HirosHIMA MATH. J., 53 (2023), 241-250
doi:10.32917/h2022013

Symmetries of coefficients of three-term relations for the
hypergeometric series

Yuka YAMAGUCHI

(Received April 14, 2022)
(Revised October 4, 2022)

ABSTRACT. Any three hypergeometric series whose respective parameters, a, b and c,
differ by integers satisfy a linear relation with coefficients that are rational functions of
a, b, ¢ and the variable x. These relations are called three-term relations. This paper
gives explicit formulas describing symmetries of the coefficients of three-term relations.

1. Introduction

The hypergeometric series is defined by

©
F(a,b,c;x) = F(a’b;x) = ZL)”U))” x".
¢ = (0),(1),

Here, (a), denotes I'(o + n)/I'(a), which equals a(o+1)--- (2 +n—1) for any
positive integer n. It is assumed that ¢ is such that the denominator factor (c),
is never zero.

As mentioned in [1, Section 2.5, p. 94], it is known that for any triples of
integers (k,/,m) and (k’,/’,m’), the three hypergeometric series

k,b+1 k'.b+1 b
F(a+ b+ ;x)7 F<a+ b+ ;x)’ F(a, ;x>
c+m c+m! c
satisfy a linear relation with coefficients that are rational functions of a, b, ¢

and x. We call such a relation a three-term relation. Gauss obtained the
three-term relations in the cases

(k,1,m), (k',I",m") € {(1,0,0), (~1,0,0), (0,1,0), (0,~1,0), (0,0, 1), (0,0, —1)},

where (k,I,m) # (k',I'’,m’); thus, there are () =15 pairs of (k,/,m) and
(k',l',m'). See [5, Chapter 4, p. 71] for the 15 three-term relations obtained
by Gauss.
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We consider the three-term relations of the following form:

1 1
F(a+k’b+1;x>:Q~F(a+ b+ ;x)+R-F(“’b;x>. )
c+m c+1 c

Note that the pair (Q,R) of rational functions of a, b, ¢ and x is uniquely
determined by (k,/,m) (cf. [4, Chapter 6, Section 23]). See [2, Section 3] for
the explicit expressions for Q and R with sums of products of two hyper-
geometric series. Ebisu [3, Section 2.3] noticed that the coefficient Q in (1) has
48 symmetries, and using these symmetries, he gave many special values of the
hypergeometric series. As examples of Q’s symmetries, Ebisu presented two
explicit formulas [3, (2.7), (2.11)]:

k, I . a, b . N ab _ m—k—1
o) =m0
m—km—1 c—ac—b
o ?)
k,l a,b b 2k k,m—1 a,c—b x
Q(m7 c 7x>_b_c(1 X) Q( m ’ c 7x_1>7 (3)

where we write Q in (1) as Q(kr;ll;a’cb;x) The 48 symmetries of Q are
directly related to the Kummer’s 24 solutions. Including the trivial permuta-
tion of the local exponents at infinity, the hypergeometric differential equation
has 48 symmetries (which correspond to the permutations of the 3 singular
points, and to the permutations of the local exponents at them), and Q inherit
those symmetries.

On the other hand, Vidiinas considered the three-term relations of the form

F<a+k,b+l;x> _ Q-F<a+l’b;x>+R-F(a’b;x),

c+m c c

and gave an explicit formula describing Q’s symmetry [6, (11)]. We will see
that Q also has the same symmetry which corresponds to reversal of the three-
term relations.

In this paper, by conjoining the 48 symmetries of Q inherited from the
hypergeometric differential equation and a new symmetry corresponding to
reversal of the three-term relations, we show that Q has 96 symmetries. In
addition, by giving a relation between Q and R, we show that R also has 96
symmetries.

To avoid ambiguity, we first define the notion of a symmetry of Q and
R. For the parameters a, b, ¢ and the variable x, let Sy, Sy and S be the
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sets defined by

Sape := {no + ma+ mb + nsc|n; € Z},

Sy = xaivl_xax*_lvlvL ;
x—1 x ‘x'1—x

S::{<k 17“1’a2’ﬂ>‘k,17m617 oc,-eSab(;,ﬂESx}v

m

and let 7 be the set of all rational functions of a, b, ¢ and x. Also, let
Map(S, T) denote the set of all functions P: S — T. Then, Q and R can be
regarded as elements of Map(S, T); namely,

0 Q(klacb x>7 R R(klacb )eMap(ST)

m

For a group G acting on S, we define the action of G on Map(S,T) by
(6P)(z) := P(67'z), where € G, Pe Map(S,T) and zeS. The definition of
the notion of a symmetry of any P e Map(S,T) is as follows:

DerNITION 1. Suppose that a group G acts on S, and take any g€ G
and PeMap(S,T). If for any k,/,meZ, there exist oy,...,0, € Sy and
i1y 0ny J1, j2, J3 € Z satisfying

on) (5140 5x) = )yt - (4,

m 4 m c

then we say that P has a symmetry under o. If P has a symmetry under
an arbitrary ¢ € G, then we say that P has symmetries under the action
of G.

The following theorem provides Q’s symmetries.

THEOREM 1. The coefficient Q of (1) has 96 symmetries. In fact, the
following hold:

k, I'Cl,b. _ (C + ])m(c)m(_1)’77_k—1—1x—m(1 _ x)m—k—l
Q< ’ 7X)  (a+ 1), (b+1),(c—a), (c=b),

m C
y Q(—k,—l.a+k,b+l;x>7

)

—m c+m

Q(k’l;a’b;x): a (l—x)ZIQ(m_k’l;c_a’b; x >, 5)

m’ c a—c m c x—1
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Q<k7l;a7b;x) (C+1>m—l(c_a_b_1)m+l—k—l

m ¢ (C - a)mfk(c - b)’117/
k,l a,b )
XQ(k+l—m’a+b+1—c’l_x)7 (6)
kil ab \ (Lk ba
o i) = o(hh ). )

In addition, combining these formulas, we are able to obtain the other 92 explicit
formulas describing Q’s symmetries.

The symmetry (4) is counterpart of the symmetry given in [6, (11)]. The
symmetry (5) immediately follows from the symmetries (2) and (3).
The following lemma is counterpart of the relation given in [6, (8)].

LEMMA 1. The coefficients of (1) satisfy the following relation:

R k,l_a,b.x B clc+1) 0 k—l,l—l.a—&—l,b—i—l.X
m’ ¢’ ) (a+1)(b+1x(1—x) m—1 "7 c¢+1 7))

The following theorem is derived from Theorem 1 and Lemma 1.

THEOREM 2. The coefficient R of (1) has 96 symmetries. In fact, the
following hold:

R(k’ ! & b . x> — (C + l)mfl(C)mfl(fl)mikilxlim(l - x)m+17k71
9 ) ((1"‘ l)k—l(b+ l)l—l(c_a)m—k(c_b)m—]

m C
2—k2—-1a+k—-1,b+1-1
X R ; 31X,
2—m c+m—1

)

)

R(k’l;a’b;x) =(1 —x)_lR(m+1_k’l'c_a_1’b' al >7

m’ ¢ m c "x—1
k.l ab () lc—a—b),, k,l a,b

R . . — m m R . .1_
(m’ ¢ ,x) (c—a), (c=b), , \k+I—-ma+b+1-¢’ Y

R(k’l;a’b;x> :R(l’k;b’a;x)
m’ ¢ m’ ¢

In addition, combining these formulas, we are able to obtain the other 92 explicit
Sformulas describing R’s symmetries.

2. Proof of Theorem 1

We prove Theorem 1.
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Let G be the group generated by the following four mappings so that G
acts on S:

(k,l a,b > <—k7—l a+k,b+1 )
ao - 5 X | = 5 X s
m c —m c+m

(k,l a,b ) (m—k,l c—ab x )
gl ) X ) ; ,

m ¢ m c x—1

) k,l_a,b_x _ k.l a,b .

2w’ k+1l—-m'a+b+1-¢’ ’

(k,l a,b > (l,k b,a )
g3 . ) X = 5 X
m C m C

where a group operation is defined as the composition of elements in G. Let
04 := 01030103 and o5 := 0704020403 to make them become

(k,l a,b ) (m—k,m—l c—a,c—b >
7 B [T ; ;X ),
m’ ¢ m c

(k,l a,b > (—k,—l 1—al1-5 >
as Y A ; ;X
m’  c —m 2—c¢

Then, we obtain the following lemma.

LemMA 2. The structure of G is identified as
G = (o) x ({o1,02) X ({03 x {au) x {a5))) = ZJ2Z x (S X (Z/2Z)*),

where S3 is the symmetric group of degree 3; thus, the order of G equals
2.31.23 =96

Proor. First, G =~ {g¢) X {g1,02,03y holds. Next, since {o3,04,05) is
normal in {gy,0,,03) and satisfies <o|,0,) N<03,04,05y = {id}, where id
denotes the identity element of G, it holds that {o|,0,,03) = {a1,02) X
{03,04,05y. Finally, from o¢?=id (0<i<5), 0102 =02010201 and
oi0; = gjo; (3 <1i,j<5), the proof of the lemma is complete. O

The formulas (4)—(7) describe symmetries of Q under oy,...,03, respec-
tively. Hence, we can complete the proof of Theorem 1 by proving (4)—(7).
As stated in the introduction, (5) is obtained by combining (2) and (3). Also,
(7) immediately follows from the fact that F(, 5, y; x) is symmetric with respect
to the exchange of o and . Below, we prove (4) and (6). From the unique-
ness of analytic continuation, it is sufficient to prove it for |x| < 1/2. Thus,
we assume |x| < 1/2. We introduce two expressions for Q given in [2]. Let
fi (i=1,2,5,6) be the functions defined by
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fi(a’b;X) =f<a’b;X>,
C C
a,b \ a,b L
fz( ¢ ,x) '_f<a+b+1—c’l x>,
j%(a’b;x) ::xl_ff(a+1_c’b+1_c;x),
c 2—c
a,b \ _ \e—a—b c—a,c—b B
<f6(c ,X).(l x) f<c+l—a—b’1 )C),
where f (a;b;x> ::WF (a’cb;x). Then, Q can be expressed as
_ ab(c),,
= ey

(k,la,b )
q:= X
m c
( c+m c+m

( . ®)
at1,b+1 (ab FESWESY
AT ) () ()
k—1

B (_1)m+1— —
B (C - a)mfk(c - b)mf[

a,b a+k,b+1 a+k,b+1
R R G I
Y a,b 7 a+1,b+1 ny a,b.x Y a—i—l,b_,_l'x :

o\ e t)? S e )0 c+1 7
These expressions (8) and (9) follow immediately from [2, p. 260, (3.5)] and

[2, p. 264, the expression above Theorem 3.8], respectively. First, using (8),
we prove (4). Applying oy to (8), we have

( )k,l.a,b. _ W(a,b,c;x) k,l a,b
WU\ i ¢ )T W(a+k,b+l,c+m;x)q mioe )

where W(a,b,c;x) denotes the denominator of (8); namely,

where
a+k,b+1 a,b a+kb+1
)= () )

X
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wiab.x) = (o)A ()

a,b a+1,b+1
L)

From the formula [2, p. 262, Lemma 3.6]

ra)rb)y(a+1—cr'(b+1-c)

> = — —c(1 _ v\ c—a—b-1
Wi(a,b,c;x) = TOTi=0 x (1 —x) ,
we obtain
W(a7 b7 (& X) _ (_1)k+/—rn(c — a)mfk(c — b)mfl )Cm(l _ x) k+I1—m
W(a+k,b+1,c+m;x) (a).(b), '

Therefore, it follows that

g k’ ! & b . — (71)k+/7’7171 (C — a)mfk(c — b)m—l mep _ k+l—m
(5 ) - (@) e

m c
k,l ab
X q( @ ;X)- (10)
m C
Multiplying both sides of (10) by

(a+K)b+D(ct+m).,
(c+m)a+k) ((b+1),

completes the proof of (4). Next, using (8) and (9), we prove (6). When we
apply o, to (8), the numerator becomes

a,b _ a+k,b+1 _
f5<a+b+l—c’1 x>ﬁ(a+b+l—c+k+l—m’1 x)

a,b ) a+k,b+1 .
f1<a+b+1—c’1x)fs<a—|—b+1—c+k+l_m71 x)v (11)

and the denominator becomes
a,b a+1,b+1
) -1 = ’ -
fs(a+b+l—c’ x>f1(a+b+2—c’ x)

a,b . a+1,b+1
_fl<a+b+1—c’1 x)f5<a+b+2—c’l x). (12)
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From the definitions of f; (i =1,2,5,6), we can rewrite (11) and (12) as

]%(a;b;x)fz<a+k’b+l;x>—fz(a’cb;x>f6(a+k’b+l;x), (13)

c+m c+m

a,b a+1,b+1 B a,b a+1,b+1
() a (T ) A (4w (T )

respectively. Comparing (13)/(14) with (9), we obtain

k7l ’b K —m— k’l 7b
(azq)( ;a ;x>(1)/+/ 1(ca)mk(cb)m,q( ;ac ;x>. (15)

m c m
Multiplying both sides of (15) by

ab(a+b+1—-¢)i s,
(@a+b+1-c)(a),(b),

completes the proof of (6).

3. Proof of Lemma 1

We prove Lemma 1.
Replacing (k,l,m,a,b,c) by (k—1,/—1,m—1l,a+1,b+1,c+1) in (1),
we have

F<a+k,b+l;x>:Q,.F<a+2,b+2;x>+R/_F(a+17b+1;x>, (16)
c+m +2

c c+1
where
k—1,1—-1 a+1,b+1
L ) . ) .
Q_Q< m_l 9 C+1 ) )7
—-1,/-1 1 1
R’::Rk ,1 ;a+ b+ ).
m—1 c+1

As is well known, F(a,b,c;x) satisfies

1 1
6F(a’b;x) :@F<a+ b+ ;x),
c c c+1
where ¢ :=d/dx, and is a solution of the hypergeometric differential equation
Ly =0, where
c—(a+b+1)x ab

0 —

Lupe :i= 2 .
b o x(1—x) x(1—x)
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Using these facts, we have

0= LupF <a’cb ; X)

262F<a;b;x>+c—(a—i—b-i—l)xaF(a,b;x)_ ab F(a’b;x)

x(1—x) ¢ x(1—x) ¢
_abla+1)(b+1) (a+2,b+2
 cle+ ) F( c+2 >
ab{c —(a+b+1)x} (a+1,b+1 ab a,b
+ ex(1 —x) F( c+1 7 >_X(IX)F(C ,X).

Therefore, we obtain

a+2,b+2 \  (c+D)fe—(a+b+1)x} [(a+1,b+1
F( c+2 ’)‘ @+ )b+ )x(1—x) < c+1 )

clc+1) a,b
+(a+1)(b+1)x(l—x)F< ¢ ’x>'

Using this, we rewrite (16) as

F<a+k’b+l;x> _{_(c+1){c—(a+b+1)x}Q,+R,}F<a+1,b+1;x>

c+m (a+ )b+ 1)x(1 —x) c+1
clc+1) , a,b
+(a+1)(b+1)x(1—x)Q'F<c ’x>' (17)

Equating the coefficients of F(a,b,c;x) in (1) and (17) completes the proof of
Lemma 1.

4. Proof of Theorem 2

Using Theorem 1 and Lemma 1, we prove Theorem 2.
Let G be the group generated by zo;v—' (i=0,1,2,3), where 7 is the
mapping defined by

k,l ab k+1,/+1 a—1,b—1
T: S ; ix .
m’ c m+1 c—1
Then, G is isomorphic to G; thus, the order of G also equals 96. By com-
bining the four formulas in Theorem 1 with the formula in Lemma 1, we
can obtain the four formulas in Theorem 2. These four resulting formulas

assert that R has symmetries under zo;7=' (i =0,1,2,3), respectively. This
completes the proof of Theorem 2.
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