y� ¼ 1, then xny�n ¼ 1 implies ðxy�1Þn ¼ 1. Since G is torsion-free,

x ¼ y.

Lemma 3. Let GðKÞ be a knot group. For x; y A GðKÞ and m; n A Z, the
Baumslag–Solitar equation x�1ymx ¼ yn implies that y ¼ 1 or m ¼Gn.

Proof. This immediately follows from [22, Theorem VI.2.1] or [34].

Proof (Proof of Theorem 2). By Lemma 1, any R-group is an R-group.

We prove the converse for a knot group.

Suppose that GðKÞ is an R-group. Assume that GðKÞ is not an R-group

for a contradiction. Then there exist x and y0 1, and integers m0 n such

that x�1ymx ¼ yn. By Lemma 3, m ¼ �n. Since m0 n, we have m0 0.

Thus

ðx�1yxÞm ¼ x�1ymx ¼ y�m ¼ ðy�1Þm:

By the unique root property, x�1yx ¼ y�1. Conjugating with x again, we

have x�2yx2 ¼ y. Then x2 and y commute, and hence ðy�1xyÞ2 ¼ y�1x2y ¼
x2. This means that y�1xy is also a 2nd root of x2. Assume for a con-

tradiction that y�1xy ¼ x, i.e. x and y commute. Then x�1yx ¼ y�1 gives

y2 ¼ 1. Since GðKÞ is torsion-free, this is impossible. Thus x and y�1xy give

two distinct 2nd roots of x2. This contradicts that GðKÞ is an R-group.

Corollary 2. Let GðKÞ be a knot group. If GðKÞ is an R�-group, then

it is an R-group, so R-group.

Proof. This immediately follows from Lemma 2 and Theorem 2.

Among knot groups, there is a huge di¤erence between R�-groups and

R-groups as claimed in Theorem 3.
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Proof (Proof of Theorem 3). By Theorems 1 and 2, we know that the

knot group of a hyperbolic knot is an R-group. On the other hand, there

are plenty examples of hyperbolic knots whose knot groups admit generalized

torsion, such as the negative twist knots and twisted torus knots (see [17,

28, 36]).

3. Generalized torsion elements

In this paper, a generalized torsion element of order two plays a key role.

Let g be a generalized torsion element in a group G. If g has order two, then

there exist two elements a and b in G such that gagb ¼ 1. By taking a con-

jugation with a�1, we have ggba�1 ¼ 1, so gba�1 ¼ g�1. In other words, g is

conjugate to its inverse, and conversely, such a non-trivial element gives a

generalized torsion element of order two.

We first give two examples for later use.

Example 5. (1) Let EðKÞ be a torus knot space of even type. That is,

K is a torus knot Tðp; qÞ with p even. Then the knot group GðKÞ
has a presentation ha; b j ap ¼ bqi. Let p ¼ 2r. Then ½ap; b� ¼
½a2r; b� ¼ 1, but

½a2r; b� ¼ ½ar; b�a
r

½ar; b�:

We claim ½ar; b�0 1 in GðKÞ. Let f : GðKÞ ! ha; b j ap ¼ bq ¼ 1i ¼
Zp � Zq be the natural projection. Then fð½ar; b�Þ ¼ arb�1arb is

reduced, so non-trivial (see [26]).

Thus we have shown that ½ar; b� is a generalized torsion element

of order two.

(2) Let Cðp; qÞ be a cable space of even type. It is the exterior of

Tðp; qÞ in a solid torus S1 �D2 with p ¼ 2r, where Tðp; qÞ �
S1 � qD0, D0 � D2 and Tðp; qÞ intersects D0 in p ¼ 2r points in

the same direction. Then G ¼ p1ðCðp; qÞÞ has a presentation ha; b; c j
½b; c� ¼ 1; bqcp ¼ api. We choose these generators so that a repre-

sents the core of S1 �D2, and b and c lie on S1 � qD2 with b ¼
f�g � qD2, c ¼ S1 � f�g.

Again, ½ap; b� ¼ 1. We show ½ar; b�0 1 in G. Consider the

natural projection

f : G ! ha; b; c j ½b; c� ¼ 1; bqcp ¼ ap ¼ 1i

¼ ha j ap ¼ 1i � hb; c j ½b; c� ¼ 1; bqcp ¼ 1i

¼ Zp � Z:
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The image corresponds to the fundamental group of the annulus with

one cone point of index p. Then fð½ar; b�Þ ¼ a�rb�1arb is reduced,

which is non-trivial. Hence as in (1), ½ar; b� is a generalized torsion

element of order two.

In the next section, we prove that a torus knot space or a cable space

contains a generalized torsion element of order two in its fundamental group if

and only if it is of even type (Lemma 6), by evaluating the stable commutator

length of an element in the commutator subgroup.

The next lemma claims that if the knot group admits a generalized torsion

element of order two, then there exists an essential (singular) map from the

Klein bottle into the knot exterior.

Lemma 4. Let K be a knot with exterior EðKÞ and GðKÞ ¼ p1ðEðKÞÞ.
If GðKÞ admits a generalized torsion element of order two, then there exists a

continuous map f : F ! EðKÞ, where F is the Klein bottle, such that the induced

homomorphism f� : p1ðF Þ ! GðKÞ is injective.

Proof. Let y be a generalized torsion element of order two in GðKÞ.
Then there exists x such that x�1yx ¼ y�1. Since y0 1 and GðKÞ is torsion-

free, we have x0 1. We also use the same symbols x and y to denote the

loops with the base point p0.

For the Klein bottle F , take two loops a and b meeting in a single point

q0 so that a is orientation-reversing but b orientation-preserving. Then they

give a presentation p1ðFÞ ¼ ha; b j a�1ba ¼ b�1i based on the point q0. Let f

be a map sending q0, a and b to p0, x and y, respectively. Since the image

x�1yxy of the loop a�1bab is null-homotopic in EðKÞ, f extends to a map

on F .

We claim that the induced homomorphism f� : p1ðFÞ ! GðKÞ is injec-

tive. Note that any element of p1ðFÞ is written as aib j for some integers

i and j. Assume that f� is not injective. Then there exists a non-trivial

element aib j such that f�ðaib jÞ ¼ xiy j ¼ 1. Since x and y are not torsions,

i0 0 and j0 0.

On the other hand, the relation x�1yx ¼ y�1 gives x�1y jx ¼ y�j. Since

y j ¼ x�i, we have y j ¼ y�j, so y2j ¼ 1. This is impossible.

For a Haken 3-manifold with incompressible boundary, there exists the

characteristic submanifold V by Jaco–Shalen [22] and Johannson [23]. We

restrict ourselves to the exterior of a non-trivial knot. Then V is a disjoint

union of Seifert fibered manifolds. More precisely, each component is either

a torus knot space, a cable space, a composing space or ðtorusÞ � I . There

is a slight di¤erence between two theories of [22] and [23]. For the knot
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exterior EðKÞ of a hyperbolic knot K , V is empty in [22], but V ¼ qEðKÞ � I

in [23].

Proposition 1. If GðKÞ admits a generalized torsion element of order two,

then EðKÞ contains either a torus knot space of even type or a cable space of

even type as a component of the characteristic submanifold.

Proof. By Lemma 4, there exists a map f : F ! EðKÞ, where F is the

Klein bottle, such that f� is injective. Then Corollary 13.2 of [23] claims that

f is homotopic to a map g with the image contained in the characteristic

submanifold V of EðKÞ.
Let S be the component of V which contains the image of g. Then p1ðSÞ

admits a generalized torsion element of order two, because p1ðF Þ contains

such an element and g� is injective. There are only four possibilities of S:

a torus knot space, a cable space, a composing space or ðtorusÞ � I . However,

a composing space and ðtorusÞ � I have bi-orderable fundamental groups.

Hence there is no generalized torsion there. Also, Lemma 6 shows that if a

torus knot space or a cable space admits a generalized torsion element of order

two, then it is of even type. Thus V contains a torus knot space of even type

or a cable space of even type as a component.

Proof (Proof of Theorem 4). Let us observe the ‘‘if part’’. Let X be

a decomposing piece of EðKÞ, which may be EðKÞ itself. Assume that X is

either a torus knot space of even type or a cable space of even type. Then as

shown in Example 5, p1ðXÞ has a generalized torsion element of order two.

Since p1ðXÞ is a subgroup of GðKÞ, GðKÞ also has a generalized torsion ele-

ment of order two.

The ‘‘only if ’’ part of Theorem 4 follows from Proposition 1.

4. Stable commutator length

We quickly review the definition of stable commutator length ([7]).

Let G be a group and g A ½G;G�. Then the stable commutator length of g

is defined to be

sclGðgÞ ¼ lim
n!y

clGðgnÞ
n

;

where clGðaÞ denotes the commutator length of a, that is, the smallest number

of commutators whose product gives a. For g B ½G;G�, sclGðgÞ can be defined

to be sclGðgkÞ=k if gk A ½G;G�, or y, otherwise.

For a knot group GðKÞ, any generalized torsion element lies in

½GðKÞ;GðKÞ�. For, the equation (1) implies n½g� ¼ 0 A H1ðEðKÞÞ ¼ Z under

the abelianization, so ½g� ¼ 0.
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Lemma 5 ([21]). Let G be a group. If g is a generalized torsion element

of order k, then

sclGðgÞa
1

2
� 1

k
:

In particular, if g has order two, then sclGðgÞ ¼ 0.

As mentioned in the first paragraph of Section 3, an element g is a

generalized torsion element of order two if and only if g is conjugate to g�1.

Then it is also easy to see sclGðgÞ ¼ 0 in a direct way. If g ¼ hg�1h�1,

then g2n ¼ gngn ¼ gnðhg�1h�1Þn ¼ gnðhg�nh�1Þ, so clGðg2nÞ ¼ 1 for any n > 0.

This implies 2 sclGðgÞ ¼ sclGðg2Þ ¼ 0, so sclGðgÞ ¼ 0. Such an element often

appears in the study of stable commutator length as an exceptional case.

Lemma 6. A torus knot space or a cable space contains a generalized

torsion element of order two in its fundamental group if and only if it is of even

type.

Proof. Example 5 shows that a torus knot space or a cable space of even

type contains a generalized torsion element of order two in its fundamental

group.

Conversely, consider a torus knot space of odd type. That is, let K be

a torus knot Tðp; qÞ with p, q odd. The knot group GðKÞ has a presenta-

tion ha; b j ap ¼ bqi. Let g be a generalized torsion element of order k ðb 2Þ
in GðKÞ.

Claim 6. k > 2.

Proof (Proof of Claim 6). Let f : GðKÞ ! H ¼ ha; b j ap ¼ bq ¼ 1i ¼
Zp � Zq be the natural projection. This map is induced by collapsing each

fiber of the Seifert fibration to a point. Equivalently, ker f is the center of

GðKÞ, which is the infinite cyclic normal subgroup generated by a regular fiber

h ð¼ ap ¼ bqÞ.
First, assume that fðgÞ is not conjugate into one factor of Zp � Zq. If

fðgÞ ¼ a1b1 � � � aLbL with ai A hai ¼ Zp, bi A hbi ¼ Zq, ai 0 1, bi 0 1, and Lb 1

(or, fðgÞ ¼ b1a1 � � � bLaL), then Theorem 3.1 of [8] (or [9, Theorem F]) claims

that

sclHðfðgÞÞb
1

2
� 1

N
; ð2Þ

where N is the minimum order of ai, bi. Since p and q are odd, Nb 3. Thus

sclHðfðgÞÞ > 0. By the monotonicity of the stable commutator length ([7,

Lemma 2.4]), we have sclGðKÞðgÞb sclHðfðgÞÞ > 0. Then k > 2 by Lemma 5.
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Otherwise, fðgÞ, after a conjugation if necessary, lies in one factor.

This implies that fðgÞ ¼ ai or bi, so g ¼ aih j or bih j for some integers i, j.

Then g ¼ aiþpj or biþqj. In H1ðEðKÞÞ ¼ Z, ½g� ¼ ði þ pjÞ½a� or ði þ qjÞ½b�. We

recall that ½g� ¼ 0, ½a� ¼ q and ½b� ¼ p in H1ðEðKÞÞ. Thus ði þ pjÞq ¼ 0 or

ði þ qjÞp ¼ 0, so i þ pj ¼ 0 or i þ qj ¼ 0. However, this implies g ¼ 1, a

contradiction.

Next, let Cðp; qÞ be a cable space of odd type, and let G ¼ p1ðCðp; qÞÞ
¼ ha; b; c j ½b; c� ¼ 1; bqcp ¼ api. As above, consider the natural projection

f : G ! H ¼ ha; b; c j ½b; c� ¼ 1; bqcp ¼ ap ¼ 1i ¼ Zp � Z (see Example 5(2)).

Then ker f is the center of G, which is the infinite cyclic normal subgroup

generated by a regular fiber.

Let g be a generalized torsion element of order k in G. We can show that

k > 2 as in the proof of Claim 6.

If fðgÞ has the cyclically reduced form of length at least two, then we still

have the evaluation (2), whereas N is the minimum order of ai A Zp ([7, 9]).

Thus k > 2 as above.

Suppose that fðgÞ lies in one factor of Zp � Z. Let d be a generator

of the second factor hb; c j ½b; c� ¼ 1; bqcp ¼ 1i ¼ Z. (Explicitly, take in-

tegers r, s such that pr� qs ¼ 1, and then d ¼ brcs.) Let h A G be the reg-

ular fiber, which is equal to ap ð¼ bqcpÞ. Then g ¼ aih j ¼ aiþpj or d ih j ¼
briþqjcsiþpj .

Note that H1ðCðp; qÞÞ ¼ ZlZ. Let m be the meridian of Tðp; qÞ in

S1 �D2. Then ½m� and ½c� generate H1ðCðp; qÞÞ, and ½b� ¼ ðp; 0Þ, ½c� ¼ ð0; 1Þ,
and ½a� ¼ ðq; 1Þ in H1ðCðp; qÞÞ with suitable orientations.

If g ¼ aiþpj , then ½g� ¼ ðði þ pjÞq; i þ pjÞ. Thus i þ pj ¼ 0, so g ¼ 1,

a contradiction. If g ¼ briþqjcsiþpj , then ½g� ¼ ððri þ qjÞp; si þ pjÞ. Hence

ri þ qj ¼ si þ pj ¼ 0, which gives g ¼ 1 again.

5. Alternate proofs

In the proof of Lemma 6, we essentially use stable commutator length.

In this section we present an alternate proof of this Lemma 6 based upon the

following result. The discussion here is suggested by the referee.

We first observe the following.

Proposition 2. A group G admits a generalized torsion element of order

two if and only if G fails to have the unique root property at the exponent 2, i.e.

there exist x, y A G such that x2 ¼ y2 but x0 y.

Proof. Assume that G admits a generalized torsion element g ð0 1Þ of

order two. Then there exists h such that g�1 ¼ hgh�1. Equivalently, g ¼
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hg�1h�1. This implies that

h2gh�2 ¼ hðhgh�1Þh�1 ¼ hg�1h�1 ¼ g:

Thus g and h2 commute. Hence

ðghg�1Þ2 ¼ gh2g�1 ¼ h2:

If ghg�1 0 h, then we are done. Otherwise, gh ¼ hg, so g�1 ¼ hgh�1 ¼ g gives

g2 ¼ 12.

Conversely, assume that x2 ¼ y2 ðx0 yÞ. Assume ½x; y�0 1. We have

that ½x2; y� ¼ ðx�1½x; y�xÞ½x; y� ¼ 1. This means that ½x; y� is a generalized

torsion element of order two. If ½x; y� ¼ 1 (i.e. ½x; y�1� ¼ 1), then x2 ¼ y2

gives x2ðy�1Þ2 ¼ ðxy�1Þ2 ¼ 1. Thus xy�1 gives a torsion of order two.

Now we apply Proposition 2 to give an alternate proof of Lemma 6.

Proof (Alternate proof of Lemma 6). Recall that a torus knot space or

a cable space of even type contains a generalized torsion element of order two

in its fundamental group; see Example 5.

So it is su‰cient to see that a torus knot space or a cable space of odd

type, i.e., where p, q are odd integers for Tðp; qÞ and p is an odd integer for

Cðp; qÞ (q is not necessarily odd), has no generalized torsion element of order

two.

First we assume that G is the fundamental group of the exterior of a torus

knot Tðp; qÞ. Then recall that G ¼ ha; b j ap ¼ bqi (Example 5). We will

show that x2 ¼ y2 implies x ¼ y in G. Then Proposition 2 shows that G has

no generalized torsion element of order two.

Let f : G ! Zp � Zq be the natural projection. Then we have fðxÞ2 ¼
fðyÞ2 A Zp � Zq. We have a simplicial tree T on which Zp � Zq acts as auto-

morphism group without inversions. For j A Zp � Zq acting on T , we say that

j is hyperbolic if it leaves an axis L (linear tree in T ) invariant and j is a non-

trivial translation on L. If j fixes a vertex of T , we say that j is elliptic. It

is known that j is either hyperbolic or elliptic.

Suppose that fðxÞ is hyperbolic. Since fðxÞ2 ¼ fðyÞ2, we see that fðyÞ
is also hyperbolic, and they have the same axis L and the same translation

length on L. This then implies that fðxÞ ¼ fðyÞ. Thus x�1y A ker f, which is

generated by a regular fiber represented by ap ð¼ bqÞ. Hence ker f is the

center of G isomorphic to Z. So we have ðx�1yÞ2 ¼ ðx�1yÞx�1y ¼ x�1ðx�1yÞy
¼ x�2y2 ¼ 1 A G. This shows that x ¼ y as desired.

Suppose that fðxÞ is elliptic. Since fðxÞ2 ¼ fðyÞ2 0 1, we see that fðyÞ is

also elliptic, and they fix the same vertex. By the assumption that p and q are

odd, Zp � Zq has no 2-torsion, and hence fðxÞ2 ¼ fðyÞ2 implies fðxÞ ¼ fðyÞ.
Apply the identical argument as above shows x ¼ y as desired.

355Generalized torsion, unique root property and Baumslag–Solitar relation for knot groups



Let us assume that G ¼ p1ðCðp; qÞÞ. Recall that G ¼ ha; b; c j ½b; c� ¼ 1;

bqcp ¼ api; see Example 5. As in the above, let us consider the natural

projection f : G ! ha; b; c j ½b; c� ¼ 1; bqcp ¼ ap ¼ 1iGZp � Z, where p is an

odd integer. The same argument in the above shows that x2 ¼ y2 implies

x ¼ y in G.

Theorem 7. An R-group has no generalized torsion element of order two.

Proof. This immediately follows from Proposition 2.

Thus Corollary 1 also follows from Theorems 1 and 7 without using

Theorem 4. We may also deduce Corollary 1 from [9, Lemma 8.13]. It

claims that the knot group GðKÞ of a hyperbolic knot has a strong spectral gap

relative to the peripheral subgroup, and that the relative stable commutator

length vanishes on g if and only if g is conjugate into the peripheral subgroup.

Acknowledgement

We would like to thank Lvzhou Chen for helpful communication. We

also thank the referee for careful reading and suggesting simpler arguments.

References

[ 1 ] M. Aschenbrenner, S. Friedl and H. Wilton, 3-manifold groups, EMS Series of Lectures

in Mathematics. European Mathematical Society (EMS), Zürich, 2015.
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