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Abstract. By making use of our previous result on a localization principle for

biholomorphic mappings between equidimensional Fock-Bargmann-Hartogs domains in

Cn �Cm with mb 2 and the same technique as in our previous study of the Fock-

Bargmann-Hartogs domains in Cn �C, in this paper we establish a characterization of

biholomorphicity of holomorphic self-mappings of generalized Fock-Bargmann-Hartogs

domains. As a special case of this, we obtain the main result of a recent paper by Guo,

Feng and Bi.

1. Introduction

This is a continuation of our previous paper [9], and we retain the

terminology and notation there.

Let D be a domain in Cn and f : D ! D a holomorphic self-mapping

of D. Then it would be an interesting problem to give a criterion for

biholomorphicity of f under some conditions on D or on f . In connection

with this problem, in a recent work of Guo-Feng-Bi [4], generalized Fock-

Bargmann-Hartogs domains

Dp
n;mðmÞ ¼ ðz;wÞ A CN ; emkzk

2 Xm
j¼1

jwjj2p < 1

( )
;

where 0 < m A R, n;m; p A N, CN ¼ Cn �Cm ðN ¼ nþmÞ, w ¼ ðw1; . . . ;wmÞ A
Cm, and their holomorphic self-mappings f are studied and the following

theorem is proved as their main result:

Theorem G-F-B (Guo-Feng-Bi [4]). Let f be a holomorphic self-mapping

of the generalized Fock-Bargmann-Hartogs domain Dp
n;mðmÞ. Then f is an

2020 Mathematics Subject Classification. Primary 32Q02; Secondary 32M05, 32A19.

Key words and phrases. Fock-Bargmann-Hartogs domains, Generalized Fock-Bargmann-Hartogs

domains, Biholomorphic mappings, Holomorphic automorphisms.



automorphism of Dp
n;mðmÞ if and only if f keeps the function

Lðz;wÞ ¼ emkzk
2 Xm
j¼1

jwjj2p; ðz;wÞ A CN ;

invariant, that is, Lð f ðz;wÞÞ ¼ Lðz;wÞ on Dp
n;mðmÞ.

As a special case of p ¼ 1, they obtain a criterion for biholomorphicity

of holomorphic self-mappings of the Fock-Bargmann-Hartogs domains Dn;mðmÞ
introduced by Yamamori [14] in 2013.

The main purpose of this paper is to show that the analogue of Theorem

G-F-B above is still valid for more general domains under more weak con-

ditions. In order to state our precise result, let us start with introducing

our generalized Fock-Bargmann-Hartogs domains: For any n;m A N, p ¼
ðp1; . . . ; pmÞ A Nm and 0 < m A R, we define our generalized Fock-Bargmann-

Hartogs domain Dp
n;mðmÞ by

Dp
n;mðmÞ ¼ ðz;wÞ A CN ; emkzk

2 Xm
j¼1

jwjj2pj < 1

( )
;

where CN ¼ Cn �Cm ðN ¼ nþmÞ and w ¼ ðw1; . . . ;wmÞ A Cm. This is an

unbounded pseudoconvex domain in CN with real analytic boundary. Since

the complex Euclidean space Cn is now imbedded in Dp
n;mðmÞ in the canonical

manner, it is not hyperbolic in the sense of Kobayashi [7]. Of course, in the

special case when pj ¼ 1 for all 1a jam, this domain reduces to the Fock-

Bargmann-Hartogs domain Dn;mðmÞ.
In this notation, we first give the following characterization of biholo-

morphicity of holomorphic self-mappings of the Fock-Bargmann-Hartogs

domains:

Theorem 1. Let f be a holomorphic self-mapping of the Fock-Bargmann-

Hartogs domain Dn;mðmÞ in CN. Assume that f is not a constant mapping.

Then f is an automorphism of Dn;mðmÞ if and only if there is a real number r

such that 0 < r < 1 and f preserves the real hypersurface Sr in Dn;mðmÞ given by

Sr ¼ fðz;wÞ A CN ; kwk2emkzk
2

¼ rg:

By making use of this, we can establish the following:

Theorem 2. Let f be a holomorphic self-mapping of the generalized Fock-

Bargmann-Hartogs domain Dp
n;mðmÞ in CN. Assume that f is not a constant

mapping. Then f is an automorphism of Dp
n;mðmÞ if and only if there is a

real number r such that 0 < r < 1 and f preserves the real hypersurface Sr in
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Dp
n;mðmÞ given by

Sr ¼ ðz;wÞ A CN ; emkzk
2 Xm
j¼1

jwjj2pj ¼ r

( )
:

In Theorem G-F-B, define the submanifolds St of Dp
n;mðmÞ by

St ¼ fðz;wÞ A CN ; Lðz;wÞ ¼ tg for 0a t < 1:

Then it is clear that f ðStÞ � St for all 0a t < 1, provided that f keeps L

invariant. Of course, f is not constant in this case. Therefore, considering

the special case of p1 ¼ � � � ¼ pm in Theorem 2, we obtain Theorem G-F-B.

Here it should be remarked that their techniques used in the proof

of Theorem G-F-B are not applicable to the general case when pi 0 pj for

some 1a i; jam in our Theorem 2. This raises new di‰culties to analyse

the structure of holomorphic self-mappings of Dp
n;mðmÞ with pi 0 pj. Finally

we would like to point out that the assumption 0 < r < 1 in Theorem 2 (and

in Theorem 1) cannot be replaced by 0a r < 1. In fact, consider the holo-

morphic self-mapping f of Dp
n;mðmÞ defined by f ðz;wÞ ¼ ðz; 0Þ for ðz;wÞ A

Dp
n;mðmÞ. Then it is clear that f is non-constant and preserves the complex

submanifold

S0 :¼ ðz;wÞ A CN ; emkzk
2 Xm
j¼1

jwj j2pj ¼ 0

( )
GCn

of Dp
n;mðmÞ. But f is not an automorphism of Dp

n;mðmÞ. Therefore the con-

dition r0 0 is essential for Theorem 2.

Our proofs of the theorems are based on our previous result [9] on

the localization principle for biholomorphic mappings between the Fock-

Bargmann-Hartogs domains Dn;mðmÞ in Cn �Cm with mb 2 and on the

same method used in the study of the Fock-Bargmann-Hartogs domains

Dn;1ðmÞ in Cn �C [10]. Hence our proofs here are completely di¤erent from

that of Theorem G-F-B.

After some preparations in the next Section 2, Theorems 1 and 2 will be

proved in Sections 3 and 4, respectively. And, a question related to our results

in this paper will be posed in the final Section 5.

2. Preliminaries

Throughout this paper, we usually consider the elements z of CN as the

row vectors. However, we also think of z as the column vectors, as the need

arises.

113A criterion for biholomorphicity of self-mappings



For the given generalized Fock-Bargmann-Hartogs domain Dp
n;mðmÞ in CN

and 0 < r < 1, we set

D ¼ Dp
n;mðmÞ; Dr ¼ ðz;wÞ A CN ; emkzk

2 Xm
j¼1

jwjj2pj < r

( )
;

Sr ¼ ðz;wÞ A CN ; emkzk
2 Xm
j¼1

jwjj2pj ¼ r

( )
as before and

S�
r ¼ Sr \ fðz;wÞ A CN ; w1 � � �wm 0 0g:

For the Fock-Bargmann-Hartogs domain Dn;mðmÞ, we also define the corre-

sponding objects D, Dr and Sr in the same manner as above.

In this section, we collect some basic facts and results on the generalized

Fock-Bargmann-Hartogs domains. For later purpose, we also recall the

structure of the holomorphic automorphism group AutðEÞ of an elementary

Siegel domain E.

Let us start with recalling the structure of the generalized Fock-Bargmann-

Hartogs domain D in CN ¼ Cn �Cm. For convenience and with no loss of

generality, in the following part we will always assume that there exist positive

integers m1; . . . ;ms such that

m1 þ � � � þms ¼ m;

pm1þ���þmj�1þ1 ¼ � � � ¼ pm1þ���þmj
ð1a ja sÞ; ð2:1Þ

pm1þ���þmj
< pm1þ���þmjþ1 ð1a ja s� 1Þ;

where we put m0 ¼ 0. From now on, we put for 1a ja s

qj ¼ pm1þ���þmj
; Ij ¼ fm1 þ � � � þmj�1 þ 1; . . . ;m1 þ � � � þmjg: ð2:2Þ

Thus q1 < q2 < � � � < qs and f1; 2; . . . ;mg ¼
Ss

j¼1 Ij (disjoint union). More-

over, according to (2.1), for the points z ¼ ðz1; . . . ; znÞ A Cn and w ¼
ðw1; . . . ;wmÞ A Cm, we set

wð jÞ ¼ ðwm1þ���þmj�1þ1; . . . ;wm1þ���þmj
Þ ð1a ja sÞ;

w 0 ¼ wð1Þ; w 00 ¼ ðwð2Þ; . . . ;wðsÞÞ and ð2:3Þ

z ¼ ðz1; . . . ; zNÞ ¼ ðz;wÞ A Cn �Cm ¼ CN :

So we often write z ¼ ðz;wÞ ¼ ðz;wð1Þ; . . . ;wðsÞÞ ¼ ðz;w 0;w 00Þ.
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Now, let us define a real analytic function u on CN by

uðzÞ ¼ emkzk
2 Xm
j¼1

jwjj2pj for z A CN ð2:4Þ

and consider the complex Hessian form Huðz; �Þ of u at z A CN :

Huðz; tÞ ¼
XN
i; j¼1

q2uðzÞ
qziqzj

titj for t ¼ ðt1; . . . ; tNÞ A CN :

For any point zo ¼ ða; bÞ A Cn �Cm ¼ CN , we then have

Huðzo;tÞ ¼ emkak
2

(
m2jha; uij2

Xm
j¼1

jbj j2pj þ mkuk2
Xm
j¼1

jbjj2pj

þ 2m Re ha; ui
Xm
j¼1

pjjbj j2ðpj�1Þ
bjvj

 !
þ
Xm
j¼1

p2j jbjj
2ðpj�1Þjvjj2

)

b emkak
2 Xm

j¼1

jbjj2ðpj�1Þðmjbjj jha; uij � pjjvj jÞ2 þ mkuk2
Xm
j¼1

jbjj2pj
( )

b 0 for all t ¼ ðu; vÞ A Cn �Cm ¼ CN :

Thus u is a plurisubharmonic function on CN ; and if q1 ¼ 1 (resp. q1 > 1),

then it is a strictly plurisubharmonic function on Cnþm1 � ðC�Þm�m1 (resp. on

Cn � ðC�Þm), where C� ¼ Cnf0g the punctured plane. Notice that the func-

tion rðzÞ :¼ �1þ uðzÞ on CN is a global defining function for the generalized

Fock-Bargmann-Hartogs domain D. Hence our domain D is an unbounded

pseudoconvex domain in CN with real analytic boundary. Moreover, in the

special case when all the pj ¼ 1, i.e., D ¼ Dn;mðmÞ the Fock-Bargmann-Hartogs

domain in CN , it is a strictly pseudoconvex domain in CN with real analytic

boundary. Here it should be emphasized that any point z� ¼ ðz�;w�Þ A qD

with w�
1 � � �w�

m 0 0 is a strictly pseudoconvex boundary point of D in any cases.

This fact will be used later.

Now let us recall the structure of the holomorphic automorphism group

AutðDÞ of the generalized Fock-Bargmann-Hartogs domain D in CN . For

this purpose, define the holomorphic self-mappings jA, jB, js and jv of CN by

jA : ðz;wÞ 7! ðAz;wÞ;

jB : ðz;wÞ ¼ ðz;w 0;w 00Þ 7! ðz;B 0w 0;B 00w 00Þ;

js : ðz;wÞ 7! ðz;wsð1Þ; . . . ;wsðmÞÞ;
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jv : ðz;wÞ ¼ ðz;wð1Þ; . . . ;wðsÞÞ 7! ð~zz; ~wwÞ ¼ ð~zz; ~wwð1Þ; . . . ; ~wwðsÞÞ;

~zz ¼ zþ v; ~wwð jÞ ¼ ðe�2mhz; vi�mkvk2

Þ1=2qjwð jÞ ð1a ja sÞ;

where A A UðnÞ, B 0 is a unitary matrix of degree m1 or a diagonal unitary

matrix of degree m1 according to q1 ¼ 1 or q1 > 1, B 00 is a diagonal unitary

matrix of degree m�m1, s is a permutation of f1; . . . ;mg such that sðIjÞ ¼ Ij
for all 1a ja s and v A Cn.

With these notations, we have the following fact due to Bi-Tu [3]:

Fact 1. The automorphism group AutðDÞ of the generalized Fock-

Bargmann-Hartogs domain D is generated by the mappings jA, jB, js and

jv as above. More precisely, every automorphism j of D can be written as the

composite mapping j ¼ jv � jB � js � jA of automorphisms jA, jB, js and jv of

the above type.

Considering the special case of the Fock-Bargmann-Hartogs domain D in

CN , we have the following fact by Kim-Ninh-Yamamori [5]:

Fact 2. The automorphism group AutðDÞ of the Fock-Bargmann-Hartogs

domain D is generated by the following mappings:

jA : ðz;wÞ 7! ðAz;wÞ; A A UðnÞ;

jB : ðz;wÞ 7! ðz;BwÞ; B A UðmÞ;

jv : ðz;wÞ 7! ðzþ v; e�mhz;vi�ðm=2Þkvk2

wÞ; v A Cn:

More precisely, every automorphism j of D can be written as the composite

mapping j ¼ jv � jB � jA of automorphisms jA, jB and jv of the above type.

Next, in the previous paper [9], we proved the following fact on the

localization principle for biholomorphic mappings between Fock-Bargmann-

Hartogs domains in CN , which will play a crucial role in our proofs of the

theorems:

Fact 3. Let D1 ¼ Dn1;m1
ðm1Þ, D2 ¼ Dn2;m2

ðm2Þ be two equidimensional

Fock-Bargmann-Hartogs domains in CN with z1 A qD1, z2 A qD2. Assume that

(1) m1 b 2, m2 b 2;

(2) there are open neighborhoods U1 of z1, U2 of z2 in CN and a biholo-

morphic mapping f : U1 ! U2 such that f ðz1Þ ¼ z2, f ðU1 \D1Þ ¼ U2 \D2 and

f ðU1 \ qD1Þ ¼ U2 \ qD2.

Then f extends to a biholomorphic mapping from D1 onto D2. In par-

ticular, we have ðn1;m1Þ ¼ ðn2;m2Þ.
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For later use, let us recall here the structure of the holomorphic auto-

morphism group AutðEÞ of the elementary Siegel domain

E ¼ fðu; vÞ A C�Cn; Im u� kvk2 > 0g in Cnþ1: ð2:5Þ

This domain is holomorphically equivalent to the unit ball Bnþ1 in Cnþ1 via the

correspondence f : E ! Bnþ1 given by

fðu; vÞ ¼ u� i

uþ i
;
2v1
uþ i

; . . . ;
2vn
uþ i

� �
for ðu; vÞ ¼ ðu; v1; . . . ; vnÞ A E; ð2:6Þ

consequently, AutðEÞ ¼ f�1 AutðBnþ1Þf. Thanks to this, every automorphism

F of E can be described explicitly as a linear fractional transformation of Cnþ1

in terms of the coordinates ðu; vÞ ¼ ðu; v1; . . . ; vnÞ. (For the precise description

of F A AutðEÞ, see [8; Section 3].) Let A¤ðCnþ1Þ be the Lie group consisting

of all non-singular complex a‰ne transformations of Cnþ1 and set

A¤ðEÞ ¼ fF A A¤ðCnþ1Þ; FðEÞ ¼ Eg:

Then A¤ðEÞ is a closed subgroup of A¤ðCnþ1Þ. We call A¤ðEÞ the a‰ne

automorphism group of E and each element of A¤ðEÞ is called an a‰ne auto-

morphism of E. As for the group A¤ðEÞ, we know the following (cf. [11;

Section 2]):

Fact 4. Every a‰ne automorphism F of the elementary Siegel domain E

in C�Cn can be written in the form

Fðu; vÞ ¼ ðkuþ aþ 2ihBv; biþ ikbk2;Bvþ bÞ for ðu; vÞ A E;

where a A R, b A Cn and 0 < k A R, B A GLðn;CÞ with kkvk2 ¼ kBvk2 for all

v A Cn or ð1=
ffiffiffi
k

p
ÞB A UðnÞ.

We finish this section by the following lemma, which will be important in

our proofs of the theorems. Before proceeding, we introduce the following

functions r and r̂r defined by

rðzÞ ¼ �rþ uðzÞ for z A CN and r̂rðzÞ ¼ r � f ðzÞ for z A D;

where u is the plurisubharmonic function introduced in (2.4) and f is a holo-

morphic self-mapping of D. Thus r is a defining function for Dr and so

Dr is a pseudoconvex subdomain of D with real analytic boundary qDr ¼ Sr.

Moreover every point of S�
r is a strictly pseudoconvex boundary point of Dr.

Under the same situation as in Theorem 2, we prove the following:

Lemma. Let z� be an arbitrary point of S�
r . Then there exists an open

neighborhood U of z� in D such that f gives a biholomorphic mapping from U

into D with f ðU \DrÞ ¼ f ðUÞ \Dr and f ðU \SrÞ ¼ f ðUÞ \Sr.
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Proof. First of all, we choose a small open neighborhood U of z� in D in

such a way that U � Cn � ðC�Þm and U \Dr is connected. Thus every point

of U \Sr is a strictly pseudoconvex boundary point of Dr. After shrinking U

su‰ciently small, if necessary, we would like to prove that this U satisfies all

the requirements in the lemma. The proof will be carried out by steps as

follows:

(1) We assert that f ðU \DrÞ � Dr, the closure of Dr in CN. For the

verification of this, we shall employ an idea used in the proof of Pinchuk [12;

Lemma 1.3]. Since every point of U \Sr is a strictly pseudoconvex boundary

point of Dr, we may assume that U \Sr is a strictly convex real analytic

hypersurface in CN (see, e.g. [13; p. 61]). Thus, for any point z0 A U \Dr,

there exists a complex line L in CN passing through z0 such that L \Dr is a

convex domain in L containing z0 and qðL \DrÞ � Sr (after shrinking U suf-

ficiently small, if necessary). Since f ðqðL \DrÞÞ � f ðSrÞ � Sr by our assump-

tion, it then follows that r̂rðzÞ1 0 on qðL \DrÞ; and hence, rð f ðz0ÞÞ ¼ r̂rðz0Þa
0 by the maximum principle for the subharmonic function r̂rjL\D, the restriction

of r̂r to L \D. Therefore we have shown that f ðU \DrÞ � Dr, as asserted.

(2) We assert that f ðU \DrÞ � Dr. To prove this, assume to the

contrary that f ðz1Þ A Sr for some point z1 A U \Dr. Since r̂rðzÞa 0 on U \Dr

by the step (1) and r̂rðz1Þ ¼ 0, we have r̂rðzÞ1 0 on U \Dr by the maxi-

mum principle for the plurisubharmonic function r̂r. Consequently we have

f ðU \DrÞ � Sr. However, this is impossible. To verify this, represent f by

coordinates f ¼ ðg; hÞ ¼ ðg; h1; . . . ; hmÞ and assume that there exists a point

z2 A U \Dr with h1ðz2Þ � � � hmðz2Þ0 0. In such a case, since h2 :¼ f ðz2Þ is a

strictly pseudoconvex boundary point of Dr, there exists a local holomorphic

peaking function for Dr at h2, that is, there is an open neighborhood W2 of h2
and a holomorphic function Ch2 : W2 \Dr ! C with a continuous extension to

W2 \Dr such that

Ch2ðh2Þ ¼ 1 and jCh2ðhÞj < 1 for all h A W2 \Drnfh2g

(cf. [13; p. 222]). Fix a connected open neighborhood V2 of z2 such that

V2 � U \Dr and f ðV2Þ � W2. It then follows at once by the maximum

principle for the holomorphic function Ch2 � f defined on V2 that f ðzÞ ¼ h2
for all z A V2; so that f is constant on D by analytic continuation. But this

contradicts our assumption. Therefore we conclude that h1ðzÞ � � � hmðzÞ1 0

on U \Dr and so on D by analytic continuation. Together with the facts

that

Sr \ fðz;wÞ A CN ; w ¼ 0g ¼ q and f ðU \DrÞ � Sr;

this yields that there are at least two component functions hi, hj of f with

hi 0 0, hj ¼ 0 on D, respectively. Accordingly we may rename the indices so
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that, for some 1a l < m, one has

hi 0 0 for 1a ia l; while hj ¼ 0 for lþ 1a jam:

Hence f has the form f ¼ ðg; h1; . . . ; hl; 0; . . . ; 0Þ. Set w½l� ¼ ðw1; . . . ;wlÞ and

u½l�ðz;w½l�Þ ¼ emkzk
2 Xl
j¼1

jwj j2pj on Cn �Cl;

D½l� ¼ fðz;w½l�Þ A Cn �Cl; u½l�ðz;w½l�Þ < 1g;

D½l�
r ¼ fðz;w½l�Þ A Cn �Cl; u½l�ðz;w½l�Þ < rg;

S½l�
r ¼ fðz;w½l�Þ A Cn �Cl; u½l�ðz;w½l�Þ ¼ rg:

Then qD½l�
r ¼ S½l�

r and our f may be naturally regarded as a holomorphic

mapping from D into D½l� with f ðU \DrÞ � S½l�
r . Moreover, since h1 � � � hl 0

0 on D, there exists a point z3 A U \Dr such that h1ðz3Þ � � � hlðz3Þ0 0. Thus

h3 :¼ f ðz3Þ is a strictly pseudoconvex boundary point of D½l�
r ; consequently, by

the same reasoning as above, we conclude that f ðzÞ ¼ h3 on D, a contradic-

tion. Eventually we arrive at a contradiction in any case; completing the proof

of our assertion f ðU \DrÞ � Dr.

(3) The neighborhood U of z� satisfies all the requirements in Lemma.

We know already that r̂rðzÞ ¼ 0 on U \Sr and r̂rðzÞ < 0 on U \Dr by the step

(2). It then follows from the Hopf lemma that dr̂rðzÞ0 0 for all z A U \Sr;

accordingly, r̂r gives a local defining function for Dr around the strictly

pseudoconvex boundary point z�. Thus, by using the same method as in

the last paragraph of the proof of Bell [2; Theorem 2], it can be checked that

the complex Jacobian determinant Jf ðz�Þ of f at z� cannot vanish. Hence the

inverse mapping theorem guarantees that f is injective on some open neigh-

borhood of z�, so that U satisfies all the requirements in Lemma (after

shrinking U again, if necessary).

Therefore our proof is now completed. r

Remark. A glance at the proof above tells us that this Lemma is valid

for any strictly pseudoconvex boundary point z� of Dr. In particular, in the

special case when D ¼ Dn;mðmÞ, the Fock-Bargmann-Hartogs domain in CN ,

this Lemma is valid for every boundary point z� of Dr.

3. Proof of Theorem 1

Let f be a holomorphic automorphism of D ¼ Dn;mðmÞ. Then, by using

the explicit description of the generators of AutðDÞ given in Fact 2, it is easily

seen that f ðSrÞ � Sr for all 0 < r < 1 (even for r ¼ 0).
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Conversely, taking a non-constant holomorphic self-mapping f of D and

assuming that f ðSrÞ � Sr for some 0 < r < 1 as in Theorem 1, we would like

to show that f is an automorphism of D. The proof is now divided into two

cases when m ¼ 1 and mb 2.

Case 1. m ¼ 1: In this case, we put

D�
r ¼ fðz;wÞ A Cn �C; 0 < jwj2emkzk

2

< rg:

Thus our real hypersurface Sr ¼ qDr is the subset of qD�
r consisting of all

strictly pseudoconvex boundary points of D�
r .

Let E be the elementary Siegel domain in Cnþ1 ¼ C�Cn appearing in

(2.5) and consider a holomorphic mapping $ from E into Cn �C� defined

by

$ðu; vÞ ¼ ðð1= ffiffiffi
m

p Þv;
ffiffi
r

p
eiu=2Þ for ðu; vÞ A E:

Then it is easily seen that $ðEÞ ¼ D�
r and E is the universal covering of D�

r

with the covering projection $. Clearly, $ is, in fact, defined on C�Cn and

$ðqEÞ ¼ Sr.

Now, pick a point z�1 A Sr arbitrarily and put z�2 ¼ f ðz�1 Þ A Sr. Then, by

Lemma in Section 2, we can choose connected open neighborhoods V1, V2 of

z�1 , z
�
2 in D, respectively, such that f gives rise to a biholomorphic mapping,

say again f , from V1 onto V2 with f ðV1 \DrÞ ¼ V2 \Dr and f ðV1 \ SrÞ ¼
V2 \ Sr. Let x�

1 ; x
�
2 A qE be any two points such that $ðx�

j Þ ¼ z�j for j ¼ 1; 2.

Since $ is a covering projection from C�Cn onto Cn �C� with $ðqEÞ ¼ Sr,

we can find connected open neighborhoods W1, W2 of x�
1 , x

�
2 , respectively, such

that $ðWjÞ ¼ Vj and both the restrictions

P j :¼ $jWj
: Wj ! Vj for j ¼ 1; 2

are biholomorphic mappings, after shrinking V1 su‰ciently small, if necessary.

Thus we obtain a biholomorphic mapping F :¼ P�1
2 � f �P1 : W1 ! W2 with

F ðW1 \ EÞ ¼ W2 \ E and FðW1 \ qEÞ ¼ W2 \ qE:

Recall that E is biholomorphically equivalent to the unit ball Bnþ1 in Cnþ1 via

the correspondence f defined in (2.6). Then, as an immediate consequence of

the main result of Alexander [1], F now extends to a holomorphic automor-

phism, denoted by the same letter F , of E. Thus

$ðFðxÞÞ ¼ f ð$ðxÞÞ for all x A E ð3:1Þ

by analytic continuation. We here assert that F is an a‰ne automorphism

of E. The following proof of this will be presented only in outline, since the

details of the steps can be filled in by consulting the corresponding passages in
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Case 1 in the proof of the assertion (II) of [10; Theorem 1]. First of all, notice

that

$�1ð$ðxÞÞ ¼ fðuþ 4pn; vÞ; n A Zg for any x ¼ ðu; vÞ A E:

Thus, representing F ¼ ðF0;F1; . . . ;FnÞ by coordinates ðu; vÞ ¼ ðu; v1; . . . ; vnÞ in

C�Cn ¼ Cnþ1, we obtain from (3.1) that

F0ðuþ 4pn; vÞ ¼ F0ðu; vÞ þ 4pnðx; nÞ;

Fiðuþ 4pn; vÞ ¼ Fiðu; vÞ; 1a ia n;

for any point x ¼ ðu; vÞ A E and any integer n, where nðx; nÞ is an integer

uniquely determined by ðx; nÞ. For each fixed n A Z, being a continuous

integer-valued function in x defined on the domain E, nðx; nÞ is independent

on x; and so, we may write nðx; nÞ ¼ nðnÞ. Moreover, since E is a complete

hyperbolic manifold in the sense of Kobayashi [7], we see that

jnðnÞj ! þy if and only if jnj ! þy:

Therefore, by repeating exactly the same argument as in the proof of [10;

Theorem 1], it can be checked that F is, in fact, an a‰ne automorphism of E,

as asserted.

Now let us express the a‰ne automorphism F of E as in Fact 4 in Section

2 and write M ¼ ð1=
ffiffiffi
k

p
ÞB A UðnÞ, b� ¼ ð1= ffiffiffi

m
p Þb. It then follows from (3.1)

that

f ðz;wÞ ¼ ðM
ffiffiffi
k

p
zþ b�; ð1=

ffiffi
r

p
Þk�1

e�mhM
ffiffi
k

p
z;b �i�ðm=2Þkb �k2eða=2ÞiwkÞ

on D�
r and so on D by analytic continuation. Here, since f is a single-valued

holomorphic mapping defined on D, the positive real number k has to be an

integer. Moreover, f may be regarded as a holomorphic self-mapping of

Cnþ1. Thus f ðqDÞ � D and so

1b uð f ðz;wÞÞ ¼ 1=rk�1 whenever uðz;wÞ ¼ 1:

Since 0 < r < 1 and kb 1, this can only happen when k ¼ 1. This combined

with Fact 2 assures us that f is, in fact, an automorphism of D; thereby the

proof of Theorem 1 is completed in the case when m ¼ 1.

Case 2. mb 2: We now proceed to define a non-singular linear trans-

formation L of Cn �Cm by

Lðz;wÞ ¼ ðz; ð1=
ffiffi
r

p
ÞwÞ for ðz;wÞ A Cn �Cm:

Notice that LðDrÞ ¼ D and LðSrÞ ¼ qD.
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Pick a point z�1 A Sr and put z�2 ¼ f ðz�1 Þ A Sr. Then, thanks to Lemma in

Section 2, one can choose connected open neighborhoods U1, U2 of z�1 , z
�
2 in

D, respectively, such that f gives a biholomorphic mapping, say again f , from

U1 onto U2 such that f ðU1 \DrÞ ¼ U2 \Dr and f ðU1 \ SrÞ ¼ U2 \ Sr. Here,

setting Vi ¼ LðUiÞ for i ¼ 1; 2 and considering the biholomorphic mapping

F :¼ L � f � L�1 : V1 ! V2, we have

F ðV1 \DÞ ¼ V2 \D and FðV1 \ qDÞ ¼ V2 \ qD:

Recall that D is now a Fock-Bargmann-Hartogs domain in Cn �Cm with

mb 2. Then, as a direct consequence of Fact 3, F extends to a holomorphic

automorphism, denoted by the same letter F , of D. Hence

Lð f ðz;wÞÞ ¼ F ðLðz;wÞÞ for all ðz;wÞ A Dr ð3:2Þ

by analytic continuation. In particular, we see that f ðDrÞ � Dr. Recall

that our automorphism F is now expressed as the composite mapping F ¼
jv � jB � jA of automorphisms jA, jB and jv defined in Fact 2. Then the

relation (3.2) tells us that f has the form

f ðz;wÞ ¼ ðAzþ v; e�mhAz; vi�ðm=2Þkvk2BwÞ on Dr

and so on D by analytic continuation. Thus f is an automorphism of D by

Fact 2; thereby the proof of Theorem 1 is completed in the case when mb 2.

Therefore the proof of Theorem 1 is now completed. r

4. Proof of Theorem 2

Let D be the generalized Fock-Bargmann-Hartogs domain in CN and let

f be a holomorphic self-mapping of D as in Theorem 2.

Since every holomorphic automorphism of D preserves the real hypersur-

face Sr by Fact 1, we have only to prove the converse assertion. So, assuming

that f ðSrÞ � Sr for some 0 < r < 1 as in Theorem 2, we wish to show that f is

an automorphism of D. We have now two cases to consider.

Case 1. m ¼ 1: Putting p ¼ p1, m� ¼ m=p and r� ¼
ffiffi
rp

p
, we have

D ¼ fðz;wÞ A CN ; jwj2em �kzk2 < 1g ¼ Dn;1ðm�Þ;

Sr ¼ fðz;wÞ A CN ; jwj2em �kzk2

¼ r�g ¼ Sr �

as sets. Thus f is a holomorphic self-mapping of the Fock-Bargmann-Hartogs

domain Dn;1ðm�Þ preserving the real hypersurface Sr� in Dn;1ðm�Þ. Hence, as

an immediate consequence of Theorem 1, f is an automorphism of D, as

desired.
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Case 2. mb 2: If both the integers s and q1 appearing in (2.1) and (2.2),

respectively, are equal to one, then D is just the Fock-Bargmann-Hartogs

domain Dn;mðmÞ; consequently, f is an automorphism of D by Theorem 1.

From now on, we always assume that ðs; q1Þ0 ð1; 1Þ. In this case, the

following holomorphic self-mapping P of CN ¼ Cn �Cm will play an impor-

tant role in our proof: For the given p ¼ ðp1; . . . ; pmÞ A Nm and 0 < r < 1,

we set

Pðz;wÞ ¼ ðz; ðw1Þ p1=
ffiffi
r

p
; . . . ; ðwmÞ pm=

ffiffi
r

p
Þ for ðz;wÞ A CN :

Notice that P induces a proper holomorphic mapping from Dr onto the Fock-

Bargmann-Hartogs domain D ¼ Dn;mðmÞ with PðSrÞ ¼ qD. Moreover, for any

point z� A S�
r , P is injective on some open neighborhood of z�.

Let z�1 be an arbitrary point of S�
r and put z�2 ¼ f ðz�1 Þ. Then, by Lemma

in Section 2, we can choose connected open neighborhoods V1, V2 of z�1 , z�2
in D such that f gives a biholomorphic mapping from V1 onto V2 with

f ðV1 \DrÞ ¼ V2 \Dr and f ðV1 \SrÞ ¼ V2 \Sr. In particular, replacing z�1
by a nearby point, if necessary, we may assume that z�2 is also contained in

S�
r . Now we set Wi ¼ PðViÞ for i ¼ 1; 2. We may assume that both the

restrictions

P i :¼ PjVi
: Vi ! Wi for i ¼ 1; 2

are biholomorphic mappings, after shrinking V1 su‰ciently small, if necessary.

Thus we obtain a biholomorphic mapping F :¼ P2 � f �P�1
1 : W1 ! W2 with

FðW1 \DÞ ¼ W2 \D and FðW1 \ qDÞ ¼ W2 \ qD:

Recall that D ¼ Dn;mðmÞ is a Fock-Bargmann-Hartogs domain with mb 2. It

then follows from Fact 3 that F extends to a holomorphic automorphism, say

again F , of D. Hence

Pð f ðzÞÞ ¼ FðPðzÞÞ for all z A Dr ð4:1Þ

by analytic continuation. On the other hand, by virtue of Fact 2, F can be

written in the form

F ðz;wÞ ¼ ðAzþ v; e�mhAz; vi�ðm=2Þkvk2BwÞ on D;

where A A UðnÞ, B A UðmÞ and v A Cn. Making use of this, we wish to show

that f is an automorphism of D. For this purpose, we here introduce the

following notation: Let qj be the positive integer defined in (2.2) and represent

f as f ¼ ðg; hÞ ¼ ðg; h1; . . . ; hmÞ by coordinates z ¼ ðz;wÞ ¼ ðz;w1; . . . ;wmÞ in

Cn �Cm ¼ CN . Then, according to the notations in (2.1) and (2.3), we set
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w
qj
ð jÞ ¼ ððwm1þ���þmj�1þ1Þqj ; . . . ; ðwm1þ���þmj

Þqj Þ;

hð jÞ ¼ ðhm1þ���þmj�1þ1; . . . ; hm1þ���þmj
Þ;

h
qj
ð jÞ ¼ ððhm1þ���þmj�1þ1Þqj ; . . . ; ðhm1þ���þmj

Þqj Þ

for 1a ja s. In this notation, the relation (4.1) can be rewritten in the form

gðzÞ ¼ Azþ v;

h
q1
ð1ÞðzÞ

..

.

h
qs
ðsÞðzÞ

0
BBB@

1
CCCA¼ lðzÞ

B11 . . . B1s

..

. . .
. ..

.

Bs1 . . . Bss

0
BB@

1
CCA

w
q1
ð1Þ

..

.

w
qs
ðsÞ

0
BBB@

1
CCCA ð4:2Þ

for z ¼ ðz;wÞ A Dr, where lðzÞ ¼ e�mhAz; vi�ðm=2Þkvk2 and Bij is an mi �mj matrix

for 1a i; ja s with B ¼ ðBijÞ1ai; jas.

First of all, we consider the case s ¼ 1, so that m1 ¼ m and q1 > 1 by our

assumption. In this case, we assert that B ¼ B11 has the following property:

ð?Þ Every row and every column of B contain exactly one entry of

modulus 1.

Recall that B is a unitary matrix. Then the verification of our assertion ð?Þ
is now reduced to showing that every row of B contains exactly one non-

zero entry. To this end, let us define the holomorphic functions ĥhj ð1a jamÞ
by

ĥhjðwÞ ¼ hjð0;wÞ on E ¼ fw A Cm; jw1j2q1 þ � � � jwmj2q1 < rg;

where 0 denotes the origin of Cn. Then, being a holomorphic function on the

complete Reinhardt domain E, each ĥhj can be expanded uniquely as

ĥhjðwÞ ¼
Xy
k¼0

PkðwÞ on E; ð4:3Þ

which converges absolutely and uniformly on compact subsets of E, where

PkðwÞ is a homogeneous polynomial of degree k in w ¼ ðw1; . . . ;wmÞ. Notice

that ĥhjð0Þ ¼ 0 for all 1a jam in our case. Hence, together with (4.3), the

second equality in (4.2) tells us that each ĥhjðwÞ is a homogeneous polynomial of

degree 1 in w. Represent

B ¼ ðbijÞ1ai; jam and ĥhjðwÞ ¼
Xm
n¼1

cjnwn for 1a jam;

where cjn are complex constants. Now, since B is non-singular, it is obvious

that every row of B contains at least one nonzero entry. So, fix an arbitrary

index j and assume that there are two entries bjk, bjl ðk < lÞ with bjkbjl 0 0.
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It then follows from (4.2) that

ðcjkwk þ cjlwlÞq1 ¼ ĥh
q1
j ðw�Þ ¼ lð0ÞðbjkðwkÞq1 þ bjlðwlÞq1Þ

for all w� ¼ ð0; . . . ; 0;wk; 0; . . . ; 0;wl; 0; . . . ; 0Þ A E. However, this is impossible

because lð0Þ0 0 and q1 > 1. As a result, we have shown that every row of B

contains exactly one nonzero entry; proving the assertion ð?Þ.
Now it is easily seen by using ð?Þ that there exist a permutation s of

f1; . . . ;mg and a diagonal matrix D ¼ diagðd1; . . . ; dmÞ with diagonal entries dj
of modulus 1 such that

hðzÞ ¼ lðzÞ1=q1DcsðwÞ for z ¼ ðz;wÞ A Dr;

where cs is the automorphism of Cm induced from s in the canonical

fashion:

csðwÞ ¼ ðwsð1Þ; . . . ;wsðmÞÞ for w A Cm: ð4:4Þ

Therefore we have shown that f has the form

f ðzÞ ¼ ðAzþ v; lðzÞ1=q1DcsðwÞÞ on D

by analytic continuation. Thus f is an automorphism of D by Fact 1; thereby

the proof of Theorem 2 is completed in the case when s ¼ 1 and q1 > 1.

Next we consider the case when s > 1, so that m > m1 and qj b 2 for all

2a ja s. In this case, we first claim that Bij ¼ 0 for all i0 j. To this end,

we have only to show that Bij ¼ 0 for i > j, since B is unitary. To derive a

contradiction, assume that there exists a submatrix Bij ¼ ðbmnÞ1amami ;1anamj
,

i > j, with a nonzero entry bmn. Put for a while

a ¼ m1 þ � � � þmi�1 þ m and b ¼ m1 þ � � � þmj�1 þ n:

It then follows from (4.2) that

ðhaðz�ÞÞqi ¼ lð0ÞbmnðwbÞqj for all z� ¼ ð0; . . . ; 0;wb; 0; . . . ; 0Þ A Dr:

However, this is impossible. Indeed, since lð0Þbmn 0 0, the left-hand side of

the above equation is a polynomial in wb of degree at least qi, while the right-

hand side is a monomial of degree qj. Hence we arrive at a contradiction

because qi > qj for i > j. Thus Bij ¼ 0 for all i0 j, as claimed. In partic-

ular, we see that Bjj A UðmjÞ for all 1a ja s. Moreover, recall that qj > 1 for

all 2a ja s. Then, by repeating exactly the same argument as in the case

when s ¼ 1 and q1 > 1, it can be seen that every submatrix Bjj ð2a ja sÞ has

the same property as stated in ð?Þ above. Thus, for every 2a ja s, there

exist a permutation sj of Ij and a diagonal matrix Dj ¼ diagðdj1; . . . ; djmj
Þ with
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jdjlj ¼ 1 for all 1a lamj such that

hð jÞðzÞ ¼ lðzÞ1=qjDjcsj
ðwð jÞÞ for z ¼ ðz;wÞ A Dr;

where csj
is the automorphism of Cmj naturally induced from sj . Of course,

the same is true for B11, provided that q1 > 1.

Summarizing the above, we obtain that f can be written in the form

f ðzÞ ¼ ðAzþ v; hð1ÞðzÞ; lðzÞ1=q2D2cs2
ðwð2ÞÞ; . . . ; lðzÞ1=qsDscss

ðwðsÞÞÞ;

hð1ÞðzÞ ¼ lðzÞB1wð1Þ or hð1ÞðzÞ ¼ lðzÞ1=q1D1cs1
ðwð1ÞÞ

according to q1 ¼ 1 or q1 > 1 for z ¼ ðz;wð1Þ; . . . ;wðsÞÞ A Cn �Cm1 � � � � �Cms

¼ CN , where lðzÞ ¼ e�mhAz; vi�ðm=2Þkvk2

, A A UðnÞ, B1 A Uðm1Þ, Dj is a diagonal

unitary matrix of degree mj, sj is a permutation of the index set Ij and csj
is

the automorphism of Cmj induced from sj as in (4.4) for 1a ja s. Anyway

we conclude by Fact 1 that f is, in fact, a holomorphic automorphism of D in

the case when s > 1.

Therefore the proof of Theorem 2 is now completed. r

5. A concluding remark

Let us define the twisted Fock-Bargmann-Hartogs domains Dm;p
n;m;k accord-

ing to Kim-Yamamori [6] as follows:

Dm;p
n;m;k ¼ ðz;w1; . . . ;wmÞ A Cn �Ck1 � � � � �Ckm ;

Xm
j¼1

kwjk2pj

e�mjkzk2
< 1

( )
;

where

k ¼ ðk1; . . . ; kmÞ A Nm and m ¼ ðm1; . . . ; mmÞ; p ¼ ðp1; . . . ; pmÞ A ðRþÞm:

Clearly our generalized Fock-Bargmann-Hartogs domain Dp
n;mðmÞ is a special

case of the twisted Fock-Bargmann-Hartogs domains Dm;p
n;m;k. Hence we wish

to generalize our results to the domains Dm;p
n;m;k. However, it does not seem

easy to achieve this although the structure of the holomorphic automor-

phism groups AutðDm;p
n;m;kÞ of the twisted Fock-Bargmann-Hartogs domains

Dm;p
n;m;k is completely determined by Kim-Yamamori [6]. In fact, the author

does not know at this writing how to generalize our results to the twisted Fock-

Bargmann-Hartogs domains Dm;p
n;m;k even in the case when mb 2, m1 ¼ � � � ¼

mm, p A Nm with pj b 2 and kj b 2 for some 1a jam, for instance. Thus we

would like to finish this article by posing the following:

Question. Can one generalize the results in this paper to the twisted Fock-

Bargmann-Hartogs domains Dm;p
n;m;k?

126 Akio Kodama



Acknowledgement

The author would like to thank the referee for his/her useful comments

and suggestions.

References

[ 1 ] H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974),

249–256.

[ 2 ] S. Bell, Analytic hypoellipticity of the q-Neumann problem and extendability of holomor-

phic mappings, Acta Math. 147 (1981), 109–116.

[ 3 ] E. Bi and Z. Tu, Rigidity of proper holomorphic mappings between generalized Fock-

Bargmann-Hartogs domains, Pacific J. Math. 297 (2018), 277–297.

[ 4 ] T. Guo, Z. Feng and E. Bi, Rigidity of the holomorphic automorphism of the generalized

Fock-Bargmann-Hartogs domains, Czechoslovak Math. J. 71 (2021), 373–386.

[ 5 ] H. Kim, V. T. Ninh, A. Yamamori, The automorphism group of a certain unbounded non-

hyperbolic domain, J. Math. Anal. Appl. 409 (2014), 637–642.

[ 6 ] H. Kim and A. Yamamori, The holomorphic automorphism groups of twisted Fock-

Bargmann-Hartogs domains, Czechoslovak Math. J. 68 (2018), 611–631.

[ 7 ] S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag, Berlin Heidelberg New York,

1998.

[ 8 ] A. Kodama, On generalized Siegel domains, Osaka J. Math. 14 (1977), 227–252.

[ 9 ] A. Kodama, A localization principle for biholomorphic mappings between the Fock-

Bargmann-Hartogs domains, Hiroshima Math. J. 48 (2018), 171–187.

[10] A. Kodama and S. Shimizu, Two theorems on the Fock-Bargmann-Hartogs domains,

Osaka J. Math. 56 (2019), 739–757.

[11] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Math., Vol. 286,

Springer-Verlag, Berlin Heidelberg New York, 1972.

[12] S. I. Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR Sb.

27 (1975), 375–392.

[13] R. M. Range, Holomorphic functions and integral representations in several complex

variables, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1986.

[14] A. Yamamori, The Bergman kernel of the Fock-Bargmann-Hartogs domain and the

polylogarithm function, Complex Var. Elliptic Equ. 58 (2013), 783–793.

Akio Kodama

Faculty of Mathematics and Physics

Institute of Science and Engineering

Kanazawa University

Kakumamachi 920-1192 Japan

E-mail: kodama@sta¤.kanazawa-u.ac.jp

127A criterion for biholomorphicity of self-mappings


