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Abstract. We consider the problem of minimal volume vector fields on a given

Riemann surface, specialising on the case of M ?, that is, the arbitrary radius 2-sphere

with two antipodal points removed. We discuss the homology theory of the unit

tangent bundle ðT 1M ?; qT 1M ?Þ in relation with calibrations and a certain minimal

volume equation. A particular family Xm; k , k A N, of minimal vector fields on M ? is

found in an original fashion. The family has unbounded volume, limk volðXm; k jWÞ ¼
þy, on any given open subset W of M ? and indeed satisfies the necessary di¤erential

equation for minimality. Another vector field Xl is discovered on a region W1 � S2,

with volume smaller than any other known optimal vector field restricted to W1.

1. Previous results

In this article we explore new ideas and examples of the theory of the

volume of vector fields, in the continuation of the results in [1] but of a

di¤erent sort.

Suppose we are given an oriented Riemann surface M possibly with

boundary. Let X be a unit norm C2 vector field on M. By definition, the

volume of X is, cf. [7]:

volðX Þ ¼ volðM;X �gSÞ ¼
ð
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k‘e0Xk2 þ k‘e1Xk2

q
volM ð1Þ

where gS is the Sasaki metric on the unit tangent bundle T 1M ! M and e0, e1
is any local orthonormal frame on M.

We recall that a unit vector field is a critical point of the volume func-

tional if and only if the corresponding submanifold of T 1M is minimal,

cf. [7].

In article [1] one discovers a su‰cient condition to have a minimal volume

vector field. First, let A ¼ A1 þ
ffiffiffiffiffiffiffi
�1

p
A0 : M ! C be the function defined by

the components of ‘X in the direct orthonormal frame fX ;Yg on M. In
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other words, let A0, A1 be the functions defined by

A0 ¼ h‘XX ;Yi A1 ¼ h‘YX ;Yi: ð2Þ

Then, if X satisfies the following di¤erential equation in a conformal chart z

of M:

q

qz

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q ¼ 0; ð3Þ

then X has minimal volume over its domain. We remark this equation is

reminiscent of the minimal area surface graph equation.

The Cauchy-Riemann system above is orientation invariant, because A

transforms accordingly (e.g. if we change X by �X , then A becomes �A).

Just as well as it is invariant if the role of X and Y is permuted. That

is consistent with all ðcos aÞX þ ðsin aÞY having the same volume, for

every constant a A R, just as equation (1) will show. More importantly,

as the reader may notice below, is that each CR-equation is orientation

invariant.

The present article is concerned with the geometry of vector fields on the

2-sphere with canonical metric. It brings up some surprising results, in the

continuation of [2, 3, 4, 5, 6, 7, 11] and of course [1].

Let us start by informing about equation (3) in the fortunate case of a

hyperbolic metric. In [1] we find a solution of (3) for M with constant sec-

tional curvature K < 0. Actually, given any M and X such that jAj is con-

stant, then A is constant and M has constant sectional curvature K ¼ �jAj2a0.

It follows that volðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K

p
volðMÞ. The result applies thus to any germ

of the non-trivial 2-dimensional Lie group with left invariant metric and left

invariant vector field X .

Equation (3) proves quite di‰cult to solve, even for the constant hyper-

bolic metric in isothermal coordinates. Uniqueness of solutions (up to some

rigid rotation) remains an open question.

Notice the equation gives a su‰cient condition for minimality. A nec-

essary condition is deduced in [7, p. 538]. Due to O. Gil-Medrano and E.

Llinares-Fuster, we now know that a minimal vector field satisfies the Euler-

Lagrange equation:

X ðA0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
Þ þ Y ðA1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
Þ ¼ 0: ð4Þ

As well as the following reassuring new result.

Proposition 1. Cauchy-Riemann equation (3) implies Euler-Lagrange equa-

tion (4) of the variational problem.
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Proof. The di¤erential of a function is C-linear by definition. If we

have a holomorphic function, then its di¤erential vanishes in the direction of

X þ
ffiffiffiffiffiffiffi
�1

p
Y , a complex multiple of qz. By a straightforward computation,

we see that the imaginary part of dðA=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
ÞðX þ

ffiffiffiffiffiffiffi
�1

p
Y Þ ¼ 0 yields (4).

r

Clearly (4) alone is far from giving the Cauchy-Riemann equations. The

real part,

X ðA1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
Þ � Y ðA0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
Þ ¼ 0; ð5Þ

should be a su‰cient condition for minimality, but this remains uncertain or

seems to have solution only in hyperbolic metric. Convincing the reader that

this may be so is also a motivation for this article.

On the manifold S2 with the round metric, punctured at two antipodal

points, it is known that a minimum of vol is attained, with the solution being a

certain X0 given in Proposition 4. One easily checks that X0 does not satisfy

our equation (5), which is a local issue. This is coherent with the theory, since

we have found a vector field, though in a smaller region of S2, which has even

less volume than X0 in that region. We present it later, below.

Returning to the general case, we may take a conformal chart of M to

rewrite A and possibly improve (3), cf. [1]. A complex coordinate z ¼
xþ

ffiffiffiffiffiffiffi
�1

p
y corresponds with isothermal coordinates, i.e. a chart such that the

Riemannian metric is given by ljdzj2 for some function l > 0.

A real vector field X is given by

X ¼ aqx þ bqy ¼ f qz þ f qz ð6Þ

where f ¼ aþ
ffiffiffiffiffiffiffi
�1

p
b and where qx ¼ q

qx
and qz ¼ 1

2 ðqx �
ffiffiffiffiffiffiffi
�1

p
qyÞ and qz ¼ qz.

If Z ¼ hqz þ hqz is also a vector field, then the metric satisfies

hX ;Zi ¼ l

2
ð f hþ f hÞ: ð7Þ

In particular kXk2 ¼ lj f j2. Note that Y ¼
ffiffiffiffiffiffiffi
�1

p
ð f qz � f qzÞ ¼ Y .

The Levi-Civita connection of this metric is given by ‘qzqz ¼ ‘zqz ¼ Gqz,

where G ¼ 1
l
ql
qz
, ‘zqz ¼ ‘zqz ¼ 0 and ‘zqz ¼ 1

l
ql
qz
qz. In particular, we have

Rðqz; qzÞqz ¼ � qG
qz
qz and thus

K ¼ hRðqz; qzÞqz; qzi
hqz; qzi

2
¼ � 2

l

qG

qz
¼ � 2

l

q2 log l

qzqz
: ð8Þ

We have proved in [1] that, in the case of a unit vector field,

A ¼ �2lf 2
qf

qz
¼ 2 Gf þ qf

qz

� �
: ð9Þ
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Since jAj ¼ 2 qf
qz

��� ���, we have that X is holomorphic if and only if it is

parallel.

2. Topological invariants on the boundary

We have found the equations of a 2-form calibration j A W2
T 1M having the

minimal vector fields as calibrated submanifolds.

The topology of a vector field determines a class of its volume. This is

what we shall deduce empirically and what was claimed in [8] regarding

S3, with no concerns on singularities and the class being the homology class

in T 1S3. This line of ideas was continued in [10], where one vector field W

with singularity on a hypersphere is evenly associated to a certain homology

class.

There is now some light from the analytic theory of calibrations to further

clarify the path between homology and minimal volume in other dimensions.

Let us develop these ideas, arguing first in any dimension. Let M be a

compact Riemannian ðnþ 1Þ-manifold possibly with boundary. Then we have

the following isomorphism of Poincaré-Lefschetz duality, cf. [9, Section 3.3],

with integer coe‰cients:

HkðT 1M; qT 1MÞFH 2nþ1�kðT 1MÞðFHkðT 1MÞÞ: ð10Þ

The second isomorphism may be Hodge duality, recalling that de Rham and

singular cohomologies coincide for manifolds. However, we do not know of

a precise statement for Hodge duality for manifolds with boundary. (On the

other hand, there exists a connecting homomorphism in the middle degree

k ¼ nþ 1.)

Let M ? denote a given closed manifold M with a finite number of points

p1; . . . ; pN removed. Notice that T 1M ? is not a manifold with boundary, for

it corresponds with the removal of a disjoint collection of spheres. So let M�

denote the manifold with boundary Mn
S

i B�ðpiÞ, where the open geodesic balls

do not intersect. Since M� � M�1 for �1 < �, the cohomology rings H jðT 1M�1Þ
are well-defined and isomorphic between them, for any �1. By [9, Proposition

3.33], there exist the following two inductive limits

lim�! H 2nþ1�kðT 1M�ÞF lim�! HkðT 1M�ÞFHkðT 1M ?Þ: ð11Þ

We conjecture the above to be all isomorphic.

By the first isomorphism in (10), we have:

HkðT 1M ?; qT 1M ?Þ :¼ lim�! HkðT 1M�; qT
1M�ÞFHkðT 1M ?Þ: ð12Þ

So we never overcome the uncertainty of Hodge duality with boundary.
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We return to dimension 2. It is clear that qT 1M� is a disjoint union of N

2-torus. Using parallel translation to a base point S1-fibre along each circle,

any C2 unit vector field X defined on M ? certainly has its degree in Z as it

restricts to a map from qB�ðpiÞ ¼ S1 to itself. The field X is not singular at

the pi in the sense of having a zero; though it still has an index, IX ðpiÞ, inde-
pendent of �. The sum

PN
i¼1 IX ðpiÞ is the Euler characteristic of the surface

(Poincaré-Hopf Theorem).

A vector field X determines a class in relative homology H2ðT 1M�; qT
1M�Þ

in principle dependent on the various indices at the pi, i ¼ 1; . . . ;N and nothing

else. Notice XðM ?Þ sits in T 1M ? transversely to qT 1M ? � T 1M. So the

homology class of the field is the main invariant; the relative homology must

not complicate much more.

What one would hopefully expect from calibrations is that each ½j� A
H 2ðT 1M ?Þ determines a class ½X ðM ?Þ� of minimal volume in (relative) homol-

ogy. On the other hand, Theorem 1 in [1] has led to quite demanding solu-

tions, besides the trivial case for hyperbolic space.

Extending the theory to complex vector fields X A GðM;TMnCÞ could

perhaps yield a path to the necessary and su‰cient condition for the minimal

vector field.

Finally, one may consider a Berger metric type dilation on the unit tan-

gent bundle, i.e. the usual metric on T 1M with a weight on the direction of

the geodesic spray e0 (our usual notation). Thus we assume the vector field

~ee0 ¼ me0 on the manifold T 1M, with m A Cy
MðRþÞ, has unit norm and its

orthogonal plane remains the same. The problem of finding minimal vector

fields for volX would depend on being able to optimize volume with this known

metric. In other words, to be certain of minimizing through the right weight

function m > 0 and the minimal vector field of
Ð
M

1
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

1 þ m2A2
0

q
volM .

This strategy is equivalent to that referred in [3, Remark in Section 3] and [7]

for spheres.

3. Vector fields on the sphere: meridian type

We consider the radius r sphere with two antipodal points removed

M ? ¼ S2
r nfpS; pNg ð13Þ

endowed with the round metric h ; i ðx ¼ logðtanðy=2ÞÞÞ,

h ; i ¼ r2ðdyÞ2 þ r2 sin2 yðdfÞ2 ¼ r2 sin2 yððdxÞ2 þ ðdfÞ2Þ; ð14Þ

where r > 0 is constant, and ðy; fÞ A D ¼ �0; p½ � ½0; 2p½. Letting i ¼
ffiffiffiffiffiffiffi
�1

p
and

continuing as in (7), we have z ¼ xþ if and then sin y dx ¼ dy and dz ¼
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dxþ i df. Hence

l ¼ r2 sin2 y ð15Þ

and

qx ¼ sin yqy; qz ¼
1

2
ðqx � iqfÞ: ð16Þ

In particular the volume form is given by

l dx5df ¼ i

2
l dz5dz ¼ r2 sin y dy5df: ð17Þ

We have G ¼ 1
l
qzl ¼ 1

2 sin y
qy sin

2 y ¼ cos y, which verifies

K ¼ � 2

l

qG

qz
¼ � sin y

r2 sin2 y
qy cos y ¼ 1

r2
: ð18Þ

We also require the Levi-Civita connection in real coordinates

‘yqy ¼ 0; ‘yqf ¼ ‘fqy ¼ cotg yqf; ‘fqf ¼ �cos y sin yqy: ð19Þ

Guessing from the first equation above on the case of the unit norm vector

field 1
r
qy, we endeavour to look for those unit vector fields which are parallel

along every meridian pSpN .

Let X ¼ a
r
qy þ b

r sin y
qf with a, b real valued C2 functions on D. Then we

find

‘yX ¼ a 0
yqy þ

b 0
y sin y� b cos y

sin2 y
qf þ

b

sin y
cotg yqf

¼ a 0
yqy þ

b 0
y

sin y
qf: ð20Þ

Hence

‘yX ¼ 0 ,
a 0
y ¼ 0;

b 0
y ¼ 0:

�
ð21Þ

Since for unit X we must have a2 þ b2 ¼ 1, there exists z ¼ zðfÞ, function only

of f, such that

X ¼ cos z

r
qy þ

sin z

r sin y
qf: ð22Þ

Let Y ¼ � sin z
r
qy þ cos z

r sin y
qf be the unique vector field such that X , Y is a

direct orthonormal frame. Routine computations yield:
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A0 ¼ h‘XX ;Yi ¼ sin z
z 0f þ cos y

r sin y
; ð23Þ

A1 ¼ h‘YX ;Yi ¼ cos z
z 0f þ cos y

r sin y
: ð24Þ

Thus

A1 þ iA0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q ¼
eizðz 0f þ cos yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 sin2 yþ ðz 0f þ cos yÞ2
q : ð25Þ

Notice that even with r ¼ 1 and z ¼ 0, we get qz cos y ¼ � 1
2 sin2 y. (Of

course, in a general setting, a vector field which has A0 ¼ 0 is not a good

candidate as a solution of equation (3), unless it is parallel.) One would expect

that qy has minimal volume; and this is true globally, as it was proved by [4]

and we shall soon recall.

On the radius r sphere, we have:

volðX Þ ¼ r

ðð
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 sin2 yþ ðz 0f þ cos yÞ2

q
dy5df: ð26Þ

The field X is well defined and continuous on M ? if it verifies limf!2p zðfÞ
¼ zð0Þ þ 2kp, for some k A Z. We may further assume that z is C2 on a

neighborhood of ½0; 2p�. This way the field X becomes also C2.

The latter is the case when we fix k A Z, f0 A R and take

z ¼ kfþ f0: ð27Þ

We define these as the vector fields of meridian or meridians type ðr ¼ 1Þ:

Xm;k ¼ cosðkfþ f0Þqy þ
sinðkfþ f0Þ

sin y
qf: ð28Þ

Thus k is the number of times that Xm;k winds around itself when it goes

around a parallel or circle-of-latitude.

Now we are rewarded with a remarkable result.

Proposition 2. Every vector field of meridian type satisfies the Euler-

Lagrange equation (4) for a minimal volume vector field.

Proof. An easy way to see this is to note from (25) that A=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q
equals eizf with f ¼ f ðyÞ and z ¼ kfþ f0. Now, from (22),

X þ iY ¼ cos z

r
qy þ

sin z

r sin y
qf � i

sin z

r
qy þ i

cos z

r sin y
qf

¼ e�iz

r
qy þ i

e�iz

r sin y
qf:
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Hence

dðeizf ÞðX þ iY Þ ¼ e�iz

r
qyðeizf Þ þ i

e�iz

r sin y
ikeizf

¼ 1

r
f 0
y � k

r sin y
f :

In particular, the imaginary part vanishes. (The real part does not.)

r

From (26), we have the elliptic integral:

volðXm;kÞ ¼ r

ðð
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2k cos yþ r2 sin2 yþ cos2 y

p
dy5df: ð29Þ

We notice the cases k and �k yield the same volume on M ?, as expected.

The next result shows that we can have big volume everywhere. We

admit kb 0 for convenience, knowing that minor adaptation is needed for

k < 0.

Theorem 1 (Big volume everywhere). The sequence of unit vector fields

Xm;k, k A N, defined on M ? is such that, for every open subset W � M ? cor-

responding to a domain ~DD � D, we have, in case ra 1,

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 2k þ r2

p
volEucð ~DDÞ < volðXm;k jWÞ < rðk þ 1Þ volEucð ~DDÞ ð30Þ

and, in case rb 1,

rðk � 1Þ volEucð ~DDÞ < volðXm;k jWÞ < r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2k þ r2

p
volEucð ~DDÞ: ð31Þ

In particular, for every open sets W � W1 � M ?,

supfvolðXjWÞ : X is a unit vector field on W1g ¼ þy: ð32Þ

Proof. In regard with (29), we have for instance for ra 1 that

k2 � 2k þ r2 < k2 þ 2k cos yþ r2 sin2 yþ cos2 y < k2 þ 2k þ 1

and so the result follows. r

A radius r0 1 also brings stability into discussion. This was foremost

observed in [2, 6] in general, hence from now on we assume r ¼ 1 for the

meridians type vector fields.

Let us recall now the unit vector field W on an n-dimensional punctured

sphere, defined by S. Pedersen in [10] and denoted there by W . It is defined,
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on S2nfpSg only, as the parallel transport along the meridians of one chosen

unit tangent vector at the North pole.

Clearly W does not extend to the South pole and its volume does not

depend on the initial choice. The following result becomes also geometrically

evident.

Proposition 3. On M ? the vector field Xm;1 coincides with W.

Proof. Both vector fields rotate, once and uniformly, while they go

around the parallels, i.e. the curves y ¼ constant. Since the two fields are

defined by parallel transport along the meridians, they must be the same, cf.

Figure 1. r

Article [10] is mostly concerned with W , referring it as a Pontryagin cycle

in the context of the homology theory of the orthogonal Lie groups and Stiefel

manifolds. [3] also refers to W as an example of a certain Pontryagin vector

field.

Taking the cases k ¼ 0; 1 with the above point of view, we have not found

a reference for the vector fields Xm;k.

Formula (29) also yields the computational part, with k ¼ 0 and k ¼ 1, of

the next result.

Proposition 4 ([3, 4, 10]). The meridians type vector fields Xm;0 and Xm;1

have minimal volume in the respective homology classes M ? and S2nfpSg, when
r ¼ 1. Moreover, volðXm;0Þ ¼ 2p2A6:28p and volðXm;1Þ ¼ 8p.

Fig. 1. W ¼ Xm; 1.
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Let us just show that

volðXm;1Þ ¼
ð2p

0

ð p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2 cos y

p
dydf ¼ 2

ffiffiffi
2

p
p

ð p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos y

p
dy

¼ 2
ffiffiffi
2

p
p

ð1

�1

ffiffiffiffiffiffiffiffiffiffi
1þ t

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼ 2
ffiffiffi
2

p
p

ð1

�1

1ffiffiffiffiffiffiffiffiffiffi
1� t

p dt

¼ �4
ffiffiffi
2

p
p½

ffiffiffiffiffiffiffiffiffiffi
1� t

p
�1�1 ¼ 8p

is consistent with [10, Theorem 10]. Minimality in the homology class is

proved in [3].

Theorem 2. For the meridians type vector field X ¼ Xm;k with kb 0, we

may fix an orientation on M ? such that

IX ðpNÞ ¼ 1� k IX ðpSÞ ¼ 1þ k: ð33Þ

Proof. We may fix an orientation on D and deduce that qy, or any other

Xm;0, has index 1 at pN . Indeed, fixing a trivialization of T 1S2 in a neigh-

bourhood of pN , along any directed circle-of-latitude (col) around pN the vector

field qy describes another entire circle identically, i.e. describes the identity map

of S1 after parallel transport to a base point of the col, which therefore gives a

degree 1 self-map of S1. Taking a neighborhood of pS, the field qy moves in

the same way as before, even though the direction in any col close to pS must

be the opposite of the previous homotopic col. Either indices of qy or �qy are

1 at pS.

For Xm;1 ¼ W , we have that pN is a smooth point. Indeed, by definition,

W extends as a unit vector to that point (notice it does not extend continuously

to the South pole). The index at pN is thus 0, and this follows also because,

along any directed col around pN , the vector field W describes in its range a

new circle rotating ‘clockwise’ once, i.e. it gives a constant valued self-map of

S1 after parallel transport to a base point of the col as above, which henceforth

gives a degree 0 map (compare with qy). Conversely, we reach the South pole

with a degree 2 map. Indeed, conforming with orientation, one would have

to rotate W twice ‘anti-clockwise’ to draw the symmetry with the North pole;

hence the index at pS is 2.

Continuing this way, for kb 2, we will find IX ðpNÞ ¼ 1� k. And, still

with k > 0, proceeding to find the referred symmetry, achieved by unwinding

our vector field 2k times, we find IX ðpSÞ ¼ 1� ðk � 2kÞ ¼ 1þ k. And the

result follows. r

Notice we have wðS2Þ ¼ 2 as predicted by the Theorem of Poincaré-

Hopf.

234 Rui Albuquerque



Let us recall from [4, Theorem 1.1] that any vector field X on M ? with

radius 1 satisfies:

ðpþ jIX ðpSÞj þ jIX ðpNÞj � 2Þ2pa volðXÞ: ð34Þ

We have thus verified the ‘big index, big volume’ precept.

In the continuation of Proposition 4, the minimum volume 2p2 is attained

with k ¼ 0, i.e. with Xm;0 in its domain M ?.

Minimality of Xm;1 in its domain and homological class is conjectured

in [10] and proven by [3]. From (34), we only get ðpþ 2þ 0� 2Þ2p ¼
2p2 < 8p. Minimality depends on the topology of the domain and the vector

fields. How the corresponding homological classes rule volume escapes to our

understanding.

For any k > 0, we have ðpþ 1þ k þ k � 1� 2Þ2p ¼ ðpþ 2k � 2Þ2pa
volðXm;kÞ.

Notice with kb 4, we get ðpþ 2k � 2Þ2p < ðk � 1Þ2p2 < volðXm;kÞ by

Theorem 1. Hence (34) is sharp for k ¼ 0 and not sharp for kb 4.

Up to now the relative homology class of a vector field on M ? is deter-

mined by a unique index, namely, the integer k. Based on the known cases

k ¼ 0; 1 and Proposition 2, we could finally state a conjecture: For each

k A Zþ, the meridians type vector field Xm;k realizes minimal volume in its

(relative) homology class.

However, last but not least, the question has been solved. Some of the

previous results can also be found in [5], including the next theorem. Since

k > 0 is a topological invariant, the above conjecture fades away.

Theorem 3 ([5]). Let Z be a unit vector field on M ? and k þ 1 ¼
maxfIZðpNÞ; IZðpSÞg. Then

volðZÞb pLðekþ1Þ; ð35Þ

where Lðekþ1Þ is the length of the ellipse x2

ðkþ1Þ2
þ y2

ðk�1Þ2
¼ 1.

4. New vector fields on the sphere: parallels type

Finding solutions of the holomorphic equation (3) in M ? remains a local

question. We shall see there are vector fields in an open region of S2 with

even less volume than the above.

We now consider the equations for unit vector fields Z which are

parallel along the parallels; the latter being also known as the circles-of-

latitude.

We return to the radius r 2-sphere.
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Let Z ¼ a
r
qy þ b

r sin y
qf with a2 þ b2 ¼ 1. Applying (19), the desired condi-

tion on Z translates into

‘fZ ¼ 0 ,
a 0
f � b cos y ¼ 0

b 0
f þ a cos y ¼ 0

�
: ð36Þ

The general solution follows:

a ¼ sin h; b ¼ cos h ð37Þ

where

hðy; fÞ ¼ f cos yþ f0; f0 A R: ð38Þ

Since hðy; 2pÞ � hðy; 0Þ ¼ 2p cos y B 2pZ, it is only possible to have the

vector field Z defined on M ?nff ¼ 0g, i.e. M ? with one meridian removed.

Now we notice

a 0
y ¼ �bf sin y

b 0
y ¼ af sin y

�
: ð39Þ

As usual, we consider the unit orthogonal Y ¼ � b
r
qy þ a

r sin y
qf. Recalling (20),

we find

‘yZ ¼ a 0
y

r
qy þ

b 0
y

r sin y
qf ¼ f sin yY : ð40Þ

Hence

A0 ¼ h‘ZZ;Yi ¼ a

r
h‘yZ;Yi ¼ af sin y

r
;

A1 ¼ h‘YZ;Yi ¼ � bf sin y

r
ð41Þ

and

Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jAj2

q ¼ �e�ih f sin yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f2 sin2 y

q ð42Þ

leading through easy computations to a conclusion.

Proposition 5. No integrability equation (4) or (5) is satisfied with Z

above.

Finally, by (1), the volume of a circles-of-latitude vector field is

volðXlÞ ¼ r

ðð
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ f2 sin2 y

q
sin y dfdy ¼ r

ð p

0

ð2p sin y

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ y2

p
dydy: ð43Þ
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Indeed, we call the above the circles-of-latitude or parallels type vector field

ðr ¼ 1Þ:

Xl ¼ sinðf cos yþ f0Þqy þ
cosðf cos yþ f0Þ

sin y
qf: ð44Þ

Finally a new minimum of the volume functional is achieved inside D.

Theorem 4. On the region W ¼ fðy; fÞ A D : f0 0; f sin2 y < jcos yjg, a

circles of latitude type vector field has volume strictly lower than the minimal

meridians type vector fields. More precisely, on W,

volðXlÞ < volðqyÞ ¼ volEucðWÞ: ð45Þ

Proof. Recall from formula (29) with k ¼ 0 that the volume of qy is

equal to the Euclidean volume of the region of definition in D. Now the result

is straightforward from (43) and ð1þ f2 sin2 yÞ sin2 y ¼ sin2 yþ f2 sin4 y < 1.

r

With y A �0; y0½ [ �p� y0; p½, where y0 is the unique solution of cos y
sin2 y

¼ 2p,

we do have f A �0; 2p½. Here, the field Xl almost draws a complete turn

around itself when it goes around the parallels minus a point.

It is somehow surprising that there is just one volume functional con-

cerning the Xl, unlike the case of Xm;k. They lack domain of definition and

minimality equations, their volume is weak. Yet they are important.

A few important questions must be raised. Can one find a vector field

with even less volume than Xl in some equal volume subset of the 2-sphere?

Is there a minimum of volðXÞ per volume of its domain? What is the infimum

and what does it depend on?

Fig. 2. Domain where volðXlÞ < volðqyÞ.
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We end with a simple remark. It is possible to give a more concise

definition involving the two types of vector fields Xm, Xl briefly studied

above.

Let the unit vector field T ¼ a
r
qy þ b

r sin y
qf with constant coe‰cients a, b be

defined on M ?. This is of course the case k ¼ 0 meridian type vector field.

The flow of T ¼ Ta;b integrates to a well-known family of curves, namely the

loxodromes or rhumb lines. Indeed, these curves go across every meridian

with a constant angle Kðqy;TÞ. (Such is their original definition by Pedro

Nunes in the XVIth century).

Now we define the vector fields of T-type as those XT which are parallel

in the direction of Ta;b for some ða; bÞ A S1 fixed:

‘TXT ¼ 0: ð46Þ

T , Xm;k, Xl are particular cases of vector fields of this type. And from these

we may define other just as well.
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