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ABSTRACT. By making use of our previous result on a localization principle for
biholomorphic mappings between equidimensional Fock-Bargmann-Hartogs domains in
C" x €™ with m > 2 and the same technique as in our previous study of the Fock-
Bargmann-Hartogs domains in €" x €, in this paper we establish a characterization of
biholomorphicity of holomorphic self-mappings of generalized Fock-Bargmann-Hartogs
domains. As a special case of this, we obtain the main result of a recent paper by Guo,
Feng and Bi.

1. Introduction

This is a continuation of our previous paper [9], and we retain the
terminology and notation there.

Let D be a domain in €" and f: D — D a holomorphic self-mapping
of D. Then it would be an interesting problem to give a criterion for
biholomorphicity of f under some conditions on D or on f. In connection
with this problem, in a recent work of Guo-Feng-Bi [4], generalized Fock-
Bargmann-Hartogs domains

m
D? (1) =< (z,w) e CV; el Z \w/-\z” <15y,

n,m

J=1

where 0 < ue R, nym,pe N, C¥N =C" x €™ (N =n+m), w= (wy,...,wy) €
C™", and their holomorphic self-mappings f are studied and the following
theorem is proved as their main result:

THEOREM G-F-B (Guo-Feng-Bi [4]). Let f be a holomorphic self-mapping
of the generalized Fock-Bargmann-Hartogs domain D}, (u). Then f is an
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automorphism of D! (u) if and only if f keeps the function

n,m
2 m 2
Lzw) =03, (zw) e,
j=1

invariant, that is, L(f(z,w)) = L(z,w) on D! (u).

n,m

As a special case of p =1, they obtain a criterion for biholomorphicity
of holomorphic self-mappings of the Fock-Bargmann-Hartogs domains D,, ,,, ()
introduced by Yamamori [14] in 2013.

The main purpose of this paper is to show that the analogue of Theorem
G-F-B above is still valid for more general domains under more weak con-
ditions. In order to state our precise result, let us start with introducing
our generalized Fock-Bargmann-Hartogs domains: For any n,meIN, p=
(p1,---,pm) e N" and 0 < g e R, we define our generalized Fock-Bargmann-
Hartogs domain &}, (u) by

DY ) = {<z, W) e @ e 3 iy < 1},

Jj=1

where €Y =C"xC" (N=n+m) and w= (wy,...,w,)eC™. This is an
unbounded pseudoconvex domain in €V with real analytic boundary. Since
the complex Euclidean space €" is now imbedded in 2!, (u) in the canonical
manner, it is not hyperbolic in the sense of Kobayashi [7]. Of course, in the
special case when p; =1 for all 1 < j <m, this domain reduces to the Fock-
Bargmann-Hartogs domain D, ().

In this notation, we first give the following characterization of biholo-
morphicity of holomorphic self-mappings of the Fock-Bargmann-Hartogs

domains:

THEOREM 1. Let [ be a holomorphic self~mapping of the Fock-Bargmann-
Hartogs domain D, ,,(u) in CV. Assume that f is not a constant mapping.
Then f is an automorphism of D, ,,(u) if and only if there is a real number r
such that 0 <r <1 and f preserves the real hypersurface S, in D, ,(u) given by

Sy = {(z,w) € ©Y; || e ” =4},
By making use of this, we can establish the following:

THEOREM 2. Let f be a holomorphic self-mapping of the generalized Fock-
Bargmann-Hartogs domain 21, (1) in V. Assume that f is not a constant

mapping.  Then f is an automorphism of 21 (u) if and only if there is a
real number r such that 0 <r <1 and f preserves the real hypersurface <, in
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D5 (1) given by

m
S = {(z, w) eV, eHlI? Z |Wj|21’f = r}.

j=1
In Theorem G-F-B, define the submanifolds S; of D}, (u) by
S ={(z,w) e €"; L(z,w) = 1} for 0 <z <.

Then it is clear that f(S;) C S, for all 0 <7< 1, provided that f keeps L
invariant. Of course, f is not constant in this case. Therefore, considering
the special case of p; =--- = p,, in Theorem 2, we obtain Theorem G-F-B.

Here it should be remarked that their techniques used in the proof
of Theorem G-F-B are not applicable to the general case when p; # p; for
some 1 <i,j<m in our Theorem 2. This raises new difficulties to analyse
the structure of holomorphic self-mappings of 27, (u) with p; # p;. Finally
we would like to point out that the assumption 0 < r < 1 in Theorem 2 (and
in Theorem 1) cannot be replaced by 0 <r < 1. In fact, consider the holo-
morphic self-mapping [ of &, (u) defined by f(z,w)=(z,0) for (z,w)e
2?7 (n). Then it is clear that f is non-constant and preserves the complex
submanifold

Fo = {(z, w) eV, et Z ;| = 0} ~ "
=1

j=

of ¢ (u). But f is not an automorphism of &/ (u). Therefore the con-
dition r # 0 is essential for Theorem 2. '

Our proofs of the theorems are based on our previous result [9] on
the localization principle for biholomorphic mappings between the Fock-
Bargmann-Hartogs domains D, ,(#) in C" x €™ with m >2 and on the
same method used in the study of the Fock-Bargmann-Hartogs domains
D, () in €C" x € [10]. Hence our proofs here are completely different from
that of Theorem G-F-B.

After some preparations in the next Section 2, Theorems 1 and 2 will be
proved in Sections 3 and 4, respectively. And, a question related to our results
in this paper will be posed in the final Section 5.

2. Preliminaries

Throughout this paper, we usually consider the elements { of €V as the
row vectors. However, we also think of { as the column vectors, as the need
arises.
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For the given generalized Fock-Bargmann-Hartogs domain 27, ( 1) in cV
and 0 <r< 1, we set

m
9 = b@gm(la)’ 9, = {(Z, w) e (EN; e;l\l:\\z Z |Wj|2pj < r}7
=1

m

2 .

= {(27 w) e €V; el E % = r} as before and
J=1

I =0 {(z,w) e TV; wy - wy, # 0},

For the Fock-Bargmann-Hartogs domain D, ,,(x), we also define the corre-
sponding objects D, D, and S, in the same manner as above.

In this section, we collect some basic facts and results on the generalized
Fock-Bargmann-Hartogs domains. For later purpose, we also recall the
structure of the holomorphic automorphism group Aut(&) of an elementary
Siegel domain &.

Let us start with recalling the structure of the generalized Fock-Bargmann-
Hartogs domain & in €V = €" x €. For convenience and with no loss of
generality, in the following part we will always assume that there exist positive
integers my,...,m, such that

my+ -+ mg=m,
Dimittmy 41 = 00 = Dyt (I<j<s), (2.1)
DPiytetmy < Pyttt 1 (I1<j<s—1),
where we put my=0. From now on, we put for 1 < j <y
qj = Pmy+imys L={m+--+m_+1,....m+---+m}. (2.2)

Thus q1<q2<"'<(I5 and {17277m}:US

1 1; (disjoint union). More-

over, according to (2.1), for the points z=(z,...,z,) €eC" and w=
(Wi, ..., wy) € C", we set

W) = (Wm1+--»+m/71+la R Wml+~-+mj) (1 <Jj< S)7

w' = wqy, w" = (W), .-, W) and (2.3)

CZ(CI7"'7CN):(Z,W)ECI1Xq:m:CN_

So we often write { = (z,w) = (z,w(),..., W) = (z,w',w").
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Now, let us define a real analytic function u on € by
RS 2p; N
u(() = el Z |w;| for (e C (2.4)
J=1

and consider the complex Hessian form H,((;-) of u at { e C":

N ﬁzu(C) - i
Hu 1) = —= 1;l; fi t=(f,...,t V.
(C ) ,/Z:1 aCzﬁaCj J or ( 1 N) c

For any point {, = (a,h) e €" x €™ = C", we then have

m m
2 . .
H,(Cyi1) = el {u2<a,u>|22 B+ pllul* S [y
j=1 j=1
m 2 1 _ m 2 ] 2
+2uRe| <a,uy > pilbi PP Vb |+ pRIb P vyl
J=1 Jj=1

m m
2 2pi—1 2 2 2p;
> el {Zlbjl D by [<ayud| = pileg)* + el 18] “}
Jj=1

=1
>0 for all = (u,v) e C" x C" = CV.

Thus  is a plurisubharmonic function on €V; and if ¢; =1 (resp. ¢; > 1),
then it is a strictly plurisubharmonic function on C"™™ x (C*)"™™ (resp. on
C" x (C*)™), where €C* = C\{0} the punctured plane. Notice that the func-
tion p(¢) := —1+u({) on €V is a global defining function for the generalized
Fock-Bargmann-Hartogs domain . Hence our domain & is an unbounded
pseudoconvex domain in €V with real analytic boundary. Moreover, in the
special case when all the p; =1, i.e., 2 = D, (1) the Fock-Bargmann-Hartogs
domain in €V, it is a strictly pseudoconvex domain in €V with real analytic
boundary. Here it should be emphasized that any point {* = (z*,w*) € 02
with wi ---wy # 0 is a strictly pseudoconvex boundary point of & in any cases.
This fact will be used later.

Now let us recall the structure of the holomorphic automorphism group
Aut(2) of the generalized Fock-Bargmann-Hartogs domain & in CV. For
this purpose, define the holomorphic self-mappings ¢4, ¢, ¢, and ¢, of c? by

P4 (2,w) = (Az,w);
pp: (z,w) = (z,w',w") — (z, B'W B"w");

Py (2,W) = (2, Wo(1)s - -+ Wo(m));
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Q- (Z, w) = (Z7 Wiy« --s Wm) s (2, VT/') = (2, W)y« --s W(Q),
Z==z4v, W(j) = (8*2/t<z,v>*#”0‘|2)l/ZIIiW(j> (1<j<s),

where A € U(n), B’ is a unitary matrix of degree m; or a diagonal unitary
matrix of degree m; according to ¢; =1 or ¢; > 1, B” is a diagonal unitary
matrix of degree m — m, o is a permutation of {1,...,m} such that o(J;) = I,
for all 1 < j<s and veC".

With these notations, we have the following fact due to Bi-Tu [3]:

Fact 1. The automorphism group Aut(2) of the generalized Fock-
Bargmann-Hartogs domain & is generated by the mappings ¢4, ¢p, ¢, and
@, as above. More precisely, every automorphism ¢ of & can be written as the

composite mapping ¢ = ¢, 0 ¢go ¢, 0 ¢, of automorphisms ¢, ¢p, ¢, and ¢, of
the above type.

Considering the special case of the Fock-Bargmann-Hartogs domain D in
€", we have the following fact by Kim-Ninh-Yamamori [5]:

Fact 2. The automorphism group Aut(D) of the Fock-Bargmann-Hartogs
domain D is generated by the following mappings.:

pa:(zw) = (Azw),  Ae Un)
05 (zw) = (z,Bw),  Be Ulm);

@, (z,w) — (z+, e*"<z‘”>*(”/2>”"”2w), veC".

More precisely, every automorphism ¢ of D can be written as the composite
mapping ¢ = ¢, 0 @go ¢, of automorphisms ¢,, ¢ and ¢, of the above type.

Next, in the previous paper [9], we proved the following fact on the
localization principle for biholomorphic mappings between Fock-Bargmann-
Hartogs domains in €, which will play a crucial role in our proofs of the
theorems:

Fact 3. Let Dy = Dy, m (1), D2 = Dn,m,(1t) be two equidimensional
Fock-Bargmann-Hartogs domains in €V with ¢, € dDy, {, € dD>.  Assume that

) m =2 m=2;

(2) there are open neighborhoods U, of {1, U, of {5 in €V and a biholo-
morphic mapping [ : Uy — U, such that f({;) =, f(UyNDy)=U,ND, and
f(Ul n 6D1) = U, NdD,.

Then f extends to a biholomorphic mapping from Dy onto D,. In par-
ticular, we have (nj,my) = (ny,my).
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For later use, let us recall here the structure of the holomorphic auto-
morphism group Aut(&) of the elementary Siegel domain

E={(u,v) eCxC";Imu—|v|* >0} in €' (2.5)

This domain is holomorphically equivalent to the unit ball B”*! in €"*! via the
correspondence ¢ : & — B"*! given by

—i 2 2v,
(u i 2v v ) for (u,v) = (u,vy,...,0,) €8; (2.6)

Pluo) = (S

consequently, Aut(¢&) = ¢~ Aut(B"*!)$. Thanks to this, every automorphism
F of & can be described explicitly as a linear fractional transformation of €"*!
in terms of the coordinates (u,v) = (u,v1,...,0,). (For the precise description
of F e Aut(&), see [8; Section 3].) Let Aff(C""") be the Lie group consisting
of all non-singular complex affine transformations of €"*! and set

Aff(&) = {F e AfF(C"); F(&) = &}.

Then Aff(&) is a closed subgroup of Aff(C"!). We call Aff(&) the affine
automorphism group of & and each element of Aff(&) is called an affine auto-
morphism of &. As for the group Aff(&), we know the following (cf. [11;
Section 2]):

Fact 4. Every affine automorphism F of the elementary Siegel domain &
in € x C" can be written in the form

F(u,v) = (ku+ a+ 2i{Bv,b> + i||b||*, Bv + b) Sfor (u,v) € é,

where ae R, be C" and 0 < ke R, Be GL(n,C) with k|v||* = ||Bv||* for all
ve " or (1/Vk)Be U(n).

We finish this section by the following lemma, which will be important in
our proofs of the theorems. Before proceeding, we introduce the following
functions p and p defined by

PO =—r+u(Q) for (e@¥ and Q) =pof() for (e,

where u is the plurisubharmonic function introduced in (2.4) and f is a holo-
morphic self-mapping of &. Thus p is a defining function for &, and so
2, is a pseudoconvex subdomain of & with real analytic boundary 0%, = 4.
Moreover every point of ., is a strictly pseudoconvex boundary point of Z,.
Under the same situation as in Theorem 2, we prove the following:

LEMMA. Let (" be an arbitrary point of <. Then there exists an open
neighborhood U of (" in 9 such that [ gives a biholomorphic mapping from U
into 9 with f(UN2,)=f(U)ND, and f(UN )= f(U)NI,.
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Proor. First of all, we choose a small open neighborhood U of {* in & in
such a way that U C €" x (C*)" and U N Z, is connected. Thus every point
of UN Y, is a strictly pseudoconvex boundary point of &,. After shrinking U
sufficiently small, if necessary, we would like to prove that this U satisfies all
the requirements in the lemma. The proof will be carried out by steps as
follows:

(1) We assert that f(UNZ,) C D,, the closure of 9, in CV. For the
verification of this, we shall employ an idea used in the proof of Pinchuk [12;
Lemma 1.3]. Since every point of UN .Y, is a strictly pseudoconvex boundary
point of &, we may assume that UN.Y, is a strictly convex real analytic
hypersurface in €V (see, e.g. [13; p. 61]). Thus, for any point {, e UN Z,,
there exists a complex line L in ©* passing through ¢, such that LN 2, is a
convex domain in L containing {, and d(LNZ,) C 4 (after shrinking U suf-
ficiently small, if necessary). Since f(0(LN2,)) C f(¥) C & by our assump-
tion, it then follows that p({) =0 on d(L N Z,); and hence, p(f (o)) = p(&) <
0 by the maximum principle for the subharmonic function p|; ., the restriction
of p to LN%. Therefore we have shown that f(UN%,) C Z,, as asserted.

(2) We assert that f(UNZ,) C 2,. To prove this, assume to the
contrary that f({;) € %, for some point {; e UNZ,. Since p({) <0on UNZ,
by the step (1) and p(;) =0, we have p({) =0 on UNZ, by the maxi-
mum principle for the plurisubharmonic function p. Consequently we have
f(UN2,) Cc Y. However, this is impossible. To verify this, represent f by
coordinates f = (g,h) = (g,M,...,h,) and assume that there exists a point
LeUNg, with hi(() - hn($) #0. In such a case, since 7, := f({;) is a
strictly pseudoconvex boundary point of &,, there exists a local holomorphic
peaking function for &, at 5,, that is, there is an open neighborhood W, of #,
and a holomorphic function ¥,, : W, N %, — C with a continuous extension to
W, N9, such that

Y,,) =1 and |y, ()] <1 for all ye WoN2,\{n,}

(cf. [13; p. 222]). Fix a connected open neighborhood ¥, of {, such that
VocUNg, and f(V,) C W,. It then follows at once by the maximum
principle for the holomorphic function ¥,, o f defined on V5 that f({) =n,
for all { € V,; so that f is constant on & by analytic continuation. But this
contradicts our assumption. Therefore we conclude that /;({)---h,({) =0
on UNY, and so on £ by analytic continuation. Together with the facts
that

n{zw) eC’; w=0}=g and f(UNg,)C 4,

this yields that there are at least two component functions h;, #; of f with
h; #0, hj =0 on &, respectively. Accordingly we may rename the indices so



A criterion for biholomorphicity of self-mappings 119

that, for some 1 </ < m, one has
hi#0 for 1 <i</, while h =0 for /+1< j<m.
Hence f has the form f = (g,hy,...,h,0,...,0). Set wl'l = (wy,...,w/) and

/
ull(z, wlly = eI’ Z |w;| on C" x €',
=

(z,why e @" x @ ull(z, W) < 1},

{
{(z,wy e x s ull(z, W) <},
{(z,why e x €; ull(z, W) = r}.

Then ﬁgrm = y;m and our f may be naturally regarded as a holomorphic
mapping from 2 into 2" with f(UNg,) C 5”,[/]. Moreover, since hy ---hy #
0 on 2, there exists a point {3 € UNZ, such that h({3)---h/({3) #0. Thus
73 := f(§3) is a strictly pseudoconvex boundary point of 2! ; consequently, by
the same reasoning as above, we conclude that f({) =#; on 2, a contradic-
tion. Eventually we arrive at a contradiction in any case; completing the proof
of our assertion f(UN2,) C 9,.

(3) The neighborhood U of {* satisfies all the requirements in Lemma.
We know already that p({) =0 on UN Y and p({) <0 on UNZ, by the step
(2). Tt then follows from the Hopf lemma that dp({) # 0 for all (e UN .9
accordingly, p gives a local defining function for %, around the strictly
pseudoconvex boundary point {*. Thus, by using the same method as in
the last paragraph of the proof of Bell [2; Theorem 2], it can be checked that
the complex Jacobian determinant Jy({*) of f at {* cannot vanish. Hence the
inverse mapping theorem guarantees that f is injective on some open neigh-
borhood of (", so that U satisfies all the requirements in Lemma (after
shrinking U again, if necessary).

Therefore our proof is now completed. O

ReMARK. A glance at the proof above tells us that this Lemma is valid
for any strictly pseudoconvex boundary point {* of &,. In particular, in the
special case when 9 = D, ,,(y), the Fock-Bargmann-Hartogs domain in cv,
this Lemma is valid for every boundary point {* of D,.

3. Proof of Theorem 1

Let f be a holomorphic automorphism of D = D, ,,(x). Then, by using
the explicit description of the generators of Aut(D) given in Fact 2, it is easily
seen that f(S,) C S, for all 0 <r <1 (even for r=0).
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Conversely, taking a non-constant holomorphic self-mapping f of D and
assuming that f(S,) C S, for some 0 < r < 1 as in Theorem 1, we would like
to show that f is an automorphism of D. The proof is now divided into two
cases when m =1 and m > 2.

Case 1. m=1: In this case, we put
D ={(z,w) e C" x C; 0 < |w|>eH” < 4}

Thus our real hypersurface S, = 0D, is the subset of JdD; consisting of all
strictly pseudoconvex boundary points of D;.

Let & be the elementary Siegel domain in €' = € x €" appearing in
(2.5) and consider a holomorphic mapping w from & into C" x €* defined
by

w(u,v) = ((1//m)v, Vre™?) for (u,v) € é.

Then it is easily seen that w(é) = D and & is the universal covering of D
with the covering projection w. Clearly, @ is, in fact, defined on € x C" and
w(08) = S,.

Now, pick a point {; € S, arbitrarily and put {5 = f({;) € S.. Then, by
Lemma in Section 2, we can choose connected open neighborhoods ¥V, V> of
{{, {5 in D, respectively, such that f gives rise to a biholomorphic mapping,
say again f, from Vj onto V, with f(ViND,)=V>,ND, and f(V1NS,) =
V2N S, Let &, &5 €06 be any two points such that (&) = (7 for j=1,2.
Since @ is a covering projection from € x C" onto C" x €* with @(d&) = S,,
we can find connected open neighborhoods Wy, W, of &}, &5, respectively, such
that @w(W;) = V; and both the restrictions

I :=wl|y : W; =V for j=1,2

are biholomorphic mappings, after shrinking V/; sufficiently small, if necessary.
Thus we obtain a biholomorphic mapping F := IT, ' o f o IT| : W; — W, with

FWin&)=w,Nné& and F(WyNad&)=Wr,Noé&.

Recall that & is biholomorphically equivalent to the unit ball B**! in €"*! via
the correspondence ¢ defined in (2.6). Then, as an immediate consequence of
the main result of Alexander [1], F now extends to a holomorphic automor-
phism, denoted by the same letter F, of &. Thus

@(F(E) = f(w(&)  for all Eeé (3.1)

by analytic continuation. We here assert that F is an affine automorphism
of &. The following proof of this will be presented only in outline, since the
details of the steps can be filled in by consulting the corresponding passages in
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Case 1 in the proof of the assertion (II) of [10; Theorem 1]. First of all, notice
that

w N (w(¢)) = {(u+4dnv,v); ve Z} for any &= (u,v) €.

Thus, representing F = (Fy, Fi,...,F,) by coordinates (u,v) = (u,vy,...,v,) in
C x C" ="', we obtain from (3.1) that

Fo(u+ 4nv,v) = Fy(u,v) + 4nn(&, v);
Fi(u+ 4nv,v) = Fi(u,v), l<i<n,

for any point &= (u,v) €& and any integer v, where n(&,v) is an integer
uniquely determined by (&,v). For each fixed veZ, being a continuous
integer-valued function in ¢ defined on the domain &, n(&,v) is independent
on ¢&; and so, we may write n(¢,v) = n(v). Moreover, since & is a complete
hyperbolic manifold in the sense of Kobayashi [7], we see that

|n(v)] — 400 if and only if [v| = +o0.

Therefore, by repeating exactly the same argument as in the proof of [10;
Theorem 1], it can be checked that F is, in fact, an affine automorphism of &,
as asserted.

Now let us express the affine automorphism F of & as in Fact 4 in Section
2 and write M = (1/Vk)Be U(n), b* = (1//i)b. 1t then follows from (3.1)
that

flz,w) = (MVkz + b*, (1/ﬁ)k*1e*/t<M\/Ez,b*>7(u/2)l\b*Hze(a/Z)iwk)

on D and so on D by analytic continuation. Here, since f is a single-valued
holomorphic mapping defined on D, the positive real number k has to be an
integer. Moreover, f may be regarded as a holomorphic self-mapping of
€"'. Thus f(éD) c D and so

1> u(f(z,w)) =1/ " whenever u(z,w) = 1.

Since 0 < r <1 and k > 1, this can only happen when £ = 1. This combined
with Fact 2 assures us that f is, in fact, an automorphism of D; thereby the
proof of Theorem 1 is completed in the case when m = 1.

CaSE 2. m >2: We now proceed to define a non-singular linear trans-
formation L of C" x C" by

L(z,w) = (z,(1/v/r)w)  for (z,w)e C" x C".
Notice that L(D,) = D and L(S,) = dD.



122 Akio Kopama

Pick a point {f €S, and put {5 = f({{) € S,. Then, thanks to Lemma in
Section 2, one can choose connected open neighborhoods U, U, of {j, {5 in
D, respectively, such that f gives a biholomorphic mapping, say again f, from
U, onto U, such that f(U;ND,)=U,ND, and f(UNS,) =U,NS,. Here,
setting V; = L(U;) for i =1,2 and considering the biholomorphic mapping
F:=LofoL!':V], =V, we have

F(VlﬂD)ZVzﬂD and F(VlﬂaD)ZVzﬂaD.

Recall that D is now a Fock-Bargmann-Hartogs domain in C”" x € with
m > 2. Then, as a direct consequence of Fact 3, F extends to a holomorphic
automorphism, denoted by the same letter F, of D. Hence

L(f(z,w)) = F(L(z,w)) for all (z,w) e D, (3.2)

by analytic continuation. In particular, we see that f(D,) C D,. Recall
that our automorphism F is now expressed as the composite mapping F =
@, 0 @gop, of automorphisms ¢4, ¢ and ¢, defined in Fact 2. Then the
relation (3.2) tells us that f has the form

F(zw) = (Az + v, e #A=O-W2 By on D,

and so on D by analytic continuation. Thus f is an automorphism of D by
Fact 2; thereby the proof of Theorem 1 is completed in the case when m > 2.
Therefore the proof of Theorem 1 is now completed. O

4. Proof of Theorem 2

Let Z be the generalized Fock-Bargmann-Hartogs domain in €V and let
f be a holomorphic self-mapping of & as in Theorem 2.

Since every holomorphic automorphism of & preserves the real hypersur-
face & by Fact 1, we have only to prove the converse assertion. So, assuming
that f () C ¥ for some 0 < r < 1 as in Theorem 2, we wish to show that f is
an automorphism of . We have now two cases to consider.

Case 1. m=1: Putting p=p;, u* =p/p and r* = {/r, we have
7 ={(z,w) e C"; |w|2e“*HzHZ <1} =Dy 1(u"),
% ={(zw) e €V wfe 1" =} = .

as sets. Thus f is a holomorphic self-mapping of the Fock-Bargmann-Hartogs
domain D, {(u*) preserving the real hypersurface S,- in D, (u*). Hence, as
an immediate consequence of Theorem 1, f is an automorphism of &, as
desired.
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Case 2. m >2: If both the integers s and ¢; appearing in (2.1) and (2.2),
respectively, are equal to one, then & is just the Fock-Bargmann-Hartogs
domain D, ,,(u); consequently, f is an automorphism of & by Theorem 1.

From now on, we always assume that (s,q;) # (1,1). In this case, the
following holomorphic self-mapping /7 of € = €" x €™ will play an impor-
tant role in our proof: For the given p = (pi1,...,pm) € N” and 0 <r < 1,
we set

(z,w) = (z, W) //r, ..., (wa)?"J\/r)  for (z,w) e €.

Notice that /7 induces a proper holomorphic mapping from &, onto the Fock-
Bargmann-Hartogs domain D = D, ,,(u) with I1(%,) = é¢D. Moreover, for any
point (" € %", II is injective on some open neighborhood of (™.

Let {; be an arbitrary point of %" and put {5 = f({{). Then, by Lemma
in Section 2, we can choose connected open neighborhoods Vi, V> of (i, {5
in 2 such that f gives a biholomorphic mapping from V7 onto ¥V, with
fnng,)=v,ng, and f(ViNS)=V.NY. In particular, replacing
by a nearby point, if necessary, we may assume that {; is also contained in
S*. Now we set W;=II(V;) for i=1,2. We may assume that both the
restrictions

;=M : Vi— W, for i=1,2

are biholomorphic mappings, after shrinking ¥V sufficiently small, if necessary.
Thus we obtain a biholomorphic mapping F := ITyo f o II;' : W| — W, with

F(W]ﬂD)ZWzﬁD and F(W]ﬁaD)ZWzﬂaD.

Recall that D = D, ,,(x) is a Fock-Bargmann-Hartogs domain with m > 2. It
then follows from Fact 3 that F extends to a holomorphic automorphism, say
again F, of D. Hence

(/) = FUI)  for all (e, (4.1)

by analytic continuation. On the other hand, by virtue of Fact 2, F can be
written in the form

F(z,w) = (Az + v,e*”<AZ*”>’<”/2>H””2Bw) on D,

where A € U(n), Be U(m) and ve C". Making use of this, we wish to show
that f is an automorphism of 2. For this purpose, we here introduce the
following notation: Let g; be the positive integer defined in (2.2) and represent
f as f=1(g,h)=(9,M,...,hy) by coordinates { = (z,w) = (z,wi,...,wy) in
C" x €™ = C". Then, according to the notations in (2.1) and (2.3), we set
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M}(C[;) = ((14/,,11+...+,71/,71+])q]7 ceey (1Vm1+...+m/)qj)7
h(]) = (hn11+"'+m/’—l+] PR 7hml+"'+mf)’
h(q]/> = ((hml+'“+m/;|+l)q/7 ey (hm|+u-+m/)q/)

for 1 < j <s. In this notation, the relation (4.1) can be rewritten in the form

h(qll)(é,) B]l A Bl.y W(ql])
=az+e, | =i s || | @2
h(q;j ) By ... By w(q;)

for { = (z,w) € Z,, where i(z) = e #A==(w2II" and By is an m; x m; matrix
for 1 <i,j<s with B= (By),; s
First of all, we consider the case s = 1, so that m; =m and ¢; > 1 by our
assumption. In this case, we assert that B = B;; has the following property:
(%) Every row and every column of B contain exactly one entry of
modulus 1.
Recall that B is a unitary matrix. Then the verification of our assertion (%)
is now reduced to showing that every row of B contains exactly one non-
zero entry. To this end, let us define the holomorphic functions ilj (I1<j<m)
by

hi(w) = h;(0,w) on E={weC”; |wi "+ jw,*" <r},

where 0 denotes the origin of C"”. Then, being a holomorphic function on the
complete Reinhardt domain E, each #; can be expanded uniquely as

izj(w) = ZPk(W) on E, (4.3)

which converges absolutely and uniformly on compact subsets of E, where
Py (w) is a homogeneous polynomial of degree k in w = (wy,...,w,). Notice
that it_,-(O) =0 for all 1 <j<m in our case. Hence, together with (4.3), the
second equality in (4.2) tells us that each fzj(w) is a homogeneous polynomial of

degree 1 in w. Represent
B=(bj)i<ij<m and ilj(w) = chvwv for 1 < j<m,
v=1

where ¢;, are complex constants. Now, since B is non-singular, it is obvious
that every row of B contains at least one nonzero entry. So, fix an arbitrary
index j and assume that there are two entries by, b, (k < /) with byb;, # 0.
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It then follows from (4.2) that
(i + ciow) ™ = hi*(w*) = A(0) (b (i) ™ + by (w/) ™)

for all w* = (0,...,0,w,0,...,0,w,,0,...,0) e E. However, this is impossible
because A(0) # 0 and ¢; > 1. As a result, we have shown that every row of B
contains exactly one nonzero entry; proving the assertion (x).

Now it is easily seen by using (%) that there exist a permutation ¢ of
{1,...,m} and a diagonal matrix D = diag(d|,...,d,) with diagonal entries dj
of modulus 1 such that

hQ) =22V Dy,(w)  for {=(z,w) € D,

where W, is the automorphism of €™ induced from ¢ in the canonical
fashion:

Yo (W) = (Wa(1)s -+ s Wo(m)) for we €. (4.4)
Therefore we have shown that f has the form
f(Q) = (Az+v,42)"" Dy, (w))  on 2

by analytic continuation. Thus f is an automorphism of & by Fact 1; thereby
the proof of Theorem 2 is completed in the case when s=1 and ¢; > 1.

Next we consider the case when s > 1, so that m > m; and ¢; > 2 for all
2 < j<s. In this case, we first claim that B; =0 for all i # j. To this end,
we have only to show that B; =0 for i > j, since B is unitary. To derive a
contradiction, assume that there exists a submatrix Bj = ()
i > j, with a nonzero entry b,,. Put for a while

I<u<m;,1<v<m;>

o=my+---+m_1+u and B=mi 4 +m_ +v.
It then follows from (4.2) that
(hy () = 2(0)byu(wp) ¥ for all {*=(0,...,0,w,0,...,0) € Z,.

However, this is impossible. Indeed, since A(0)b,, # 0, the left-hand side of
the above equation is a polynomial in wg of degree at least g;, while the right-
hand side is a monomial of degree ¢;. Hence we arrive at a contradiction
because ¢; > ¢; for i > j. Thus B; =0 for all i # j, as claimed. In partic-
ular, we see that Bjj € U(m;) for all 1 < j <s. Moreover, recall that ¢; > 1 for
all 2 < j<s. Then, by repeating exactly the same argument as in the case
when s =1 and ¢; > 1, it can be seen that every submatrix B; (2 < j <s) has
the same property as stated in (x) above. Thus, for every 2 < j <, there
exist a permutation g; of I; and a diagonal matrix D; = diag(dji,...,d;,,) with
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dy| =1 for all 1 </ <m; such that
J J
() = 22) 9D, (wy)  for (= (z,w) € Z,

where xpg/, is the automorphism of €" naturally induced from g;. Of course,
the same is true for By, provided that ¢; > 1.
Summarizing the above, we obtain that f can be written in the form

SO = (Az + 0,70 (0, 42) 1" Do, (W), - 4(2) V4 D (),

hay(©) = 2z)Biway ot hay(Q) = A(2) 1 D, (way)

according to ¢1 =1 or g1 > 1 for { = (z,wqy,..., W) € C" x C™ x --- x C™
— €V, where A(z) = e #4=0-w2I | g e U(n), By € U(my), D; is a diagonal
unitary matrix of degree m;, g; is a permutation of the index set /; and v, is
the automorphism of € induced from o¢; as in (4.4) for 1 < j <s. Anyway
we conclude by Fact 1 that f is, in fact, a holomorphic automorphism of & in
the case when s> 1.

Therefore the proof of Theorem 2 is now completed. O

5. A concluding remark

Let us define the twisted Fock-Bargmann-Hartogs domains ]Dﬁ’i_ « accord-
ing to Kim-Yamamori [6] as follows:

N o Il
D) =4 (2w w) € €7 X €1 xx €F Z TEEN

where

k= (ki,....,kw) e N" and  u=(uy,...,t4), p=(p1,--.,pm) € (Ry)".

Clearly our generalized Fock-Bargmann-Hartogs domain 7 (u) is a special
case of the twisted Fock-Bargmann-Hartogs domains ID/"” . Hence we wish
to generalize our results to the domains lD” P ke Howe{/ef it does not seem
easy to achieve this although the structure of the holomorphic automor-
phism groups Aut(ID;’» ;) of the twisted Fock-Bargmann-Hartogs domains
]DZ mk is completely determined by Kim-Yamamori [6]. In fact, the author
does not know at this writing how to generalize our results to the twisted Fock-
Bargmann-Hartogs domains ]Dn .k cven in the case when m>2, yy =--- =
Uy, p € N with p; > 2 and k; > 2 for some 1 < j < m, for instance. Thus we

would like to finish this article by posing the following:

QUESTION.  Can one generalize the results in this paper to the twisted Fock-

; .p
Bargmann-Hartogs domains D, m, e
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