Hiroshima Math. J., **53** (2023), 111–127 doi:10.32917/h2022002

A criterion for biholomorphicity of self-mappings of generalized Fock-Bargmann-Hartogs domains

Akio Kodama

(Received February 8, 2022) (Revised May 25, 2022)

ABSTRACT. By making use of our previous result on a localization principle for biholomorphic mappings between equidimensional Fock-Bargmann-Hartogs domains in $\mathbb{C}^n \times \mathbb{C}^m$ with $m \ge 2$ and the same technique as in our previous study of the Fock-Bargmann-Hartogs domains in $\mathbb{C}^n \times \mathbb{C}$, in this paper we establish a characterization of biholomorphicity of holomorphic self-mappings of generalized Fock-Bargmann-Hartogs domains. As a special case of this, we obtain the main result of a recent paper by Guo, Feng and Bi.

1. Introduction

This is a continuation of our previous paper [9], and we retain the terminology and notation there.

Let D be a domain in \mathbb{C}^n and $f: D \to D$ a holomorphic self-mapping of D. Then it would be an interesting problem to give a criterion for biholomorphicity of f under some conditions on D or on f. In connection with this problem, in a recent work of Guo-Feng-Bi [4], generalized Fock-Bargmann-Hartogs domains

$$D_{n,m}^{p}(\mu) = \left\{ (z,w) \in \mathbb{C}^{N}; \, e^{\mu \|z\|^{2}} \sum_{j=1}^{m} |w_{j}|^{2p} < 1 \right\},$$

where $0 < \mu \in \mathbb{R}$, $n, m, p \in \mathbb{N}$, $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$ (N = n + m), $w = (w_1, \ldots, w_m) \in \mathbb{C}^m$, and their holomorphic self-mappings f are studied and the following theorem is proved as their main result:

THEOREM G-F-B (Guo-Feng-Bi [4]). Let f be a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu)$. Then f is an

²⁰²⁰ Mathematics Subject Classification. Primary 32Q02; Secondary 32M05, 32A19.

Key words and phrases. Fock-Bargmann-Hartogs domains, Generalized Fock-Bargmann-Hartogs domains, Biholomorphic mappings, Holomorphic automorphisms.

automorphism of $D_{n,m}^p(\mu)$ if and only if f keeps the function

$$L(z,w) = e^{\mu ||z||^2} \sum_{j=1}^{m} |w_j|^{2p}, \qquad (z,w) \in \mathbb{C}^N,$$

invariant, that is, L(f(z,w)) = L(z,w) on $D_{n,m}^p(\mu)$.

As a special case of p = 1, they obtain a criterion for biholomorphicity of holomorphic self-mappings of the Fock-Bargmann-Hartogs domains $D_{n,m}(\mu)$ introduced by Yamamori [14] in 2013.

The main purpose of this paper is to show that the analogue of Theorem G-F-B above is still valid for more general domains under more weak conditions. In order to state our precise result, let us start with introducing our generalized Fock-Bargmann-Hartogs domains: For any $n, m \in \mathbb{N}$, $p = (p_1, \ldots, p_m) \in \mathbb{N}^m$ and $0 < \mu \in \mathbb{R}$, we define our generalized Fock-Bargmann-Hartogs domain $\mathcal{D}_{n,m}^p(\mu)$ by

$$\mathscr{D}_{n,m}^{p}(\mu) = \left\{ (z,w) \in \mathbb{C}^{N}; \, e^{\mu \|z\|^{2}} \sum_{j=1}^{m} |w_{j}|^{2p_{j}} < 1 \right\},\$$

where $\mathbb{C}^{N} = \mathbb{C}^{n} \times \mathbb{C}^{m}$ (N = n + m) and $w = (w_{1}, \ldots, w_{m}) \in \mathbb{C}^{m}$. This is an unbounded pseudoconvex domain in \mathbb{C}^{N} with real analytic boundary. Since the complex Euclidean space \mathbb{C}^{n} is now imbedded in $\mathcal{D}_{n,m}^{p}(\mu)$ in the canonical manner, it is not hyperbolic in the sense of Kobayashi [7]. Of course, in the special case when $p_{j} = 1$ for all $1 \le j \le m$, this domain reduces to the Fock-Bargmann-Hartogs domain $D_{n,m}(\mu)$.

In this notation, we first give the following characterization of biholomorphicity of holomorphic self-mappings of the Fock-Bargmann-Hartogs domains:

THEOREM 1. Let f be a holomorphic self-mapping of the Fock-Bargmann-Hartogs domain $D_{n,m}(\mu)$ in \mathbb{C}^N . Assume that f is not a constant mapping. Then f is an automorphism of $D_{n,m}(\mu)$ if and only if there is a real number rsuch that 0 < r < 1 and f preserves the real hypersurface S_r in $D_{n,m}(\mu)$ given by

$$S_r = \{(z, w) \in \mathbb{C}^N; \|w\|^2 e^{\mu \|z\|^2} = r\}.$$

By making use of this, we can establish the following:

THEOREM 2. Let f be a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $\mathscr{D}_{n,m}^p(\mu)$ in \mathbb{C}^N . Assume that f is not a constant mapping. Then f is an automorphism of $\mathscr{D}_{n,m}^p(\mu)$ if and only if there is a real number r such that 0 < r < 1 and f preserves the real hypersurface \mathscr{G}_r in $\mathscr{D}_{n,m}^p(\mu)$ given by

$$\mathscr{S}_r = \left\{ (z, w) \in \mathbb{C}^N; \ e^{\mu \|z\|^2} \sum_{j=1}^m |w_j|^{2p_j} = r \right\}.$$

In Theorem G-F-B, define the submanifolds S_t of $D_{n,m}^p(\mu)$ by

$$S_t = \{(z, w) \in \mathbb{C}^N; L(z, w) = t\}$$
 for $0 \le t < 1$.

Then it is clear that $f(S_t) \subset S_t$ for all $0 \le t < 1$, provided that f keeps L invariant. Of course, f is not constant in this case. Therefore, considering the special case of $p_1 = \cdots = p_m$ in Theorem 2, we obtain Theorem G-F-B.

Here it should be remarked that their techniques used in the proof of Theorem G-F-B are not applicable to the general case when $p_i \neq p_j$ for some $1 \leq i, j \leq m$ in our Theorem 2. This raises new difficulties to analyse the structure of holomorphic self-mappings of $\mathscr{D}_{n,m}^p(\mu)$ with $p_i \neq p_j$. Finally we would like to point out that the assumption 0 < r < 1 in Theorem 2 (and in Theorem 1) cannot be replaced by $0 \leq r < 1$. In fact, consider the holomorphic self-mapping f of $\mathscr{D}_{n,m}^p(\mu)$ defined by f(z,w) = (z,0) for $(z,w) \in$ $\mathscr{D}_{n,m}^p(\mu)$. Then it is clear that f is non-constant and preserves the complex submanifold

$$\mathscr{S}_0 := \left\{ (z, w) \in \mathbb{C}^N; e^{\mu \|z\|^2} \sum_{j=1}^m |w_j|^{2p_j} = 0 \right\} \cong \mathbb{C}^n$$

of $\mathscr{D}_{n,m}^p(\mu)$. But f is not an automorphism of $\mathscr{D}_{n,m}^p(\mu)$. Therefore the condition $r \neq 0$ is essential for Theorem 2.

Our proofs of the theorems are based on our previous result [9] on the localization principle for biholomorphic mappings between the Fock-Bargmann-Hartogs domains $D_{n,m}(\mu)$ in $\mathbb{C}^n \times \mathbb{C}^m$ with $m \ge 2$ and on the same method used in the study of the Fock-Bargmann-Hartogs domains $D_{n,1}(\mu)$ in $\mathbb{C}^n \times \mathbb{C}$ [10]. Hence our proofs here are completely different from that of Theorem G-F-B.

After some preparations in the next Section 2, Theorems 1 and 2 will be proved in Sections 3 and 4, respectively. And, a question related to our results in this paper will be posed in the final Section 5.

2. Preliminaries

Throughout this paper, we usually consider the elements ζ of \mathbb{C}^N as the row vectors. However, we also think of ζ as the column vectors, as the need arises.

For the given generalized Fock-Bargmann-Hartogs domain $\mathscr{D}_{n,m}^{p}(\mu)$ in \mathbb{C}^{N} and 0 < r < 1, we set

$$\mathcal{D} = \mathcal{D}_{n,m}^{p}(\mu), \qquad \mathcal{D}_{r} = \left\{ (z,w) \in \mathbb{C}^{N}; \ e^{\mu \|z\|^{2}} \sum_{j=1}^{m} |w_{j}|^{2p_{j}} < r \right\},$$
$$\mathcal{S}_{r} = \left\{ (z,w) \in \mathbb{C}^{N}; \ e^{\mu \|z\|^{2}} \sum_{j=1}^{m} |w_{j}|^{2p_{j}} = r \right\} \qquad \text{as before and}$$
$$\mathcal{S}_{r}^{*} = \mathcal{S}_{r} \cap \{ (z,w) \in \mathbb{C}^{N}; \ w_{1} \cdots w_{m} \neq 0 \}.$$

For the Fock-Bargmann-Hartogs domain $D_{n,m}(\mu)$, we also define the corresponding objects D, D_r and S_r in the same manner as above.

In this section, we collect some basic facts and results on the generalized Fock-Bargmann-Hartogs domains. For later purpose, we also recall the structure of the holomorphic automorphism group $Aut(\mathscr{E})$ of an elementary Siegel domain \mathscr{E} .

Let us start with recalling the structure of the generalized Fock-Bargmann-Hartogs domain \mathcal{D} in $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$. For convenience and with no loss of generality, in the following part we will always assume that there exist positive integers m_1, \ldots, m_s such that

$$m_{1} + \dots + m_{s} = m,$$

$$p_{m_{1} + \dots + m_{j-1} + 1} = \dots = p_{m_{1} + \dots + m_{j}} \quad (1 \le j \le s),$$

$$p_{m_{1} + \dots + m_{j}} < p_{m_{1} + \dots + m_{j} + 1} \quad (1 \le j \le s - 1),$$
(2.1)

where we put $m_0 = 0$. From now on, we put for $1 \le j \le s$

$$q_j = p_{m_1 + \dots + m_j}, \qquad I_j = \{m_1 + \dots + m_{j-1} + 1, \dots, m_1 + \dots + m_j\}.$$
 (2.2)

Thus $q_1 < q_2 < \cdots < q_s$ and $\{1, 2, \dots, m\} = \bigcup_{j=1}^s I_j$ (disjoint union). Moreover, according to (2.1), for the points $z = (z_1, \dots, z_n) \in \mathbb{C}^n$ and $w = (w_1, \dots, w_m) \in \mathbb{C}^m$, we set

$$w_{(j)} = (w_{m_1 + \dots + m_{j-1} + 1}, \dots, w_{m_1 + \dots + m_j}) \quad (1 \le j \le s),$$

$$w' = w_{(1)}, \quad w'' = (w_{(2)}, \dots, w_{(s)}) \quad \text{and} \qquad (2.3)$$

$$\zeta = (\zeta_1, \dots, \zeta_N) = (z, w) \in \mathbb{C}^n \times \mathbb{C}^m = \mathbb{C}^N.$$

So we often write $\zeta = (z, w) = (z, w_{(1)}, \dots, w_{(s)}) = (z, w', w'').$

A criterion for biholomorphicity of self-mappings

Now, let us define a real analytic function u on \mathbb{C}^N by

$$u(\zeta) = e^{\mu \|z\|^2} \sum_{j=1}^{m} |w_j|^{2p_j} \quad \text{for } \zeta \in \mathbb{C}^N$$
(2.4)

and consider the complex Hessian form $H_u(\zeta; \cdot)$ of u at $\zeta \in \mathbb{C}^N$:

$$H_u(\zeta;t) = \sum_{i,j=1}^N \frac{\partial^2 u(\zeta)}{\partial \zeta_i \partial \overline{\zeta_j}} t_i \overline{t_j} \quad \text{for } t = (t_1,\ldots,t_N) \in \mathbb{C}^N.$$

For any point $\zeta_o = (a, b) \in \mathbb{C}^n \times \mathbb{C}^m = \mathbb{C}^N$, we then have

$$\begin{aligned} H_{u}(\zeta_{o};t) &= e^{\mu ||a||^{2}} \left\{ \mu^{2} |\langle a, u \rangle|^{2} \sum_{j=1}^{m} |b_{j}|^{2p_{j}} + \mu ||u||^{2} \sum_{j=1}^{m} |b_{j}|^{2p_{j}} \\ &+ 2\mu \operatorname{Re}\left(\langle a, u \rangle \sum_{j=1}^{m} p_{j} |b_{j}|^{2(p_{j}-1)} \overline{b_{j}} v_{j} \right) + \sum_{j=1}^{m} p_{j}^{2} |b_{j}|^{2(p_{j}-1)} |v_{j}|^{2} \right\} \\ &\geq e^{\mu ||a||^{2}} \left\{ \sum_{j=1}^{m} |b_{j}|^{2(p_{j}-1)} (\mu |b_{j}| |\langle a, u \rangle| - p_{j} |v_{j}|)^{2} + \mu ||u||^{2} \sum_{j=1}^{m} |b_{j}|^{2p_{j}} \right\} \\ &\geq 0 \quad \text{for all } t = (u, v) \in \mathbb{C}^{n} \times \mathbb{C}^{m} = \mathbb{C}^{N}. \end{aligned}$$

Thus *u* is a plurisubharmonic function on \mathbb{C}^N ; and if $q_1 = 1$ (resp. $q_1 > 1$), then it is a strictly plurisubharmonic function on $\mathbb{C}^{n+m_1} \times (\mathbb{C}^*)^{m-m_1}$ (resp. on $\mathbb{C}^n \times (\mathbb{C}^*)^m$), where $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ the punctured plane. Notice that the function $\rho(\zeta) := -1 + u(\zeta)$ on \mathbb{C}^N is a global defining function for the generalized Fock-Bargmann-Hartogs domain \mathcal{D} . Hence our domain \mathcal{D} is an unbounded pseudoconvex domain in \mathbb{C}^N with real analytic boundary. Moreover, in the special case when all the $p_j = 1$, i.e., $\mathcal{D} = D_{n,m}(\mu)$ the Fock-Bargmann-Hartogs domain in \mathbb{C}^N , it is a strictly pseudoconvex domain in \mathbb{C}^N with real analytic boundary. Here it should be emphasized that any point $\zeta^* = (z^*, w^*) \in \partial \mathcal{D}$ with $w_1^* \cdots w_m^* \neq 0$ is a strictly pseudoconvex boundary point of \mathcal{D} in any cases. This fact will be used later.

Now let us recall the structure of the holomorphic automorphism group Aut(\mathscr{D}) of the generalized Fock-Bargmann-Hartogs domain \mathscr{D} in \mathbb{C}^N . For this purpose, define the holomorphic self-mappings φ_A , φ_B , φ_σ and φ_v of \mathbb{C}^N by

$$\begin{split} \varphi_A &: (z, w) \mapsto (Az, w); \\ \varphi_B &: (z, w) = (z, w', w'') \mapsto (z, B'w', B''w''); \\ \varphi_\sigma &: (z, w) \mapsto (z, w_{\sigma(1)}, \dots, w_{\sigma(m)}); \end{split}$$

$$\begin{split} \varphi_v : (z, w) &= (z, w_{(1)}, \dots, w_{(s)}) \mapsto (\tilde{z}, \tilde{w}) = (\tilde{z}, \tilde{w}_{(1)}, \dots, \tilde{w}_{(s)}), \\ \tilde{z} &= z + v, \qquad \tilde{w}_{(j)} = (e^{-2\mu \langle z, v \rangle - \mu \|v\|^2})^{1/2q_j} w_{(j)} \qquad (1 \le j \le s), \end{split}$$

where $A \in U(n)$, B' is a unitary matrix of degree m_1 or a diagonal unitary matrix of degree m_1 according to $q_1 = 1$ or $q_1 > 1$, B'' is a diagonal unitary matrix of degree $m - m_1$, σ is a permutation of $\{1, \ldots, m\}$ such that $\sigma(I_j) = I_j$ for all $1 \le j \le s$ and $v \in \mathbb{C}^n$.

With these notations, we have the following fact due to Bi-Tu [3]:

FACT 1. The automorphism group $\operatorname{Aut}(\mathcal{D})$ of the generalized Fock-Bargmann-Hartogs domain \mathcal{D} is generated by the mappings φ_A , φ_B , φ_σ and φ_v as above. More precisely, every automorphism φ of \mathcal{D} can be written as the composite mapping $\varphi = \varphi_v \circ \varphi_B \circ \varphi_\sigma \circ \varphi_A$ of automorphisms φ_A , φ_B , φ_σ and φ_v of the above type.

Considering the special case of the Fock-Bargmann-Hartogs domain D in \mathbb{C}^N , we have the following fact by Kim-Ninh-Yamamori [5]:

FACT 2. The automorphism group Aut(D) of the Fock-Bargmann-Hartogs domain D is generated by the following mappings:

$$\begin{split} \varphi_A &: (z, w) \mapsto (Az, w), \qquad A \in U(n); \\ \varphi_B &: (z, w) \mapsto (z, Bw), \qquad B \in U(m); \\ \varphi_v &: (z, w) \mapsto (z + v, e^{-\mu \langle z, v \rangle - (\mu/2) \|v\|^2} w), \qquad v \in \mathbb{C}^n. \end{split}$$

More precisely, every automorphism φ of D can be written as the composite mapping $\varphi = \varphi_v \circ \varphi_B \circ \varphi_A$ of automorphisms φ_A , φ_B and φ_v of the above type.

Next, in the previous paper [9], we proved the following fact on the localization principle for biholomorphic mappings between Fock-Bargmann-Hartogs domains in \mathbb{C}^N , which will play a crucial role in our proofs of the theorems:

FACT 3. Let $D_1 = D_{n_1,m_1}(\mu_1)$, $D_2 = D_{n_2,m_2}(\mu_2)$ be two equidimensional Fock-Bargmann-Hartogs domains in \mathbb{C}^N with $\zeta_1 \in \partial D_1$, $\zeta_2 \in \partial D_2$. Assume that (1) $m_1 \ge 2$, $m_2 \ge 2$;

(2) there are open neighborhoods U_1 of ζ_1 , U_2 of ζ_2 in \mathbb{C}^N and a biholomorphic mapping $f: U_1 \to U_2$ such that $f(\zeta_1) = \zeta_2$, $f(U_1 \cap D_1) = U_2 \cap D_2$ and $f(U_1 \cap \partial D_1) = U_2 \cap \partial D_2$.

Then f extends to a biholomorphic mapping from D_1 onto D_2 . In particular, we have $(n_1, m_1) = (n_2, m_2)$.

For later use, let us recall here the structure of the holomorphic automorphism group $Aut(\mathscr{E})$ of the elementary Siegel domain

$$\mathscr{E} = \{(u,v) \in \mathbb{C} \times \mathbb{C}^n; \operatorname{Im} u - ||v||^2 > 0\} \quad \text{in } \mathbb{C}^{n+1}.$$
(2.5)

This domain is holomorphically equivalent to the unit ball B^{n+1} in \mathbb{C}^{n+1} via the correspondence $\phi : \mathscr{E} \to B^{n+1}$ given by

$$\phi(u,v) = \left(\frac{u-i}{u+i}, \frac{2v_1}{u+i}, \dots, \frac{2v_n}{u+i}\right) \quad \text{for } (u,v) = (u,v_1,\dots,v_n) \in \mathscr{E}; \quad (2.6)$$

consequently, $\operatorname{Aut}(\mathscr{E}) = \phi^{-1} \operatorname{Aut}(\mathcal{B}^{n+1})\phi$. Thanks to this, every automorphism F of \mathscr{E} can be described explicitly as a linear fractional transformation of \mathbb{C}^{n+1} in terms of the coordinates $(u, v) = (u, v_1, \dots, v_n)$. (For the precise description of $F \in \operatorname{Aut}(\mathscr{E})$, see [8; Section 3].) Let $\operatorname{Aff}(\mathbb{C}^{n+1})$ be the Lie group consisting of all non-singular complex affine transformations of \mathbb{C}^{n+1} and set

$$\operatorname{Aff}(\mathscr{E}) = \{F \in \operatorname{Aff}(\mathbb{C}^{n+1}); F(\mathscr{E}) = \mathscr{E}\}.$$

Then $\operatorname{Aff}(\mathscr{E})$ is a closed subgroup of $\operatorname{Aff}(\mathbb{C}^{n+1})$. We call $\operatorname{Aff}(\mathscr{E})$ the *affine automorphism group of* \mathscr{E} and each element of $\operatorname{Aff}(\mathscr{E})$ is called an *affine automorphism of* \mathscr{E} . As for the group $\operatorname{Aff}(\mathscr{E})$, we know the following (cf. [11; Section 2]):

FACT 4. Every affine automorphism F of the elementary Siegel domain \mathscr{E} in $\mathbb{C} \times \mathbb{C}^n$ can be written in the form

$$F(u,v) = (ku + a + 2i\langle Bv, b \rangle + i||b||^2, Bv + b) \qquad for \ (u,v) \in \mathscr{E},$$

where $a \in \mathbb{R}$, $b \in \mathbb{C}^n$ and $0 < k \in \mathbb{R}$, $B \in GL(n, \mathbb{C})$ with $k ||v||^2 = ||Bv||^2$ for all $v \in \mathbb{C}^n$ or $(1/\sqrt{k})B \in U(n)$.

We finish this section by the following lemma, which will be important in our proofs of the theorems. Before proceeding, we introduce the following functions ρ and $\hat{\rho}$ defined by

$$\rho(\zeta) = -r + u(\zeta)$$
 for $\zeta \in \mathbb{C}^N$ and $\hat{\rho}(\zeta) = \rho \circ f(\zeta)$ for $\zeta \in \mathcal{D}$,

where *u* is the plurisubharmonic function introduced in (2.4) and *f* is a holomorphic self-mapping of \mathcal{D} . Thus ρ is a defining function for \mathcal{D}_r and so \mathcal{D}_r is a pseudoconvex subdomain of \mathcal{D} with real analytic boundary $\partial \mathcal{D}_r = \mathcal{S}_r$. Moreover every point of \mathcal{S}_r^* is a strictly pseudoconvex boundary point of \mathcal{D}_r .

Under the same situation as in Theorem 2, we prove the following:

LEMMA. Let ζ^* be an arbitrary point of \mathscr{G}_r^* . Then there exists an open neighborhood U of ζ^* in \mathscr{D} such that f gives a biholomorphic mapping from U into \mathscr{D} with $f(U \cap \mathscr{D}_r) = f(U) \cap \mathscr{D}_r$ and $f(U \cap \mathscr{G}_r) = f(U) \cap \mathscr{G}_r$. **PROOF.** First of all, we choose a small open neighborhood U of ζ^* in \mathscr{D} in such a way that $U \subset \mathbb{C}^n \times (\mathbb{C}^*)^m$ and $U \cap \mathscr{D}_r$ is connected. Thus every point of $U \cap \mathscr{G}_r$ is a strictly pseudoconvex boundary point of \mathscr{D}_r . After shrinking U sufficiently small, if necessary, we would like to prove that this U satisfies all the requirements in the lemma. The proof will be carried out by steps as follows:

(1) We assert that $f(U \cap \mathscr{D}_r) \subset \overline{\mathscr{D}_r}$, the closure of \mathscr{D}_r in \mathbb{C}^N . For the verification of this, we shall employ an idea used in the proof of Pinchuk [12; Lemma 1.3]. Since every point of $U \cap \mathscr{P}_r$ is a strictly pseudoconvex boundary point of \mathscr{D}_r , we may assume that $U \cap \mathscr{P}_r$ is a strictly convex real analytic hypersurface in \mathbb{C}^N (see, e.g. [13; p. 61]). Thus, for any point $\zeta_0 \in U \cap \mathscr{D}_r$, there exists a complex line L in \mathbb{C}^N passing through ζ_0 such that $L \cap \mathscr{D}_r$ is a convex domain in L containing ζ_0 and $\partial(L \cap \mathscr{D}_r) \subset \mathscr{P}_r$ (after shrinking U sufficiently small, if necessary). Since $f(\partial(L \cap \mathscr{D}_r)) \subset f(\mathscr{P}_r) \subset \mathscr{P}_r$ by our assumption, it then follows that $\hat{\rho}(\zeta) \equiv 0$ on $\partial(L \cap \mathscr{D}_r)$; and hence, $\rho(f(\zeta_0)) = \hat{\rho}(\zeta_0) \leq 0$ by the maximum principle for the subharmonic function $\hat{\rho}|_{L \cap \mathscr{D}_r}$, as asserted.

(2) We assert that $f(U \cap \mathcal{D}_r) \subset \mathcal{D}_r$. To prove this, assume to the contrary that $f(\zeta_1) \in \mathcal{P}_r$ for some point $\zeta_1 \in U \cap \mathcal{D}_r$. Since $\hat{\rho}(\zeta) \leq 0$ on $U \cap \mathcal{D}_r$ by the step (1) and $\hat{\rho}(\zeta_1) = 0$, we have $\hat{\rho}(\zeta) \equiv 0$ on $U \cap \mathcal{D}_r$ by the maximum principle for the plurisubharmonic function $\hat{\rho}$. Consequently we have $f(U \cap \mathcal{D}_r) \subset \mathcal{P}_r$. However, this is impossible. To verify this, represent f by coordinates $f = (g, h) = (g, h_1, \ldots, h_m)$ and assume that there exists a point $\zeta_2 \in U \cap \mathcal{D}_r$ with $h_1(\zeta_2) \cdots h_m(\zeta_2) \neq 0$. In such a case, since $\eta_2 := f(\zeta_2)$ is a strictly pseudoconvex boundary point of \mathcal{D}_r , there exists a local holomorphic peaking function for \mathcal{D}_r at η_2 , that is, there is an open neighborhood W_2 of η_2 and a holomorphic function $\Psi_{\eta_2} : W_2 \cap \mathcal{D}_r \to \mathbb{C}$ with a continuous extension to $\overline{W_2 \cap \mathcal{D}_r}$ such that

$$\Psi_{\eta_2}(\eta_2) = 1$$
 and $|\Psi_{\eta_2}(\eta)| < 1$ for all $\eta \in \overline{W_2 \cap \mathcal{D}_r} \setminus \{\eta_2\}$

(cf. [13; p. 222]). Fix a connected open neighborhood V_2 of ζ_2 such that $V_2 \subset U \cap \mathscr{D}_r$ and $f(V_2) \subset W_2$. It then follows at once by the maximum principle for the holomorphic function $\Psi_{\eta_2} \circ f$ defined on V_2 that $f(\zeta) = \eta_2$ for all $\zeta \in V_2$; so that f is constant on \mathscr{D} by analytic continuation. But this contradicts our assumption. Therefore we conclude that $h_1(\zeta) \cdots h_m(\zeta) \equiv 0$ on $U \cap \mathscr{D}_r$ and so on \mathscr{D} by analytic continuation. Together with the facts that

$$\mathscr{S}_r \cap \{(z,w) \in \mathbb{C}^N; w = 0\} = \emptyset$$
 and $f(U \cap \mathscr{D}_r) \subset \mathscr{S}_r$,

this yields that there are at least two component functions h_i , h_j of f with $h_i \neq 0$, $h_j = 0$ on \mathcal{D} , respectively. Accordingly we may rename the indices so

that, for some $1 \le \ell < m$, one has

$$h_i \neq 0$$
 for $1 \le i \le \ell$, while $h_j = 0$ for $\ell + 1 \le j \le m$.

Hence f has the form $f = (g, h_1, \dots, h_\ell, 0, \dots, 0)$. Set $w^{[\ell]} = (w_1, \dots, w_\ell)$ and

$$u^{[\ell]}(z, w^{[\ell]}) = e^{\mu ||z||^2} \sum_{j=1}^{\ell} |w_j|^{2p_j} \quad \text{on } \mathbb{C}^n \times \mathbb{C}^{\ell},$$

$$\mathcal{D}^{[\ell]} = \{(z, w^{[\ell]}) \in \mathbb{C}^n \times \mathbb{C}^{\ell}; u^{[\ell]}(z, w^{[\ell]}) < 1\},$$

$$\mathcal{D}^{[\ell]}_r = \{(z, w^{[\ell]}) \in \mathbb{C}^n \times \mathbb{C}^{\ell}; u^{[\ell]}(z, w^{[\ell]}) < r\},$$

$$\mathcal{S}^{[\ell]}_r = \{(z, w^{[\ell]}) \in \mathbb{C}^n \times \mathbb{C}^{\ell}; u^{[\ell]}(z, w^{[\ell]}) = r\}.$$

Then $\partial \mathscr{D}_r^{[\ell]} = \mathscr{S}_r^{[\ell]}$ and our f may be naturally regarded as a holomorphic mapping from \mathscr{D} into $\mathscr{D}^{[\ell]}$ with $f(U \cap \mathscr{D}_r) \subset \mathscr{S}_r^{[\ell]}$. Moreover, since $h_1 \cdots h_\ell \neq$ 0 on \mathscr{D} , there exists a point $\zeta_3 \in U \cap \mathscr{D}_r$ such that $h_1(\zeta_3) \cdots h_\ell(\zeta_3) \neq 0$. Thus $\eta_3 := f(\zeta_3)$ is a strictly pseudoconvex boundary point of $\mathscr{D}_r^{[\ell]}$; consequently, by the same reasoning as above, we conclude that $f(\zeta) = \eta_3$ on \mathscr{D} , a contradiction. Eventually we arrive at a contradiction in any case; completing the proof of our assertion $f(U \cap \mathscr{D}_r) \subset \mathscr{D}_r$.

(3) The neighborhood U of ζ^* satisfies all the requirements in Lemma. We know already that $\hat{\rho}(\zeta) = 0$ on $U \cap \mathscr{G}_r$ and $\hat{\rho}(\zeta) < 0$ on $U \cap \mathscr{D}_r$ by the step (2). It then follows from the Hopf lemma that $d\hat{\rho}(\zeta) \neq 0$ for all $\zeta \in U \cap \mathscr{G}_r$; accordingly, $\hat{\rho}$ gives a local defining function for \mathscr{D}_r around the strictly pseudoconvex boundary point ζ^* . Thus, by using the same method as in the last paragraph of the proof of Bell [2; Theorem 2], it can be checked that the complex Jacobian determinant $J_f(\zeta^*)$ of f at ζ^* cannot vanish. Hence the inverse mapping theorem guarantees that f is injective on some open neighborhood of ζ^* , so that U satisfies all the requirements in Lemma (after shrinking U again, if necessary).

Therefore our proof is now completed.

REMARK. A glance at the proof above tells us that this Lemma is valid for any strictly pseudoconvex boundary point ζ^* of \mathscr{D}_r . In particular, in the special case when $\mathscr{D} = D_{n,m}(\mu)$, the Fock-Bargmann-Hartogs domain in \mathbb{C}^N , this Lemma is valid for every boundary point ζ^* of D_r .

3. Proof of Theorem 1

Let *f* be a holomorphic automorphism of $D = D_{n,m}(\mu)$. Then, by using the explicit description of the generators of Aut(*D*) given in Fact 2, it is easily seen that $f(S_r) \subset S_r$ for all 0 < r < 1 (even for r = 0).

Conversely, taking a non-constant holomorphic self-mapping f of D and assuming that $f(S_r) \subset S_r$ for some 0 < r < 1 as in Theorem 1, we would like to show that f is an automorphism of D. The proof is now divided into two cases when m = 1 and $m \ge 2$.

CASE 1. m = 1: In this case, we put

$$D_r^* = \{ (z, w) \in \mathbb{C}^n \times \mathbb{C}; \ 0 < |w|^2 e^{\mu ||z||^2} < r \}.$$

Thus our real hypersurface $S_r = \partial D_r$ is the subset of ∂D_r^* consisting of all strictly pseudoconvex boundary points of D_r^* .

Let \mathscr{E} be the elementary Siegel domain in $\mathbb{C}^{n+1} = \mathbb{C} \times \mathbb{C}^n$ appearing in (2.5) and consider a holomorphic mapping ϖ from \mathscr{E} into $\mathbb{C}^n \times \mathbb{C}^*$ defined by

$$\varpi(u,v) = ((1/\sqrt{\mu})v, \sqrt{r}e^{iu/2}) \quad \text{for } (u,v) \in \mathscr{E}$$

Then it is easily seen that $\varpi(\mathscr{E}) = D_r^*$ and \mathscr{E} is the universal covering of D_r^* with the covering projection ϖ . Clearly, ϖ is, in fact, defined on $\mathbb{C} \times \mathbb{C}^n$ and $\varpi(\partial \mathscr{E}) = S_r$.

Now, pick a point $\zeta_1^* \in S_r$ arbitrarily and put $\zeta_2^* = f(\zeta_1^*) \in S_r$. Then, by Lemma in Section 2, we can choose connected open neighborhoods V_1 , V_2 of ζ_1^* , ζ_2^* in D, respectively, such that f gives rise to a biholomorphic mapping, say again f, from V_1 onto V_2 with $f(V_1 \cap D_r) = V_2 \cap D_r$ and $f(V_1 \cap S_r) =$ $V_2 \cap S_r$. Let $\zeta_1^*, \zeta_2^* \in \partial \mathscr{E}$ be any two points such that $\varpi(\zeta_j^*) = \zeta_j^*$ for j = 1, 2. Since ϖ is a covering projection from $\mathbb{C} \times \mathbb{C}^n$ onto $\mathbb{C}^n \times \mathbb{C}^*$ with $\varpi(\partial \mathscr{E}) = S_r$, we can find connected open neighborhoods W_1 , W_2 of ζ_1^*, ζ_2^* , respectively, such that $\varpi(W_j) = V_j$ and both the restrictions

$$\Pi_j := \varpi|_{W_i} : W_j \to V_j \qquad \text{for } j = 1, 2$$

are biholomorphic mappings, after shrinking V_1 sufficiently small, if necessary. Thus we obtain a biholomorphic mapping $F := \prod_2^{-1} \circ f \circ \prod_1 : W_1 \to W_2$ with

$$F(W_1 \cap \mathscr{E}) = W_2 \cap \mathscr{E}$$
 and $F(W_1 \cap \partial \mathscr{E}) = W_2 \cap \partial \mathscr{E}$

Recall that \mathscr{E} is biholomorphically equivalent to the unit ball B^{n+1} in \mathbb{C}^{n+1} via the correspondence ϕ defined in (2.6). Then, as an immediate consequence of the main result of Alexander [1], F now extends to a holomorphic automorphism, denoted by the same letter F, of \mathscr{E} . Thus

$$\varpi(F(\xi)) = f(\varpi(\xi)) \quad \text{for all } \xi \in \mathscr{E}$$
(3.1)

by analytic continuation. We here assert that F is an affine automorphism of \mathscr{E} . The following proof of this will be presented only in outline, since the details of the steps can be filled in by consulting the corresponding passages in

Case 1 in the proof of the assertion (II) of [10; Theorem 1]. First of all, notice that

$$\varpi^{-1}(\varpi(\xi)) = \{ (u + 4\pi v, v); v \in \mathbb{Z} \} \quad \text{for any } \xi = (u, v) \in \mathscr{E}.$$

Thus, representing $F = (F_0, F_1, \dots, F_n)$ by coordinates $(u, v) = (u, v_1, \dots, v_n)$ in $\mathbb{C} \times \mathbb{C}^n = \mathbb{C}^{n+1}$, we obtain from (3.1) that

$$F_0(u + 4\pi v, v) = F_0(u, v) + 4\pi n(\xi, v);$$

$$F_i(u + 4\pi v, v) = F_i(u, v), \qquad 1 \le i \le n,$$

for any point $\xi = (u, v) \in \mathscr{E}$ and any integer v, where $n(\xi, v)$ is an integer uniquely determined by (ξ, v) . For each fixed $v \in \mathbb{Z}$, being a continuous integer-valued function in ξ defined on the domain \mathscr{E} , $n(\xi, v)$ is independent on ξ ; and so, we may write $n(\xi, v) = n(v)$. Moreover, since \mathscr{E} is a complete hyperbolic manifold in the sense of Kobayashi [7], we see that

$$|n(v)| \to +\infty$$
 if and only if $|v| \to +\infty$.

Therefore, by repeating exactly the same argument as in the proof of [10; Theorem 1], it can be checked that F is, in fact, an affine automorphism of \mathscr{E} , as asserted.

Now let us express the affine automorphism F of \mathscr{E} as in Fact 4 in Section 2 and write $M = (1/\sqrt{k})B \in U(n), b^* = (1/\sqrt{\mu})b$. It then follows from (3.1) that

$$f(z,w) = (M\sqrt{k}z + b^*, (1/\sqrt{r})^{k-1}e^{-\mu\langle M\sqrt{k}z, b^*\rangle - (\mu/2)\|b^*\|^2}e^{(a/2)i}w^k)$$

on D_r^* and so on D by analytic continuation. Here, since f is a single-valued holomorphic mapping defined on D, the positive real number k has to be an integer. Moreover, f may be regarded as a holomorphic self-mapping of \mathbb{C}^{n+1} . Thus $f(\partial D) \subset \overline{D}$ and so

$$1 \ge u(f(z, w)) = 1/r^{k-1}$$
 whenever $u(z, w) = 1$.

Since 0 < r < 1 and $k \ge 1$, this can only happen when k = 1. This combined with Fact 2 assures us that f is, in fact, an automorphism of D; thereby the proof of Theorem 1 is completed in the case when m = 1.

CASE 2. $m \ge 2$: We now proceed to define a non-singular linear transformation L of $\mathbb{C}^n \times \mathbb{C}^m$ by

$$L(z, w) = (z, (1/\sqrt{r})w)$$
 for $(z, w) \in \mathbb{C}^n \times \mathbb{C}^m$

Notice that $L(D_r) = D$ and $L(S_r) = \partial D$.

Pick a point $\zeta_1^* \in S_r$ and put $\zeta_2^* = f(\zeta_1^*) \in S_r$. Then, thanks to Lemma in Section 2, one can choose connected open neighborhoods U_1 , U_2 of ζ_1^* , ζ_2^* in D, respectively, such that f gives a biholomorphic mapping, say again f, from U_1 onto U_2 such that $f(U_1 \cap D_r) = U_2 \cap D_r$ and $f(U_1 \cap S_r) = U_2 \cap S_r$. Here, setting $V_i = L(U_i)$ for i = 1, 2 and considering the biholomorphic mapping $F := L \circ f \circ L^{-1} : V_1 \to V_2$, we have

$$F(V_1 \cap D) = V_2 \cap D$$
 and $F(V_1 \cap \partial D) = V_2 \cap \partial D$.

Recall that *D* is now a Fock-Bargmann-Hartogs domain in $\mathbb{C}^n \times \mathbb{C}^m$ with $m \ge 2$. Then, as a direct consequence of Fact 3, *F* extends to a holomorphic automorphism, denoted by the same letter *F*, of *D*. Hence

$$L(f(z,w)) = F(L(z,w)) \quad \text{for all } (z,w) \in D_r \tag{3.2}$$

by analytic continuation. In particular, we see that $f(D_r) \subset D_r$. Recall that our automorphism F is now expressed as the composite mapping $F = \varphi_v \circ \varphi_B \circ \varphi_A$ of automorphisms φ_A , φ_B and φ_v defined in Fact 2. Then the relation (3.2) tells us that f has the form

$$f(z,w) = (Az + v, e^{-\mu \langle Az, v \rangle - (\mu/2) \|v\|^2} Bw) \quad \text{on } D_r$$

and so on *D* by analytic continuation. Thus *f* is an automorphism of *D* by Fact 2; thereby the proof of Theorem 1 is completed in the case when $m \ge 2$. Therefore the proof of Theorem 1 is now completed.

4. Proof of Theorem 2

Let \mathscr{D} be the generalized Fock-Bargmann-Hartogs domain in \mathbb{C}^N and let f be a holomorphic self-mapping of \mathscr{D} as in Theorem 2.

Since every holomorphic automorphism of \mathscr{D} preserves the real hypersurface \mathscr{G}_r by Fact 1, we have only to prove the converse assertion. So, assuming that $f(\mathscr{G}_r) \subset \mathscr{G}_r$ for some 0 < r < 1 as in Theorem 2, we wish to show that f is an automorphism of \mathscr{D} . We have now two cases to consider.

CASE 1. m = 1: Putting $p = p_1$, $\mu^* = \mu/p$ and $r^* = \sqrt[n]{r}$, we have $\mathscr{D} = \{(z, w) \in \mathbb{C}^N; |w|^2 e^{\mu^* ||z||^2} < 1\} = D_{n,1}(\mu^*),$ $\mathscr{L}_r = \{(z, w) \in \mathbb{C}^N; |w|^2 e^{\mu^* ||z||^2} = r^*\} = S_{r^*}$

as sets. Thus f is a holomorphic self-mapping of the Fock-Bargmann-Hartogs domain $D_{n,1}(\mu^*)$ preserving the real hypersurface S_{r^*} in $D_{n,1}(\mu^*)$. Hence, as an immediate consequence of Theorem 1, f is an automorphism of \mathcal{D} , as desired.

CASE 2. $m \ge 2$: If both the integers s and q_1 appearing in (2.1) and (2.2), respectively, are equal to one, then \mathscr{D} is just the Fock-Bargmann-Hartogs domain $D_{n,m}(\mu)$; consequently, f is an automorphism of \mathscr{D} by Theorem 1.

From now on, we always assume that $(s, q_1) \neq (1, 1)$. In this case, the following holomorphic self-mapping Π of $\mathbb{C}^N = \mathbb{C}^n \times \mathbb{C}^m$ will play an important role in our proof: For the given $p = (p_1, \ldots, p_m) \in \mathbb{N}^m$ and 0 < r < 1, we set

$$\Pi(z,w) = (z, (w_1)^{p_1} / \sqrt{r}, \dots, (w_m)^{p_m} / \sqrt{r}) \qquad \text{for } (z,w) \in \mathbb{C}^N.$$

Notice that Π induces a proper holomorphic mapping from \mathcal{D}_r onto the Fock-Bargmann-Hartogs domain $D = D_{n,m}(\mu)$ with $\Pi(\mathcal{G}_r) = \partial D$. Moreover, for any point $\zeta^* \in \mathcal{G}_r^*$, Π is injective on some open neighborhood of ζ^* .

Let ζ_1^* be an arbitrary point of \mathscr{G}_r^* and put $\zeta_2^* = f(\zeta_1^*)$. Then, by Lemma in Section 2, we can choose connected open neighborhoods V_1 , V_2 of ζ_1^* , ζ_2^* in \mathscr{D} such that f gives a biholomorphic mapping from V_1 onto V_2 with $f(V_1 \cap \mathscr{D}_r) = V_2 \cap \mathscr{D}_r$ and $f(V_1 \cap \mathscr{G}_r) = V_2 \cap \mathscr{G}_r$. In particular, replacing ζ_1^* by a nearby point, if necessary, we may assume that ζ_2^* is also contained in \mathscr{G}_r^* . Now we set $W_i = \Pi(V_i)$ for i = 1, 2. We may assume that both the restrictions

$$\Pi_i := \Pi|_V : V_i \to W_i \quad \text{for } i = 1, 2$$

are biholomorphic mappings, after shrinking V_1 sufficiently small, if necessary. Thus we obtain a biholomorphic mapping $F := \Pi_2 \circ f \circ \Pi_1^{-1} : W_1 \to W_2$ with

$$F(W_1 \cap D) = W_2 \cap D$$
 and $F(W_1 \cap \partial D) = W_2 \cap \partial D$.

Recall that $D = D_{n,m}(\mu)$ is a Fock-Bargmann-Hartogs domain with $m \ge 2$. It then follows from Fact 3 that F extends to a holomorphic automorphism, say again F, of D. Hence

$$\Pi(f(\zeta)) = F(\Pi(\zeta)) \quad \text{for all } \zeta \in \mathcal{D}_r \tag{4.1}$$

by analytic continuation. On the other hand, by virtue of Fact 2, F can be written in the form

$$F(z,w) = (Az + v, e^{-\mu \langle Az, v \rangle - (\mu/2) \|v\|^2} Bw) \quad \text{on } D,$$

where $A \in U(n)$, $B \in U(m)$ and $v \in \mathbb{C}^n$. Making use of this, we wish to show that f is an automorphism of \mathcal{D} . For this purpose, we here introduce the following notation: Let q_j be the positive integer defined in (2.2) and represent f as $f = (g, h) = (g, h_1, \ldots, h_m)$ by coordinates $\zeta = (z, w) = (z, w_1, \ldots, w_m)$ in $\mathbb{C}^n \times \mathbb{C}^m = \mathbb{C}^N$. Then, according to the notations in (2.1) and (2.3), we set

$$\begin{split} w_{(j)}^{q_j} &= \left(\left(w_{m_1 + \dots + m_{j-1} + 1} \right)^{q_j}, \dots, \left(w_{m_1 + \dots + m_j} \right)^{q_j} \right), \\ h_{(j)} &= \left(h_{m_1 + \dots + m_{j-1} + 1}, \dots, h_{m_1 + \dots + m_j} \right), \\ h_{(j)}^{q_j} &= \left(\left(h_{m_1 + \dots + m_{j-1} + 1} \right)^{q_j}, \dots, \left(h_{m_1 + \dots + m_j} \right)^{q_j} \right) \end{split}$$

for $1 \le j \le s$. In this notation, the relation (4.1) can be rewritten in the form

$$g(\zeta) = Az + v, \qquad \begin{pmatrix} h_{(1)}^{q_1}(\zeta) \\ \vdots \\ h_{(s)}^{q_s}(\zeta) \end{pmatrix} = \lambda(z) \begin{pmatrix} B_{11} & \dots & B_{1s} \\ \vdots & \ddots & \vdots \\ B_{s1} & \dots & B_{ss} \end{pmatrix} \begin{pmatrix} w_{(1)}^{q_1} \\ \vdots \\ w_{(s)}^{q_s} \end{pmatrix}$$
(4.2)

for $\zeta = (z, w) \in \mathcal{D}_r$, where $\lambda(z) = e^{-\mu \langle Az, v \rangle - (\mu/2) \|v\|^2}$ and B_{ij} is an $m_i \times m_j$ matrix for $1 \le i, j \le s$ with $B = (B_{ij})_{1 \le i, j \le s}$.

First of all, we consider the case s = 1, so that $m_1 = m$ and $q_1 > 1$ by our assumption. In this case, we assert that $B = B_{11}$ has the following property:

(*) Every row and every column of B contain exactly one entry of modulus 1.

Recall that *B* is a unitary matrix. Then the verification of our assertion (\star) is now reduced to showing that every row of *B* contains exactly one non-zero entry. To this end, let us define the holomorphic functions \hat{h}_j $(1 \le j \le m)$ by

$$\hat{h}_j(w) = h_j(0, w)$$
 on $E = \{ w \in \mathbb{C}^m; |w_1|^{2q_1} + \dots |w_m|^{2q_1} < r \},\$

where 0 denotes the origin of \mathbb{C}^n . Then, being a holomorphic function on the complete Reinhardt domain *E*, each \hat{h}_j can be expanded uniquely as

$$\hat{h}_j(w) = \sum_{k=0}^{\infty} P_k(w) \quad \text{on } E,$$
(4.3)

which converges absolutely and uniformly on compact subsets of E, where $P_k(w)$ is a homogeneous polynomial of degree k in $w = (w_1, \ldots, w_m)$. Notice that $\hat{h}_j(0) = 0$ for all $1 \le j \le m$ in our case. Hence, together with (4.3), the second equality in (4.2) tells us that each $\hat{h}_j(w)$ is a homogeneous polynomial of degree 1 in w. Represent

$$\boldsymbol{B} = (b_{ij})_{1 \le i, j \le m} \quad \text{and} \quad \hat{\boldsymbol{h}}_j(w) = \sum_{\nu=1}^m c_{j\nu} w_\nu \quad \text{for } 1 \le j \le m,$$

where $c_{j\nu}$ are complex constants. Now, since *B* is non-singular, it is obvious that every row of *B* contains at least one nonzero entry. So, fix an arbitrary index *j* and assume that there are two entries b_{jk} , $b_{j\ell}$ ($k < \ell$) with $b_{jk}b_{j\ell} \neq 0$.

It then follows from (4.2) that

$$(c_{jk}w_k + c_{j\ell}w_\ell)^{q_1} = \hat{h}_j^{q_1}(w^*) = \lambda(0)(b_{jk}(w_k)^{q_1} + b_{j\ell}(w_\ell)^{q_1})$$

for all $w^* = (0, ..., 0, w_k, 0, ..., 0, w_\ell, 0, ..., 0) \in E$. However, this is impossible because $\lambda(0) \neq 0$ and $q_1 > 1$. As a result, we have shown that every row of *B* contains exactly one nonzero entry; proving the assertion (*).

Now it is easily seen by using (\star) that there exist a permutation σ of $\{1, \ldots, m\}$ and a diagonal matrix $D = \text{diag}(d_1, \ldots, d_m)$ with diagonal entries d_j of modulus 1 such that

$$h(\zeta) = \lambda(z)^{1/q_1} D \psi_{\sigma}(w)$$
 for $\zeta = (z, w) \in \mathscr{D}_r$,

where ψ_{σ} is the automorphism of \mathbb{C}^m induced from σ in the canonical fashion:

$$\psi_{\sigma}(w) = (w_{\sigma(1)}, \dots, w_{\sigma(m)}) \quad \text{for } w \in \mathbb{C}^m.$$
(4.4)

Therefore we have shown that f has the form

$$f(\zeta) = (Az + v, \lambda(z)^{1/q_1} D\psi_{\sigma}(w))$$
 on \mathscr{D}

by analytic continuation. Thus f is an automorphism of \mathcal{D} by Fact 1; thereby the proof of Theorem 2 is completed in the case when s = 1 and $q_1 > 1$.

Next we consider the case when s > 1, so that $m > m_1$ and $q_j \ge 2$ for all $2 \le j \le s$. In this case, we first claim that $B_{ij} = 0$ for all $i \ne j$. To this end, we have only to show that $B_{ij} = 0$ for i > j, since *B* is unitary. To derive a contradiction, assume that there exists a submatrix $B_{ij} = (b_{\mu\nu})_{1 \le \mu \le m_i, 1 \le \nu \le m_j}$, i > j, with a nonzero entry $b_{\mu\nu}$. Put for a while

$$\alpha = m_1 + \dots + m_{i-1} + \mu$$
 and $\beta = m_1 + \dots + m_{j-1} + \nu$.

It then follows from (4.2) that

$$(h_{\alpha}(\zeta^*))^{q_i} = \lambda(0) b_{\mu\nu}(w_{\beta})^{q_j} \quad \text{for all } \zeta^* = (0, \dots, 0, w_{\beta}, 0, \dots, 0) \in \mathscr{D}_r.$$

However, this is impossible. Indeed, since $\lambda(0)b_{\mu\nu} \neq 0$, the left-hand side of the above equation is a polynomial in w_β of degree at least q_i , while the righthand side is a monomial of degree q_j . Hence we arrive at a contradiction because $q_i > q_j$ for i > j. Thus $B_{ij} = 0$ for all $i \neq j$, as claimed. In particular, we see that $B_{jj} \in U(m_j)$ for all $1 \le j \le s$. Moreover, recall that $q_j > 1$ for all $2 \le j \le s$. Then, by repeating exactly the same argument as in the case when s = 1 and $q_1 > 1$, it can be seen that every submatrix B_{jj} ($2 \le j \le s$) has the same property as stated in (\star) above. Thus, for every $2 \le j \le s$, there exist a permutation σ_j of I_j and a diagonal matrix $D_j = \text{diag}(d_{j1}, \ldots, d_{jm_j})$ with $|d_{i\ell}| = 1$ for all $1 \le \ell \le m_i$ such that

$$h_{(j)}(\zeta) = \lambda(z)^{1/q_j} D_j \psi_{\sigma_i}(w_{(j)}) \quad \text{for } \zeta = (z, w) \in \mathscr{D}_r,$$

where ψ_{σ_j} is the automorphism of \mathbb{C}^{m_j} naturally induced from σ_j . Of course, the same is true for B_{11} , provided that $q_1 > 1$.

Summarizing the above, we obtain that f can be written in the form

$$f(\zeta) = (Az + v, h_{(1)}(\zeta), \lambda(z)^{1/q_2} D_2 \psi_{\sigma_2}(w_{(2)}), \dots, \lambda(z)^{1/q_s} D_s \psi_{\sigma_s}(w_{(s)})),$$

$$h_{(1)}(\zeta) = \lambda(z) B_1 w_{(1)} \quad \text{or} \quad h_{(1)}(\zeta) = \lambda(z)^{1/q_1} D_1 \psi_{\sigma_1}(w_{(1)})$$

according to $q_1 = 1$ or $q_1 > 1$ for $\zeta = (z, w_{(1)}, \dots, w_{(s)}) \in \mathbb{C}^n \times \mathbb{C}^{m_1} \times \dots \times \mathbb{C}^{m_s}$ = \mathbb{C}^N , where $\lambda(z) = e^{-\mu \langle Az, v \rangle - (\mu/2) ||v||^2}$, $A \in U(n)$, $B_1 \in U(m_1)$, D_j is a diagonal unitary matrix of degree m_j , σ_j is a permutation of the index set I_j and ψ_{σ_j} is the automorphism of \mathbb{C}^{m_j} induced from σ_j as in (4.4) for $1 \le j \le s$. Anyway we conclude by Fact 1 that f is, in fact, a holomorphic automorphism of \mathcal{D} in the case when s > 1.

Therefore the proof of Theorem 2 is now completed.

5. A concluding remark

Let us define the twisted Fock-Bargmann-Hartogs domains $\mathbb{D}_{n,m,k}^{\mu,p}$ according to Kim-Yamamori [6] as follows:

$$\mathbb{D}_{n,m,k}^{\mu,p} = \left\{ (z, w_1, \dots, w_m) \in \mathbb{C}^n \times \mathbb{C}^{k_1} \times \dots \times \mathbb{C}^{k_m}; \sum_{j=1}^m \frac{\|w_j\|^{2p_j}}{e^{-\mu_j \|z\|^2}} < 1 \right\},\$$

where

$$k = (k_1, ..., k_m) \in \mathbb{N}^m$$
 and $\mu = (\mu_1, ..., \mu_m), \ p = (p_1, ..., p_m) \in (\mathbb{R}_+)^m$.

Clearly our generalized Fock-Bargmann-Hartogs domain $\mathscr{D}_{n,m}^{p}(\mu)$ is a special case of the twisted Fock-Bargmann-Hartogs domains $\mathbb{D}_{n,m,k}^{\mu,p}$. Hence we wish to generalize our results to the domains $\mathbb{D}_{n,m,k}^{\mu,p}$. However, it does not seem easy to achieve this although the structure of the holomorphic automorphism groups $\operatorname{Aut}(\mathbb{D}_{n,m,k}^{\mu,p})$ of the twisted Fock-Bargmann-Hartogs domains $\mathbb{D}_{n,m,k}^{\mu,p}$ is completely determined by Kim-Yamamori [6]. In fact, the author does not know at this writing how to generalize our results to the twisted Fock-Bargmann-Hartogs domains $\mathbb{D}_{n,m,k}^{\mu,p}$ even in the case when $m \ge 2$, $\mu_1 = \cdots = \mu_m$, $p \in \mathbb{N}^m$ with $p_j \ge 2$ and $k_j \ge 2$ for some $1 \le j \le m$, for instance. Thus we would like to finish this article by posing the following:

QUESTION. Can one generalize the results in this paper to the twisted Fock-Bargmann-Hartogs domains $\mathbb{D}_{n.m.k}^{\mu,p}$?

Acknowledgement

The author would like to thank the referee for his/her useful comments and suggestions.

References

- H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256.
- [2] S. Bell, Analytic hypoellipticity of the ∂-Neumann problem and extendability of holomorphic mappings, Acta Math. 147 (1981), 109–116.
- [3] E. Bi and Z. Tu, Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains, Pacific J. Math. 297 (2018), 277–297.
- [4] T. Guo, Z. Feng and E. Bi, Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains, Czechoslovak Math. J. 71 (2021), 373–386.
- [5] H. Kim, V. T. Ninh, A. Yamamori, The automorphism group of a certain unbounded nonhyperbolic domain, J. Math. Anal. Appl. 409 (2014), 637–642.
- [6] H. Kim and A. Yamamori, The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains, Czechoslovak Math. J. 68 (2018), 611–631.
- [7] S. Kobayashi, Hyperbolic complex spaces, Springer-Verlag, Berlin Heidelberg New York, 1998.
- [8] A. Kodama, On generalized Siegel domains, Osaka J. Math. 14 (1977), 227-252.
- [9] A. Kodama, A localization principle for biholomorphic mappings between the Fock-Bargmann-Hartogs domains, Hiroshima Math. J. 48 (2018), 171–187.
- [10] A. Kodama and S. Shimizu, Two theorems on the Fock-Bargmann-Hartogs domains, Osaka J. Math. 56 (2019), 739–757.
- [11] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Math., Vol. 286, Springer-Verlag, Berlin Heidelberg New York, 1972.
- [12] S. I. Pinchuk, On the analytic continuation of holomorphic mappings, Math. USSR Sb. 27 (1975), 375–392.
- [13] R. M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1986.
- [14] A. Yamamori, The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function, Complex Var. Elliptic Equ. 58 (2013), 783–793.

Akio Kodama Faculty of Mathematics and Physics Institute of Science and Engineering Kanazawa University Kakumamachi 920-1192 Japan E-mail: kodama@staff.kanazawa-u.ac.jp