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ABSTRACT. We study the uniqueness problem of an entire function f when it shares
two small functions with its derivative /) (k> 1). This confirms the conjecture posed
by Li and Yang [5].

1. Introduction and main result

Let .#(C) be the family of all non-constant functions which are meromor-
phic in €, whereas &(C) denotes the family of all non-constant entire func-
tions in €. On the other hand, we denote by .#7(C) and &7(C) the family of
all transcendental meromorphic functions in € and the family of all transcen-
dental entire functions in € respectively. In this paper, for f € .#(C), we shall
use the standard notations of Nevanlinna’s value distribution theory such as
T(r, f),m(r, f),N(r, f),N(r, f),... (see e.g., [4, 10]). We adopt the standard
notation S(r, f) for any quantity satisfying the relation S(r, f) = o(T(r, f)) as
r — oo except possibly a set of finite linear measure. Let a, f € .#(C). Then
a is said to be a small function of f if T'(r,a) = S(r, f). Denote by ¥(f) the
family of all small functions of f e .#(C). Let aec ¥(f)NF(g). If f—a
and g — a have the same zeros with the same multiplicities, then we say that
f and g share ¢ CM and if we do not consider the multiplicities, then we say
that f and g share a IM.

Rubel and Yang [9] were the first to study entire functions that share
values with their derivatives. In 1977, they proved if f e &(C) shares two
finite distinct values CM with f’, then f = f’. This result has been gener-
alized from sharing values CM to IM by Mues and Steinmetz [8] and in the
case when both shared values are non-zero independently by Gundersen [3].
Since then the subject of sharing values between a meromorphic function and
its derivative has been extensively studied by many researchers and a lot of
interesting results have been obtained (see [10]).
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In 1991, G. Frank [2] proposed the following conjecture: If f e &(C)
shares two finite values IM with its k-th derivative (k > 1), then f = f%).

In 2000, Li and Yang [5] fully resolved Frank’s conjecture in the following
form.

THEOREM 1.1 ([5]). Let f e &(C) and aj,ay € C be distinct. If f and
f% (k=1) share a; and ay IM, then f = f®.

At the end of the paper, Li and Yang [5] gave rise to the following
conjecture:

CONJECTURE 1.2.  Theorem 1.1 still holds when ay and ay are two arbitrary
distinct small functions of f.

To the knowledge of authors, Conjecture 1.2 is not still confirmed. In
this paper, we settle Conjecture 1.2 at the cost of considering the fact that
al #a4. We now state our main result as follows.

THEOREM 1.3. Let f € &(C) and ay,ay € S (f) be non-constant such that
ai,a # oo and al #aj. If f and [ (k= 1) share ay and ay IM, then
f=ro.

REmMARK 1.4.  The following example asserts that condition “aj,ay # 0" is
sharp in Theorem 1.3.

ExampLE 1.1. Let f(z) = c+e“ and a\(z) = %, where ¢ € C\{0}. If
ay = oo, then f and ' certainly share ay CM. On the other hand, we see that
f and [’ also share a; CM, but [ # f'.

First of all, we generalize the definition of IM to IM*. Let f,ge .#(C)
and ae ¥(f)NS(g). Denote by No(r,a) the counting function of all
common zeroes of f —a and g —a ignoring multiplicities. If N(r,a; f)+
N(r,a;9) — 2No(r,a) = S(r, f) + S(r,g), then we say f and g share a IM*.
One can easily prove that Theorem 1.3 is still valid if condition “IM” is
replaced by “IM*”.

REMARK 1.5. We can easily see that Theorem 1.3 is still valid for any
f e (C) satisfying N(r, )= S(r, f).

REMARK 1.6.  The following examples assert that Theorems A and 1.3 do
not hold for any f e #(C) satisfying N(r,[f) # S(r, f).
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ExamPLE 12. Let f(z) = —=. Clearly N(r,f)# S(r,f). Note that

f(z) = (1i§zj)2 and so [ and f' share 0 CM. On the other hand, we see that

f and f' share 2 IM, but [ # .

ExaMPLE 1.3, Let a(z)=—fe * +ce, b(z)=—%e*  —ce™ and
h(z) = e*¢", where c € R\{0}. Define f(z) = b(z) + bs;'(;ff). Let ai(z) = b'(z)
and ay(z) = d'(z). Clearly, aj,aye S(f) and N(r,f) # S, f). Also, we
deduce that f'(z) — a\(2) = & (f(2) — ay(2)) (f(2) — b(2)) and ['(2) — ar(z) =
e*(f(2) —a(2))(f(2) —a(z)). Clearly, f and f' share a; and a, IM, but
f#ES

ExampLE 1.4 ([6]). Let a,be C such that a—b=+~/2i and w be a non-
constant solution of the Riccati differential equation w' = (w — a;)(w — ay). Let
f(z)=(w(z) —a)(w(z) —b) —1. Then w, f € Mr(C) and w' #0. It is easy
to verify that f" = 6w'f and f”+%:6(f+%)2. Clearly f and " share 0
CM and —} IM, but [ # f”.

After considering Theorem 1.3, we ask The following open question:

Open problem. Is it possible to establish Theorem 1.3 without the hypoth-
esis ai # ay?

2. Auxiliary lemmas

Lemma 2.1 ([1]). Let f € Mr(C) such that f"P(f) = O(f), where P(f)
and Q(f) are differential polynomials in f with functions of small proximity
related to f as the coefficients and the degree of Q(f) is at most n. Then
m(r, P) = S(r, f).

Lemma 2.2 ([11]). If f,g€ 4(C), then

NQé>NQ§)Nmﬂ+NmmmNmmNmmﬁ.

LemMA 2.3. Let fe&(C) and ay,ay € S(f) such that aj,a; # 0,00 and
ay # a,. Suppose

—day dr—a

! ! /AN
—a; ap—a

a0 =/,

e a—a
=\

! ! /
—ap ay—a
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4(f) _
®) m(r =) = S ),
PDLD) = (1, 1), where e S(f),
D=L
(5) m(r L) = S0 1)

—
~
=
3
/N
~

have T Tt On integration, we have f —a1+ao(a1 —ay), where

ap € C\{0}. Thls shows that f e .%(f), which is a contradiction. Hence
A(f) #0.
(2) Note that for i=1,2, we have A4(f)=(a;—a)(f —a)—
(a1 — a)(f' —a)), ie., ?(fu) =aj —a},— (a1 — a2) ff:s . Consequently

A(f ' —q
m<r7f (_f()li) <m(r,ay — ay) + m(r,a; — az) + m(r,]} — ;’) +log 2
=S(r.f),
for i=1,2 and so (2) holds. ' ,
(3) We see that (fijg{}faz) =1 {;(f:}l - ?(j;)z} Now (3) follows di-
rectly from (2). ’
A(Sf a A(f
(4) We see that = ))((/f a)z) = 4) +7(} 2a]/;gf{{jz) and so
A(/) )

m\r, +m\r
( (f —ar)( —az) < —Cll) < (f —a)(f — @)
+m(r,a; — ).

Now (4) follows directly from (2) and (3).
_ £k X
(5) We see that m(r % sm( ,%)+m( 1—%).
Now (5) follows directly from (4).

LEMMA 24 (7). Let fe.#(T) and R(f) =53, where P(f) = z ar f*

and Q(f) Zb,f’ are two mutually prime polynomials in f. If ak,b € V(f)
such that a, ;ﬁ 0 and by #0, then T(r,R(f)) =max{p,q}T(r, )+ S(r, f).

LEMMAE 2.5 ([4])). Let fed(C) and ay,ape F(f). Then T(r,f) <
N(nf)+;N(nai;f)+5(r»f)~

Henceforth for f € &(C), we define the following auxiliary functions

AN = 1Y)

=T —a) —a)

(2.1)
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LAWY - fw)
VETE —a) O =) 22)

H,, = I’l¢ - mllja (23)

where m,n e N and

_ Af) B A(f®)
"= (f—a)(f —a) (fO —a)(f0 —ay) (2.4)

Differentiating twice, we obtain from (2.1) that
((a = a3)(f —a) = (@ = ax)(f" —a)(f = f*)
+((a) =) (f = a) = (@ = ax)(f = ap)(f' = f*)
=¢'(f —a)(f —@) +¢(f —a)(f —ax) + (f —a)(f" —a3)  (2.5)

and
(@' —a")(f —a) + (af —ay)(f" = a;) — (a —a3)(f" —a)
— (@ —a) (/" —a")(f = /)
+2((af —a))(f —a) — (a1 —ax)(f" —a])(f' = fE)
+((a] = a)(f =) = (ar = ax) (/" = a) (" = &)
=¢"(f —a))(f —a) +20'(f' — a)(f — @) +26'(f — an)(f" — d})
+o(f" —al)(f — @) +26(f" — a})(f' — ab)
+¢(f —a)(f" - a3). (2.6)

DErFINITION 2.6.  Let k,m,ne N and aj,a; € (f). Denote by S, »(a1)
the set of those points z € € such that z is an a;-point of f of order m and an
ar-point of f® of order n. The set S(m,n(a2) can be defined similarly. Let
N (n,n)(r,ay; f) denote the reduced counting function of f* with respect to the set
Simm(ar). Similarly N, ,(r,az; f) denotes the reduced counting function of
S with respect to the set S, (a2).

Let z, 4 € S(p.¢)(a1) such that ¢(z, ;) # 0, c0 and ay(z, ) — ax(zp,4) # 0, 0.
Then in some neighbourhood of z,,, we get by Taylor’s expansion

f(2) —a(z) = by(z = 2p,g)" + bpr1(z — Zp-q)pH + (b #0),

SO —ai(z2) = cgz = 2p.) " + cqri(z = 2p0) T+ (¢ #0),  (27)
P(2) =do+di(z—z2p,) +do(z—2,0) + - (do #0).
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Clearly

f1(2) = aj(2) = pby(z = 2p,0) " + (P + Dbpii (2 = 2p.0)" + -+,
S"(2) = a{(2) = p(p = Dby(z = 2.)"

+p(p+ Dbpyi(z - Zp,q)p_1 ey
f(kH)(Z) —ay(z) = qcq(z - Zp,q)q_l + (g + Degri(z = Zp.q)q oy (2.8)
SE(2) = af (2) = glq — Deg(z = 2p0) "

+ (g + Dgega(z — Z/%q)qil T+

¢'(2) = di + 2do(z — 2, ) +3dr(z — 2p.0)" . ..,
$"(2) =2dr +6dr(z—zp ). ...

Now from (2.7) and (2.8), we see that z, , is a zero of 4(f(z)) of multiplicity
p—1 and

bp(z = zp.g)" -+, if p<gq
[ =P =S =z =29 =, if p>gq (2.9)
(by —cp)z—zp9)" +---, if p=gq.

If Zp,1 € S(pyl)(al) (

p= 2) such that ¢(Zp71) # 0,00 and al(zp,l) — az(Zp‘l) #
0, 00, then from (2.5), (2.7

)—(2.9), one can easily conclude that

dy=per, e, fEV(z0) —al(z0) = =) (2.10)

p

Let Z, , € S(p.¢(a2) such that ¢(Z,,) # 0,0 and a(Z,,) — ax(%,,4) # 0, 0.
Then in some neighbourhood of Z, ,, we get by Taylor’s expansion

f)—ar(z) =by(z =2, )" +bpr(z—2,)" ™+ (b, #0),
fO) —arz) = ez =2, ) ez —2,) "+ (&, #0), (2.11)
$(2) =do+di(z—2) +do(z =2 0)° + -+ (do #0).

Similarly —if 2,1 €S, 1)(a2) (p=2) such that ¢(Z,1)#0,00 and
ai(Z,1) — ax(2,1) # 0, 0, then we immediately get

¢(2p,1)
7]) .

Lemma 2.7. Let fe&(C) and ay,ay € S (f) such that ay,a, # oo and
ar #ay. If f and % share ay, ay IM and T(r,f) = T(r, fO) + S(r, ), then
f=r%.

PROOF. Suppose to the contrary that f # f®). Since f and f*) share
a; and a, IM, we have

FEDGE, ) —ay(3pn) = é = — (2.12)
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N(r,ar; /) + N(r,ax; f) < N(r,0; f = f5) + S(r, f)
T(r,f = f®)+ 50, f)

m(r, f— fO)+S(r, f)

gm(r,f)+m(r,l—$>+5(r,f)

IA

IA

<T(r,f)+S(rf). (2.13)

Also using Lemma 2.5, we have T(r,f) < N(r,ai;f)+ N(r,a; f)+
S(r, f). Therefore we conclude that
T(r,f) = N(r,ai; f) + N(r,az; f) + S(r, f). (2.14)
Again from Lemma 2.3, we see that A(f) £ 0 and so ¢ # 0. If possible
suppose that A(f*%)) =0. Then clearly we have

k+1 / i /
/1 )_al )

f(k)—al o al—az'

On integration, we have f% =a; 4 ap(a; —ay), where aye C\{0}.
This shows that fK) e #(f). Since T(r, )= T(r, %)+ S(r,f), it follows
that f e %(f) which is a contradiction. Therefore A(f*))#0 and so
Y #0. Let z,,€8(,4(a1) such that ai(z,,),ai1(zy4) — a2(zp,4) # 0,00 and
ay(zp.q4) — a5(zp,q) #0. Then from (2.1) and (2.9), we conclude that z, , is a
zero of ¢(z) of multiplicity 7 — 1, where ¢ > min{p,q} > 1 and so ¢ is holo-
morphic at z, ,.

Let Z,,€S8(,4(a) such that ai(Z,,),a1(Zy) —ax(zpy) #0,00 and
ay(Zp,q) — a5(2p,4) #0. Then, in the same way as above, one can easily prove
that ¢ is also holomorphic at z,,. As a result we have N(r,¢) = S(r, f).
Also from Lemma 2.3, we get m(r,¢) = S(r, f) and so ¢ € L(f).

Denote by N(r,ai; f, f* |>2) the reduced counting function of common
multiple 0-points of f —a; and fX) —a;. Since ¢ e .L(f), it follows that

N(ryan; £, f W |2 2) < N(r,0;¢) < S(r, /). (2.15)
Similarly we have
N(raz; [, f® = 2) = S(r, /). (2.16)

Denote by N(r,0;f — f® | f # a;,a;) the counting function of those
0-points of f — f®) which are neither the O-points of f —a; nor the O-points
of /' —a,. We denote by N,.i(r,0; f — f® | f =ay,a;) the reduced counting
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function of those 0-points of f — f¥) with multiplicity greater than s which are
the O-points of both f —a; and f — ay.
Now from (2.1), we can easily deduce that

No(r,05f = fO f =ar,a) + N(r, 0, 4()(f — f®) | f # a1, a0)

=S, f). (2.17)
Let a3 = a; +I(a; — az), where “/ e N, and let
pofza (2.18)
a) — dy

Clearly a3 #aj,ay and T(r,F)=T(r,f)+ S(r,f). Now using the second
fundamental theorem and (2.14), we have

27(r, f) = 2T(r,F) + S(r, f)
< N(r,0;F) + N(r,0; F) + N(r, 1: F) + N(r, = I; F) + S(r, f)
N(rai; )+ N(r,az; f) + N(r,a3; ) + S(r, f)
2T(r, f) — m(r,a3; f) + S(r, f),
ie., m(r,as; f) = S(r,f). Also from (2.1), we see that

SRS i — f<k>)

fodf—a)f-a)\ [

and so using Lemma 2.3, we get m(r,0; ) = S(r, f). Therefore we have

m(r,0;f) = S(r, /) and  m(r,as;f) = S(r, /), (2.19)
where a3 =a; +I(ay —az), and [eN. Let G= f(k “. Clearly T(r,G)=

T(r, %)+ S(r, f). Note that f and f*) share al, Iaz IM and T(r,f) =
T(r, %)+ S(r, f). Now from (2.14) and using the second fundamental

theorem, we have

IA

IA

27(r, f)

2T(r, G) + S(r,.f)

IA
=

r,00;G) + N(r,0; G) + N(r,1;G) + N(r,—1; G) + S(r, f)

IA
=

(

(ryar; f%) + N(r,ax; fO) + N(r,a3; £ ) + S(r, f)

(}’ ai; ) + N(V,az;f) + T(}’,f(k>) - m(r,a3;f(k>) + S(r?f)
(r, /) + T(r, fO) = m(r,az; X)) + S(r, f)

IA
Nz
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=27(r, fN) = m(r,as; ) + S(r, 1),

ie., m(r,az; fP) = S(r, /). (2.20)
Again from (2.19) and (2.20), we have

(k) _ k) _ 00 (k)
m(}’,f 613) _ m(nf ay’ +a 03> < m(r,as; f) + S(r, f)

f—as S —a
= S(”’f)’

. f<k)—a3 o
ie., m(r, T )-S(r,f). (2.21)

Since T(r, f) = T(r, f%) + S(r, ), from Lemma 2.2, (2.19) and (2.21), we get

ffa f*a f—a
m(r, f—'(k) — ;) = T(r, f—(") — ;) — N<r,f—(k> — 23)
= ( _Cl3) (r7f](;>—_az3) n 0(1)
— 4% S® —a
( S —as > (r’ f—a >
S =
N( 10 az >+0(1)

R —q f—a
:N(r, f—a33> _N(r’f(k)i—in +S8(r, f)
= N(r,as; f) — N(r,a3; f )+S(r,f)

ryas; f)

N(
= N(r,as; f) +m(
—{N(r,a3; f) + m(r,a3; f9)} + S(r, f)

= T(}’,f) - T(rvf(k)) +S(}",f) = S(raf)a
e, m(r, %) — S(r. /). (2.22)

Since f and f®*) share aj, a» IM, we can easily see that N(r,y) = S(r, f).
Note that

Y=

mﬂ%uW—m>(f—%.4>
(= a)(f® — ) \f® —as

and so using Lemma 2.3 and (2.22), we have
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AW —a3) f—a
m(r,y) < m(r, T® —a) 7™ = a) +m "0 g +0(1)
S S(rﬂ f)7

ie., m(r,y) = S(r, f). Consequently, y € #(f). We now consider the follow-
ing two cases.
Case 1. Suppose that H,, =0. Then from (2.1) and (2.2), we have

n<f/ _ a{ 7f/ _ aé) _ m(f(kJrl) _ai f(k+1) —aé).

f—a f-a fO —a  fO—a
On integration, we have
f—a\' _  (fP—a\"
(f P = (] m s (223)

where ¢; € C\{0}. First we suppose that n # m. Then using Lemma 2.4, we
get from (2.23) that nT(r, /) = mT(r, f®) + S(r, f), which contradicts the fact
that T(r, f) = T(r, f®) + S(r, /). Next we suppose that n =m. Then from
(2.23), we have

Soa SO (2.24)

f—a 2f<k>—az7

where ¢, € C\{0}. If ¢; = 1, then from (2.24), we have f = ), which is a
contradiction. Hence ¢; #1. Now from (2.24), we get

l-af-a  aoa-a
o f-a  fRO—a’

where ay = “~2% such that a4 # aj,a;. Since f €& and f, £ share a, IM,

from (2.25), we conclude that N(r,as; ) = S(r,f). Also we see that
S—a L_© _f-a

ay —dy I—Cz_az—al.

(2.25)

Now using the second fundamental theorem, we get from (2.14) and (2.18) that

2T (r, f) =2T(r, F) + S(r, f)

< N(r,0,F) + N(r,1;F) -l—]V(r,—lCzc;F) +S(r, f)
-

= N(r,ai; f) + N(r,az; )+ S(r, f)
:T(V,f)+S(V,f),

which is a contradiction.
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Case 2. Suppose that H,, # 0 for all m,neN. Let z,,,¢€ S<m’n)(a1) U
S(m,m (a2) such that a(zy,,),a2(zm,n) # 0, 00 and ay(zp,n) — a2(Zm,n) #0. Now
from (2.1) and (2.2), we see that

() (S L )
Hon =7 = 5[ (n =) (e L0 el

and so Hy,(zm ) = 0. Therefore using the first fundamental theorem, we also
have,

Ny (rya1; f) + Ny (1, a2; f)
2 2
< N(r,0; Hyn) + ZN(r,O;ai) + ZN(r, 0; a;)
i=1 i=1
+N(r,0;a1 —az) + S(r, f)
< T(r,Hun) +S(r, /) < T(r, ) + T(r, ) + S(r, /) = S(r. ). (2.26)
Finally from (2.14) and (2.26), we have
T(r.f) = N(r.a, f) + N(r,ax )+ S(r, f)

= Z(N(m,n)(raal;f) +]V(m,n)(raHZ;f)) +S(r’f)

m,n

= > Nww(r,ai;:.0) + Ny (r,a2; ) + S(r, f)

m+n>5
< (NG f) + Nl S9) + NG £) + NG, S9) + S0, )
< QT f) 4270, 7)) + S0 ) = £ f) + S(r. 1),

which is impossible here. Hence f = f®.

3. Proof of the theorem

ProOOF (Proof of Theorem 1.3). If possible suppose that f is a non-
constant polynomial. Since a small function of a polynomial is a constant,
it follows that a;,a; € C. This contradicts the fact that aj —al ¢ C. Hence
feé&r(C). Now we divide the following two cases.

Case 1. Suppose that ¢ #0, where ¢ is defined by (2.1). Clearly
f# f®. Now from the proof of Lemma 2.7, we see that ¢e L(f).
Also from (2.17), we have
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No(r,0:f = fO1f = ar,a2) + N(r,0; A(N)(f = fO) | f # ar, o)
= S(r, /). (3.1)
On the other hand, from (2.15) and (2.16), we have
N(roai; £, f 1= 2) + N(r,a0; f, f 0 |2 2) = S(r, f). (32)

Let s be defined by (2.2). Since A(f*)) # 0, it follows that  # 0. Now
rewriting (2.1), we get

_ a2 f? o f 4 o0+ O

’
f f _ f(k) b (3.3)
al—al—¢ aj—ay | (aj+a))¢ daa
| 2 _ I 1 2 1 2 — 142 —
where o, = s M =ay— iyt T, 0= and Q) =
al—al
172

A (a{ —a %) %), Now we divide the following two sub-cases.
Sub-case 1.1. Suppose that ¢ # aj —aj. Certainly o; > #0. Now by
induction and using (3.3) repeatedly, we obtain the following

ilzka,jfj + Ok
) _i=
TEVIE .

where

O = Yo B S SO IR (B (3

<2k
I+ttt <2k

Here oy j, 1, ... € L (f) and y; := 0, 5 satisfies the recurrence formula

lﬁl:“l,z, l//i+1:lvb1{+lp1¢iv i:1727"'7k_1' (36)

From the recurrence formula (3.6) for y, we can easily derive the
expression

Vi =Yl + 0hy), (3.7)

where Q(,) is a differential polynomial in ; with a degree less than or equal
to k—1.

Now we divide the following two sub-cases.

Sub-case 1.1.1.  Suppose that ;, = o 2x # 0. Then using (2.19) and the
lemma of logarithmic derivative, we get from (3.5) that

m<r,%) =S f). (3.8)
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Again from (3.4), we have
- ' 2%k-1
S f = O - 19 g (39)
J=0

Now from Lemma 2.4, (3.8) and (3.9), we obtain that

2k
2T (r, f)+S(r, /) =T ( > ak,jff>
j=0

(21 0
A

+m(r, fFF Y+ 8(r, f)

(k)\2k—1
n{e (5 e

+m(r, 2N 4 m(r, f ) + S(r, f)
< 2k —V)T(r,f)+ T(r, f*) + S(r, f),

ie, T(rf)<T(r,f®)+S(r f). Since fe&r(C), we have T(r, fV)) <
T(r,f)+S(r,f). Therefore T(r,f)=T(r,f®) + S(r, f). Consequently,
from Lemma 2.7, one can see that f = %) which is impossible here.
Sub-case 1.1.2. Suppose that , = o4 2 =0. Then from (3.6), we have
Yi_ + ¥, =0. On integration, we have ,_;(z) = coe¢l?), where &(z) =

— [Y(z)dz e 4(C) and ¢p e C\{0}. We know that if &(z) has a pole at

thg point zo, then zy is an essential singularity of ¢<). Since ,_, € .#(C),
it follows that & € &(C) and so Y, € §(C). On the other hand, we see that if
Y1 is a polynomial, then i, is also a polynomial for i=1,2,...,k—1. In
that case we arrive at a contradiction. Hence y; € §7(C). Now from (3.7),
we see that xp{‘ = —Q(¥,). Using Lemma 2.1, we evaluate that m(r, ) =
S(r,¥y). Since N(r,yy) =0, it follows that T(r,y) = S(r,¥,), which is
impossible.
Sub-case 1.2. Suppose that ¢ =a; —a). Now from (2.1), we have

(@ —a)(f —a)(f — a)
(@) —a3)(f —ar) — (a1 —ax)(f" — a)

/

(e —a)(f —a)(f — @)
_ i _ (3.10)

f_f(k) —
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Since (a — a3)(f —a1) — (a1 —a)(f" = aj) = (a) — @) (f — @) — (a1 —a2) -
(f' —db), from (3.10), we have
‘ _ (a—a)(f—a)(f - @)
f(/) —a = — 1 2 A(f)l 7
(a1 — @) (f —a)(f' —aj)

and

f(k) —a = —

Also from (2.5), we have

(af —a)(f —a)* = (af —a)(f —a)(f© —ar)
( —a)(f" —a)) + (a1 — aa)(f" = af)(f ™) —ar)
+(ay =) (f —a)(f' = a)) = (@] = a3)(f —a) (S —ay)
— (a1 — @) (f —a))’ + (@ —a)(f" — a})(f*H) - af)
= (af = &) (f —a)(f —a) + (af = a3)(f" — a))(f — a2)
+(af —ay)(f —a)(f' — a3). (3.12)

Let z,1€ S(pA’l)(al) (p=2) such that ai(z,1)—a2(zp1) #0,00 and
ai(zp1) —as(zp1) # 0. Clearly, from (2.10), we have

a; — a)(

f
f

a1(zp1) = @(zp1)
f<k+l)(271)—a/(211):q= 1\2p, 20
P 1\=p p

In some neighbourhood of z, i, it is easy to calculate, from (2.7), (2.8)
and (3.12) that

(bpe2p®(p+ 1)(@1(zp1) = a2(zp1)) = bpla} (zp1) — @3(zp1))
+bpi1(p+ 1) (@1(z,1) — ax(zp0)) (@] (2,1) = a5(2p,1))
— pby((a] (zp.1) = @5 (zp,)) (@1 (1) — ax(2p1)) + (a1 (zp.1) — a5(5,.1))°)
= bpr1p(p + V(@ (zp,1) — ax(zp.1))(ai (zp.1) — a5(2p.1))) (2 = 2p.1)"
+Api(z—z)" =0 (4p € D),
which shows that
(bpeap®(p+ V(@i (zp,1) = a2(2p1)) = bylai (zp,1) = a3(2,1))°

+bpr1(p+ 1)2(511(211-,1) - a2(zp,1))(a{ (zp,1) — aé(zp,l))
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= pby((a] (zp.1) = a3 (zp.1)) (@1 (2p1) = a2(zp.1)) + (@] (2p1) = ah(z.1))?)
—bpr1p(p + D(@1(zp1) — aa(zp1)) (a1 (zp1) — ay(zp.1)) = 0. (3.13)
On the other hand, from (2.6), we have

mn n

(@' —a)(f —a)’ = (@’ —ag)(f —a)(f® —ar)

+(af = a)(f —an)(f' = a)) = (a] = a)(f" = a))(fY) — ar)

— (@} —a)(f —a)(f" —a) + (a] —a)(f" = a!) (SN —a)

— (@ —@)(f —a)(f" —a") + (@ —a)(f" = al") (/Y - a)
+2(af —a)(f —a)(f = a)) = 2(a) —a&))(f — a)) (S —ap)

—2(a1 —a)(f" = a)(f" —ai) + (a; — a3)(f —ar)(f" —af)

+2(a —a)(f" = a)(f Y —a)) = (a] = ap)(f —a) (S —af)
— (@ —@)(f —a)(f" = al) + (a1 —a)(f' = a))(f ") = a)

= (@ —ay)(f —a)(f — @) +2(a — a))(f" — a})(f — @)
+2(af —a)(f —a))(f' = &) + (a) — a3)(f" — a])(f — a2)
+2(a) —a3)(f' = a)(f' = a3) + (a] — a3)(f —a))(f" —a3). (3.14)

In some neighbourhood of z, 1, it is easy to calculate, from (2.7), (2.8) and
(3.14) that

(bpeap™(p + 1) (@1 (zp1) = aa(2,1)) + by(p = 1)(a] (z,1) = a5 (2p,1))°
by (p + 1) (@i (z,1) = a2(zp,1)) (@] (zp1) = a3(2p1))
— 2pby((af (zp,1) = a5 (zp,1)) (@1 (2,1) — a2(2p,1)) + (4] (5p1) = @3(5,.1))°)
— bpr1p(p + D)(@1(5,1) — ax(zp1)) (@] (2,1) = a5(5,1))) (2 = 5p1) "
+By(z—2z,1)'+--=0 (B, e ),
which shows that
byeap®(p + V(a1 (zp1) — aa(zp1)) + bp(p — V(@] (zp1) — a5(zp1))°
+bpat(p+ 1) (a1(zp1) — ax(zp.1)) (@] (zp1) — 3(zp.1))
= 2pby((af (zp,1) = a3 (zp,)) (@1 (z,1) = a2(2p,1)) + (@] (2,1) = @3(zp,1))°)
= bpr1p(p + D(a1(zp,1) — a2(zp,1)) (a1 (zp,1) — a3(zp.1)) = 0. (3.15)
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Now from (3.13) and (3.15), we have

byp(ai(zp1) — ax(zp.1)) (@] (zp1) — a3 (2p.1)) = 0. (3.16)

Since b, #0 and ai(zp1) —ax(zp1) # 0,00, from (3.16) we have
ai(zp,1) = a;(zp.1) = 0.
Now since af — a} ¢ €, it follows that

> Nipy(rai f) < N(r,0iaf —df) < S(r, ). (3.17)

p=2

Let Z,1€S8(,1(a) (p>2) such that a(Z,1)—ax(Z,1) #0,00 and
aj(zp,1) — a5(2p,1) #0. Clearly from (2.12), we have

P E0) - ay) = & = — ) @)
’ ' p

Now proceeding in the same way as done above and using (2.11) instead
of (2.7), one can easily deduce that ai(Z, 1) —aj(2,,1) =0 and so

Zﬁ(pﬁl)(raa%f) < N(V,O;Cli/ —aé’) =< S(V,f) (318)

p=2

Therefore from (3.2), (3.17) and (3.18), we see that

N(z(hal;f) +N(2(Vaaz;f) < Z(N(p,l)(rval;f) +N(p,1)(”7a2;f))
p=2

— S(r, f). (3.19)

Let /e N and ae CU{co}. We use Ny i(r,a; f) to denote the count-
ing function of a-points of f with multiplicity greater than /. Similarly,

Ngji(rya; f) is its reduced function. Now we divide the following three
sub-cases.
Sub-case 1.2.1. Suppose that

No(roay fO)=8(r,f) and  No(r,a f%) = S(r, /).

Then from (3.2), one can easily obtain that

> (Nag(ran; f) + Nag(r, a2 1) = S(r, /). (3.20)

q=2

Now from (2.14), (3.19) and (3.20), we deduce that
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T(r,f) = N(r.a; /) + N(r,ax ) + S(r, /)

2
=Y Nay(ras )+ Y (Npay(ras )+ N (raxs f)
i=1 p=>2
+ZN(1(] ra17 +N(lﬁq)(raa2;f))+s(raf)
q=2
=Nu,y(rai; f)+Nay(razs )+ S(r, f). (3.21)

Let o € #(f) be arbitrary. Now using the first fundamental theorem, we get
from (2.2), Lemmas 2.2 and 2.3 that

N
~
=
—
~
=
\
KR
S~—
VS
~
IS
|
—_
"
"

Sm<r,f{k)_aa>+5(r,f)
(k) _ _
_ T<r,f f_a“> —N(r, f{k) “a>+5(r, /)
(k) _ (k) _
:m(r/faa)W( ff ) N(r,f{k)_a)JrS(,f)

+N(r% f) = N(ryos fO) + S(r, /)
Sm(V,OC;f)+N(r,OC;f)—N(I’,Oﬁ;f(k))+S(l"7f)
=T(r, ) = N(r,% fN) + S(r, ).

Under the given conditions, we have N(r,y) = S(r,f). Consequently we
have

T(r, ) < T(r, f) = N(r,o5 ) + S(r, /). (3.22)

Now we consider the following two sub-cases.

Sub-case 1.2.1.1. Suppose that H;; =0. Then immediately we have
T(r,f)=T(r,f%)+S(r,f) and so by Lemma 2.5, we get f = ¥ which
is impossible.
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Sub-case 1.2.1.2. Suppose that Hy; #0. Let z11 € Sy, 1)(a1) U S, 1)(a2).
Then it is easy to obtain that Hi(z1,1) =0 and so we conclude that

2
ZNII I’(,Z” <N(V,0;H11)+S(V,f)

i=1
<T(r,Hn)+ S f)<T(ry)+ S, [f). (3.23)

Then from (3.21), (3.22) and (3.23), we have

T(r,f) < T(r,p) + S(r,f) < T(r, [) = N(r,o5 ) + S(r, /),
ie., N(ryo; f) =S(r, f),

where «e S(f) is arbitrary. In particular we have N(r,ap;f®)+
N(r,ax; f®)=S(r,f). Since f and f® share a; and a, IM, we have
N(ryai; f)+ N(r,a2; f) =S(r, f) and so N py(r,ai; () +Nay(rasf) =
S(r,f). Therefore from (3.21), we arrive at a contradiction.

Sub-case 1.2.2. Suppose that

either Npo(r,ar; f®) = S(r, f) and Np(r,a0; f %) # S(r, f)
or No(r,ay; f®) # S(r, f) and Nio(r,ax; f ) = S(r, ).

Without loss of generality we may assume that N (r,ap; %Y =S(r,f) and
N(r,az; f0) # S(r, f).
Now from (3.2), one can easily show that

Y Nag(raif) =S, /). (3.24)

q=2

Consequently from (3.19) and (3.24), we deduce that
N(r,ay; f ZN (1:4) (ryay; f

=Nun(raf +ZNP1 r,ai; )+Zﬁ(l,q)(r7a1;f)

p=2 q=2

=Nay(ra; )+ S, f). (3.25)
Let

f=s®

=T a) ] —a) (3.26)
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Clearly ¢, #0. Since ¢ = aj — a}, from (2.1) and (3.26), we have

@i —ay(f - =) = @~ ) ) (6.27)

Let fl,q € S(l’q)(az) (C] = 2) such that a1(211q) - az(flyq) # 0, o0, a{(fl,q) —
a5(z1,4) #0 and ¢,(21,4) #0,00. Clearly A4(f(21,,)) # 0 and so from (3.11),
we conclude that z; , is a zero of f' —aj of multiplicity ¢ — 1. On the other
hand, from (3.27), we conclude that %, , is a zero of f —a; — q}ll, ie., f(Z1,4) =
ai(z1,4) +m. Also since f and f*) share ap IM, it follows that f(2 ,) =
ax(21,4). Consequently we have ¢,(Z; ) = m

2021, 4
We claim that ¢, ¢ C. If possible suppose that ¢, € C\{0}. Then we

— 1 1
have 0 = m If 01 7_é A then
— 1
S Nwrasf) < N(nGp - ) S50 G28)
= a —a

Also from (3.2), we have N(r,as;f,f%|>2)=S(r,f) and so from
(3.28), we conclude that Ny(r,as; f¥)) = S(r, f), which is impossible. Hence
P = ﬁ This shows that a; —a; € €, which is again impossible. Hence
9, ¢ C. Let ¢ :‘(’%. Clearly ¢, # 0.

Let z1 4 € S(1,¢)(a1) such that ay(z1 ) — ax(z1,4) #0,00. Then z; , is a zero
of f— f®. Consequently ¢,(z14) # oo. Similarly if 2, , € S(1,¢)(@2) such that
ai(Z1,4) — ax(z1,4) # 0,00, then ¢(Z,) # . Now from (3.1), (3.2) and
(3.19), we conclude that N(r,0;¢,)+ N(r,p;) = S(r, f). Then ¢, € L(f).
Now by logarithmic differentiation, we get from (3.26) that

LS e [ d
=0 J—a J-a

b (f —a)’(f —a) = (f —a)(f —a)(f ) —ay)
=—(f—a)(f —a)(f*V —a)) + (f = a)(f — @) (fP —a)
+(f—a)(f = a) (O —a) — (f —a)(f — &) (3.29)

ie.,

¢1

or

b (f —a))(f — @)’ — b (f —a)(f —a)(f P —ar)
=—(f—a)(f —a)(f*V —a) + (f' = a))(f — a)(f ™ — @)
+(f—a)(f = a)(f Y — ) — (f —a)(f — ). (3.30)
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Let 21 ,€84,4(a) (g=3) such that ai(Z1,) —ax(21,4) #0,00 and
ay(z,4) — a5(z1,4) #0. Clearly 4(f(21,4)) # 0 and so from (3.11), we conclude
that Z; , is a zero of ' — a] of multiplicity ¢ — 1. Then from (3.30), it is easy
to calculate ¢,(Z;,) =0. Since ¢; # 0, it follows that

ZN(I,q)(rchZ;f)SN(”70;¢1)SS(}’7/{)' (331)

q=3
Now from (3.2) and (3.31), we can easily conclude that
N(ryaz; f0) = S(r, /). (3.32)

Now we consider the following two sub-cases.
Sub-case 1.2.2.1. Suppose that H =0. Then on integration, we have

f—a f® —a

f—a sz“‘)—az’

where ¢, e C\{0}. Now by Lemma 2.4, we conclude that T(r,f)=
T(r,f%)+S(r,f) and so by Lemma 2.5, we have f = /%  which is
impossible.

Sub-case 1.2.2.2. Suppose that H £ 0. It is easy to obtain that m(r, H) =

S(r,f) and N(r,H) = N 5 (r,a; f). Therefore

T(V,H) :m(r,H) —l—N(V,H) :N(I,Z)(raaZ;f) +S(r’f)' (333)

Now from (2.13) and (2.14), we have T(r,f)=m(r,f — f®)+S(r, f).
Therefore from (2.1), (2.2), (3.22) and (3.33), we have

_ 1K)
T(r, f) —m(r,H(fo)> +S(r, f)

—n(r P Y) 0

< T(r )+ T(r,H) + S(r, /)
T(r, /) + Naoy(raz; f) = N(r,o5 £ &) + S(r, f)
and so

N(r oy fO) < Ny oy (r,a0; f) + S(r, f). (3.34)
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Suppose that o = a,. Then from (3.34), we have
N(r,ax; f®) < Ngoy(ras; f) + S(r, f). (3.35)
Since f and f® share a, IM, from (3.2) and (3.19), it follows that
2
N(ryax; f®) + S(r, ) = N(rya0; ) + S(r, /) = Y Noriy(ryaz; f) + S(r, ),
i=1
and so from (3.35), we conclude that ]VUJ)(r, ay; f)=S(r, f). Let

G_f(k"rl)_a{_f"_a{_ai_aé 3.36
1= k) _ — — . ( )
f a  f-ar a—a

If G, =0, then on integration we have /%) —a; = c3(a) — a2)(f — ay),
where ¢; € €\{0}, and so by Lemma 2.4, we get T(r, f) = T(r, f%) + S(r, f).
Now by Lemma 2.7, we conclude that f = f®) which is impossible here.
Hence G; #£0. Also from (3.25), it is easy to prove that N(r,Gy) = S(r, f).
Since m(r, Gy) = S(r, f), it follows that G, € ¥(f).

Let 21"2 € S(Lz)(az) such that Cll(f]_z) — 02(21,2) #* 0, o0, [l{(flﬁz) — aé(flﬁz)
# 0 and ¢(2172) #* 0, 0. Then f(k>(2112) = 02(21‘2) and f<k+l)(fl,2) = aé(fu).
Also from (3.11), one can easily conclude that Z; , is a simple zero of [’ — aj,
i.e., f/(fl’z) = a{ (21’2). B

Now from (3.36), we conclude that Gi(21,2) =0 and so N 5 (r,az; f) <
N(r,0;G1) + S(r, f) < S(r, f). Consequently, N(r,az; )= S(r,f), which is
impossible.

Sub-case 1.2.3. Suppose that

No(ryay fO) #S8(r, /) and  No(r,ax f) # S(r, ).

Let z14,€80,4(a1) (¢=3) such that ai(z14) —ax(z1,4) #0,00 and
aj(zi,q4) — a5(z1,4) #0. Clearly, A(f(z1,4)) #0 and so from (3.11), we con-
clude that z; , is a zero of f’ —a} of multiplicity ¢ — 1. Now from (3.29),
we calculate that ¢,(z;,) =0. Since ¢, # 0, we get

ZN(I,q)(rval;f)SN(”70;¢1)SS(}’>J{)' (337)

423
Now, from (3.2) and (3.37), we can easily conclude that
Na(ra; f9) = S(r, f). (3.38)
Also, from (3.32), we have

Ne(ryaz; f0) = S(r, /). (3.39)
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In this case from, (2.14), we have

2

T(r,f)= Z(N(l,l)(ra ai; f) +N(1,2)(r7 ai; )+ S(r, f). (3.40)

i=1

From Sub-case 1.2.1.1, we conclude that Hy; #0. Let z1,1 € Sy 1y(a1) U
S,1y(@2). Then from (3.22) and (3.23), we see that

2
Y Nun(ras f) < T(r f) = N(ro £O) + S(r, ),

i=1
where o € ¥(f) is arbitrary, and so from (3.40), we have

2

N(r,o; fP) < > Naoy(r,ai f) + S(r, /),

i=1
2
ie, N <> Nuoy(rasf)+S(r,[). (3.41)
i=1

Suppose o = a;. Since

N(r,ar; f%) = N(r.ar; f) = Ny (ras ) + N oy (r,ar f) + S0,
from (3.41), we conclude that N 1)(r,ai; /) < N1 2)(r,a2; f) + S(r, /). Again

if we take o = ap, then from (3.41), we can easily deduce that

Na,y(ryaz f) < Ny ay(r,an; f) + S(r, f).

Consequently from (3.40), we have

Z \(roa f) + S(r, f). (3.42)

Now we divide the following two sub-cases.
Sub-case 1.2.3.1. Suppose that Hy; =0. Then on integration, we have

f—a Z_C SO —a
S —a L0 gy

where ¢; € C\{0}. Now using Lemma 2.4, we deduce that 27(r,f) =

T(r, f%) 4+ S(r, f). Since fe&r(C), it follows that T(r,f®) < T(r, f) +
S(r, f). Consequently we have T'(r, f) = S(r,f), which is impossible.

Sub-case 1.2.3.2. Suppose that Hy; # 0. Let z12 € S(,2)(a1) U S(1,2)(a2).
Then it is easy to obtain that Hy;(z;2) =0 and so we conclude that
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2 j—
ZN 12 (ryais ) < N(r,0; Hop ) + S(r, f)
i=1
< T(r, H21) + S(}’,f)
< T(ry) + S0, f). (3.43)
Now from (3.22) and (3.43), we see that
2
S Ny (rais £) < TG f) = N s £8) 4 S(r, ), (3.44)
i=1
where o € &(f) is arbitrary. In particular from (3.44), we have
2 j—
S Ny (rais ) < T f) = Nrar fO) + 80 ) (3.45)
i=1
2 j—
and > Nuo(raif) < T(r,f) = N(r,a; f%) + S(r, f).  (3.46)
i1
Adding (3.45) and (3.46), we have
2 f—
Zle rah <2T(r,f)—N(r,al;f(k))—N(r,az;f(k))—l—S(r,f). (347)
Now using (3.42), from (3.47) we get
N(ray f©) + N(rax; f1) < T(r.f) + S(r. /). (3.48)
Again, from (3.42) and (3.48), we conclude that
2
N(r,ap; )+ N(r,az; f Z (ryai; )+ S(r, f).  (3.49)
Note that
2 j—
Z (rai )+ 2N o) (r,a;; f)) < N(r,ay; fO) + N(r,az; f ) + S(r, f),
1=1
and so from (3.49), we conclude that
2 f—
ZNl n(rai f) =8, f). (3.50)

1=1
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Now, from (3.40) and (3.50), we deduce that

T(r,f) = N(r,ai; f) + N(r,az f) + S(r, f)
a2 (rai; f)+ Nyl a f) + S(r, f)

No(ryay; f%) + Na(r,ax; £ ) + S(r, f)

S (N (a1 £9) 4+ N (r, 00 £ ) + 50, )

=

IA

IA

< T(r, f*)+ 80, f). (3.51)

Since f € &7(C), it follows that T(r, fX) < T(r, f) + S(r, f) and so from
(3.51), we conclude that T(r,f) = T(r,f%)+ S(r, f). Consequently from
Lemma 2.7, one can conclude that f = f*) which is impossible here.

Case 2. Suppose that ¢ =0. Since A(f) # 0, it follows that f = f*).
This completes the proof.

Acknowledgement

The authors wish to thank the refree for his/her valuable comments and
suggestions towards the improvement of the paper.

References

[1] J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37 (1962),
17-22.

[2] G. Frank, Lecture notes on sharing values of entire and meromorphic functions, Workshop
in Complex Analysis at Tianjing, China, 1991.

[3] G. G. Gundersen, Meromorphic functions that share finite values with their derivative,
J. Math. Anal. Appl., 75 (1980), 441-446; Correction, 86 (1982), 307.

[4] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford (1964).

[5] P. Li, C. C. Yang, When an entire function and its linear differential polynomial share
two values, Illinois J. Math., 44 (2) (2000), 349-362.

[6] P.Li, C. C. Yang, Value sharing of an entire function and its derivatives, J. Math. Soc.
Japan, 51 (4) (1999), 781-799.

[7] A. Z. Mohon’ko, On the Nevanlinna characteristics of some meromorphic functions,
Theory of Functions. Functional Analysis and Their Applications, 14 (1971), 83-87.

[8] E. Mues, N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen,
Manuscripta Math., 29 (1979), 195-206.

[9] L. A. Rubel, C. C. Yang, Values shared by an entire function and its derivative, Lecture
Notes in Mathematics, Springer-Verlag, Berlin, 599 (1977), 101-103.

[10] C. C. Yang, H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic
Publishers, Dordrecht/Boston/London, 2003.



On a conjecture of Li and Yang 223
(11] L. Yang, Value distribution theory, Springer-Verlag, New York, 1993.

Sujoy Majumder
Department of Mathematics
Raiganj University
Raiganj, West Bengal-733134, India.
E-mail: sm05Smath@gmail.com, sjm@raiganjuniversity.ac.in
Current address: Department of mathematics
Raiganj University

Jeet Sarkar
Department of Mathematics
Raiganj University
Raiganj, West Bengal-733134, India.
E-mail: jeetsarkar.math@gmail.com

Nabadwip Sarkar
Department of Mathematics
Raiganj University
Raiganj, West Bengal-7133134, India.
E-mail: naba.iitbmath@gmail.com



