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ABSTRACT. It is well known that a smooth quartic curve has twenty-eight bitangent
lines. For a reduced, possibly singular quartic curve, we introduce the notion of weak-
bitangent line. This can be considered as a generalization of bitangent lines. In this
article, we consider weak-bitangent lines for certain reduced quartic curves from the
viewpoint of rational elliptic surfaces. We utilize Mumford representations of semi-
reduced divisors in order to deal with equations of weak-bitangent lines for certain
reduced quartic curves. As a result, we can give new proofs for some classical results
on singular quartic curves and their bitangent lines.

1. Introduction

Bitangent lines to a smooth quartic curve have been studied by various
mathematicians (see [6, Chapter 6] for details). For a reduced, possibly
singular quartic curve, we can consider a generalization of bitangent lines as
follows:

DermNiTION 1.1. Let 2 be a reduced quartic curve. A line L is said to be
a weak-bitangent line if for any p € 2N L, the intersection multiplicity of 2 and
L at p is even.

In this article, we study weak-bitangent lines for certain reduced quartic
curves in IP? = IP>(C) (€ denotes the field of complex numbers). As we will
explain later, for a reduced quartic curve 2 which is not the union of four
concurrent lines and a smooth point z, on 2, we can construct a rational
elliptic surface in a canonical way. In [18], Shioda studied a smooth quartic
curve and its twenty-eight bitangent lines from the viewpoint of the Mordell-
Weil lattice of type E;. Also, in [2, 3, 4], Bannai and Tokunaga studied the
embedded topology of plane curve arrangements of a certain singular quartic
curve, its weak-bitangent lines and conics by using a rational elliptic surface.
In this article, we study weak-bitangent lines of a reduced quartic curve 2
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along similar lines to [2, 3, 4, 18] in the case when 2 satisfies the following
condition (7):
(f) 2 is irreducible or is the union of smooth conics % + %>, where %)
and %, meet transversely.
Before we go on to explain our results in detail, we briefly summarize our
construction of a rational surface. (See Section 2.3 for a detailed description
of our construction.)

Let 2 be a reduced quartic curve which is not the union of four concurrent
lines and let z, be a smooth point on 2. Let S, be the minimal resolution
of the double cover of IP> branched along 2. The pencil of lines passing
through z, induces a pencil of genus 1 curves 4., on Sy, which has a unique
base point of multiplicity 2. We resolve the indeterminacy for the rational
map induced by 4., and obtain an elliptic fibration ¢, :Ss., — P! with a
section O arising from z,. We denote the canonical map from S, . to P> by
fi@,zu 0 8oz, — P2

P2 — S, — Sz,

For a section s (# 0), fJ (s) becomes a curve in P2

Let E, ., be the generic fiber of ¢, .. It is well known that the group
of sections of ¢, . can be canonically identified with the group of C()-
rational points of E, .. For a rational point P, we denote the correspond-
ing section by sp. For a section s, we denote the corresponding rational point
by P;.

DEerINITION 1.2. (i) A section s of Sy . is said to be a line-section if
f5.-,(s) is a line in P2, (i) A @(¢)-rational point P is said to be a line-point
if sp is a line-section.

As it is shown in Section 2.4, a weak-bitangent line gives rise to two line-
sections of Sy ., and vice-versa, if 2 and z, satisfy (f) and the following
condition (}):

(1) The tangent line at z, meets 2 at two distinct points other than z,.
Then the pull-back of a weak-bitangent line L contains two sections s; and s;
of Sy .. In particular, a weak-bitangent line gives rise to two rational points
Pszr and PSZ = [—1]Psz

Under these settings, we obtain the following result:

THEOREM 1.3. Let 2 be a reduced quartic curve satisfying (f) and let
z, be a smooth point on 2 satisfying (). For three distinct weak-bitangent
lines Ly, Ly and Ls, let P; (i =1,2,3) be line-points such that L; = ffl,zn (sp,).
If Py=P\+ P+ P3 is a line-point, then all intersection points of 2 and
Ly + Ly + Ly + Ly lie on a conic, where Ly is the line f£7:(7(3p4).
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In the proof of Theorem 1.3, we utilize Mumford representations in order
to describe divisor classes on elliptic curves. (See Section 3 for the definition
and details of Mumford representations.) Mumford representations were first
considered in [14] in order to describe the Jacobian of hyperelliptic curves
explicitly. They have played important roles in hyperelliptic curve cryptog-
raphy (see [7]).

REmMARK 1.4.

(i) For each L; (i =1,2,3) in Theorem 1.3, there are two choices of P; up
to [+1] since L; :fjvz()(slai) :j‘;g_’ZU(S[_l]Pi) holds.  Hence, there are
eight possibilities for Pys.  Therefore, since f, . (sp,) = f5., (s-1p,);
there are four curves induced by the candidates of Py. When one of
the candidates of P4 is a line-point, the assertion of Theorem 1.3 holds
for its corresponding weak-bitangent line.

(i) Let Ly, Ly and Lj be distinct bitangent lines of a smooth quartic
curve 2. A triad (Ly, Ly, L) is said to be a syzygetic triad if the
six intersection points of 2 and Ly + L, + L3 lie on a conic C. (It is
well-known that the remaining two points in 2N C give rise to a
bitangent line.) If we can choose rational points Py, Py, and P3 such
that (i) Li=f,_. (sp,) and (i) P\+ P>+ Py is a line-point, then
(L1, Lo, Ly) becomes a syzygetic triad by Theorem 1.3. This means
that the existence of such line-points gives a sufficient condition for
(L1, Ly, L3) to be a syzygetic triad.

Furthermore, we also give a classification (Theorem 5.6) of weak-bitangent
lines of singular quartic curves satisfying (f) by using a result of Oguiso-Shioda
([15]) which gives a classification of Mordell-Weil lattices of rational elliptic
surfaces. By Theorems 1.3 and 5.6, we have the following classical results:

CorOLLARY 1.5 ([8, §3], [6, Ch. 2], [16, p. 345]). Let C),C, C IP* be
smooth conics meeting transversely and let Ly, ..., Ly be their four common
tangent lines. Then the eight points of tangency lie on a conic.

COROLLARY 1.6 ([8, §3]). If 2 C IP? is an irreducible quartic with three
nodes, then the eight points of contact of 2 with its four bitangent lines all lie
on a conic.

CoroLLARY 1.7 ([8, 83]). An irreducible quartic with an ordinary triple
point has four bitangent lines, whose eight points of contact all lie on a conic.

The organization of this article is as follows: In Section 2, we give a brief
summary on concepts and results from the theory of elliptic surfaces necessary
for our argument. In Section 3, we explain the Mumford representations
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of semi-reduced divisors on hyperelliptic curves, which are key tools to prove
Theorem 1.3. In Section 4, we prove Theorem 1.3. In Section 5, we classify
weak-bitangent lines of certain singular quartic curves under the condition ().
In Section 6, we prove Corollaries 1.5, 1.6 and 1.7.

2. Elliptic surfaces

Throughout this article, all surfaces and curves are defined over C, unless
otherwise stated.

2.1. Notation and terminology on elliptic surfaces. We here define some
notation and terminology on elliptic surfaces. For general references, we
refer to [10, 12, 17].

Let ¢ : S — C be an elliptic surface over a smooth projective curve C
satisfying the following conditions (x):

* ¢ is relatively minimal.

* ¢ has a distinguished section O: C — S.

* ¢ has at least one singular fiber.
Throughout this article, we always assume that an elliptic surface satisfies the
conditions ().

Let Es be the generic fiber of ¢. FEg can be regarded as a curve of genus
1 defined over the field C(C) of rational functions of C, and we denote the set
of €(C)-rational points of Eg by Es(C(C)). In our setting, S is known as the
Kodaira-Néron model of Eg. Let MW(S) be the set of sections of ¢. For
any s € MW(S), the restriction of s to Es gives a €(C)-rational point of Ejs.
Here, we identify a section s: C — S with its image and we can identify
MW(S) with Eg(C(C)) through this correspondence. For P e Es(C(C)), we
denote the corresponding section by sp and for se€ MW(S) we denote the
corresponding rational point by P;. By abuse of notation, we identify the
section O with its restriction to Es. We can regard Eg as an elliptic curve
(Es(€C(C)), 0) having a group structure with O being the identity. We denote
the addition with respect to this group structure by +. Note that, for
P,QeEs, P+ Q denotes the sum as divisors on Eg, while P+ Q denotes
the sum of points in Eg with respect to the group structure. For P e Ej,
we denote the inverse of P with respect to + by —P. For me Z and P € Eg,

we let
m terms if m>0 |m| terms if m<0

mP=P+---+P, [mP=-P—---—P and [0]P=0.

DEerINITION 2.1. A section s € MW(S) is said to be an integral section if
the intersection number s- O = 0.
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For v e C, we denote the corresponding fiber over v by F, = ¢~ !(v). We
define two finite subsets, Sing(¢) and Red(gp), of C concerning singular fibers as
follows:

Sing(p) := {ve C|F, is singular},
Red(p) := {v € Sing(p) | F, is reducible}.

For v e Red(p), the irreducible decomposition of F, is denoted by

m,—1

F,= @v,O + Z avﬁi@v,iv
i=1

=

where 0, is the unique component with 6,,-O=1. We call 0, the
identity component of F,. In order to describe the types of singular fibers, we
use Kodaira’s notation ([10]). Also, irreducible components of singular fibers
are labeled as in [21]. For v e Red(p), we define

D- -0,
¢(v,D) = : e Z®m=1),
D- @U,ml‘fl
Ay = [@v,i : @Uw./‘]lsi,jsm.—lv

F, := [@v,la ceey @v,mvflL

where D is a divisor on S, and D- D’ denotes the intersection number of
divisors D and D’ on S.

2.2. Mordell-Weill lattices. Let ¢: S — C be an elliptic surface as before.
We denote the Néron-Severi group of S by NS(S), and the Euler characteristic
of its structure sheaf U5 by y(0s). We denote a general fiber of ¢ by F. The
following theorems are fundamental.

THEOREM 2.2 ([17, Theorem 1.2]). Under our setting, NS(S) is finitely
generated and torsion-free.

THeoreM 2.3 ([17, Theorem 1.3]). Let T, be the subgroup of NS(S)
generated by O and the irreducible components of fibers. Then, there is a
natural isomorphism

Y Es(C(C)) — NS(8)/T,
which maps P € Es(C(C)) to sp mod T,
Given a divisor D on S, we denote x/Tl(D mod T},) by Pp.
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Lemma 2.4 ([17, Lemma 5.1]). For D e Div(S), there exists a unique
section s(D) such that

Dxs(D)+(d—1)0+nF+ Y T4 ¢(v,D—s(D)),
veRed(p)

where =~ denotes the algebraic equivalence between divisors, and integers d and n
are defined as follows:

d=D-F and n=(d—-1)y(0s)+O-(D—s(D)).

ReMarRk 2.5. (i) By Lemma 2.4, for D e Div(S), we have s(D) = sp,.
(ii) Also, we have A;'c¢(v,D — s(D)) e Z®"™V while entries of A;' are not
necessarily integers.

Lemma 2.6 ([1, Lemma 2.1]). If F, is a singular fiber of type I,
¢(v,D) — ¢(v,s(D)) is even (Note that ¢(v,D) becomes an integer in this case).

By (i) in Remark 2.5 and Lemma 2.6, we also have

COROLLARY 2.7. Let F, be a singular fiber of type 1. Let Py,...,P, be
elements of Es(C(C)) and let ci,...,c, be integers. Put Q =[c||P;+ -+
[cn]Py and D = cisp, + -+ + cusp,.  Then, we have

1 if D-0, is odd
g Ov1 = -
0 otherwise.

Let us explain the height pairing on Eg(C(7)) introduced in [17]. Let
¢ : Es(C(C)) — NS(S) ® @ be the homomorphism given in [17, Lemma 8.1]
as follows:

$(P) =sp— O —(sp- O+ x(Cs))F+ Y TFu(=4,")e(v,sp).
veRed(p)
n [17], by using ¢, the height pairing {—,—) on Eg(C(C)) is defined as
follows:
(P, 0% =—¢(P)- $(0Q).

The intersection pairing on NS(S) induces a pairing on NS(S) ® @ and {P, Q>
is explicitly given as follows:

THEOREM 2.8 ([17, Theorem 8.6]). For P,Q e Es(C(C)) we have

<P, Q> = ){((OS) +sp- 0+ So - O—sp- So — Z COH'[I‘U(SP,SQ),
veRed(p)
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where, for divisors Dy and D, on S, contr,(Dy,D,) is given by

contr,(Dy, Dy) = ‘e(v, D) (—A,) " e(v, D).

Note that, for 51,5 € MW(S), we have

<PS1,PS2> = }{((/(';S) +851-0+5-0—51-85 — Z COl’ltI‘v(Sl,Sz).

veRed(p)

2.3. A rational elliptic surface associated to a reduced quartic curve and a
smooth point on the quartic curve. Let us first explain how we obtain a
rational elliptic surface from a quartic curve and a smooth point on the quartic

curve.

Let 2 be a reduced quartic curve in P> which is not the union of four
concurrent lines and let z, be a smooth point on 2. We can associate a
rational elliptic surface S, -, (see [2, 2.2.2], [21, Section 4], [1, Section 1]) from
2 and z, as follows:

(1)
(2)

(3)

4)

Let f): S}, — IP? be the double cover of IP? with branch locus 2.
Let u:Sy, — S} be the canonical resolution of S’ (see [9] for the
canonical resolution).

Let 4. be the pencil of genus 1 curves on S, induced from the
pencil of lines through z,. The pencil 4. has a unique base point
(f5ou)""(z,) with multiplicity 2.

Let v., : Sy . — Sy be the resolution of the indeterminacy for the
rational map induced by A.,. The induced morphism ¢, . : S, ., —
P! is an elliptic fibration. The map v, is a composition of two
blowing-ups and the exceptional curve for the second blowing-up is a
section of ¢, ., which we regard as O. Thus we have a rational
elliptic surface S, . and the diagram below:

!/
AY) S5 Sa,z,

)i Vs

ij’ in

PP B (P,
where ¢ is a composition of a finite number of blowing-ups so that
the branch locus becomes smooth and ¢., is the composition of two
blowing-ups corresponding to v-,. The map fj ., is the double cover
induced by the involution [-1], . on S5, which is given by the
inversion with respect to the grdup law on the generic fiber.

REMARK 2.9. The above construction is also found in [11] and [18].
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Let Sing(2) be the set of singularities of 2. For x € Sing(2), a line through x
and z, induces a singular fiber of S, ., which we denote by Fy).

Put f,. = fiouov,
REMARK 2.10. For a section s (# O) and x € Sing(2), the curve fl (s)
passes through x if and only if ¢(v(x),s) # 0.

Let /., be the tangent line of 2 at z,. The fiber corresponding to /.,
becomes a singular fiber, which we denote by F,. By our construction of
S5,-,, any reducible singular fiber is F,, or of the form F,. If z, satisfies (),
then F,, is a singular fiber of type I,. We denote its irreducible decomposition
by F, =0, 0+ O 1, Where O,  is the identity component.

In the remaining of this subsection, we assume that (i) 2 is singular and
satisfies () and (ii) z, satisfies (i). Let us introduce Sing(2) and Ry - as
follows: o

* Sing(2): the set of pairs of singularities of 2 and their types. For the

types of singularities, we refer to [5, p. 81].
* Ry, the subgroup of NS(S,.) generated by O,; (veRed(p,. ),

Zo Zo

i=1,...,m,—1). We have

R;’Z,z,, = ZQ@J @ @ Z@v(x),l @D Z@v(x).,m,;mfl'
xeSing(2)

Here is a table for Sing(2), Ry ., and E, ., (C(t)) after Oguiso-Shioda [15].
We omit cases which do not occur under the assumptions () and (I).

Table 1
Oguiso-Shioda .
classification Sing(2) Ra. Es:,(C(1))
No. 4 (x, 41) AP? D;
No. 6 (x, 42) A ® 4 Az
(X*,Al) @3
No. 7 A3 D@ A
(y,41) ! 4 !
No. 10 (x, 43) 43 @ A4 A5 @ 4
2 1 0 -1
(\‘7A2) @2 1 1 53 1
No. 12 4@ A 1
? (y,41) 24 ‘lo 36 3
-1 1 3 5
(X*,Al)
No. 14 (y,41) Al®4 (Af)®4
(szl)
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Table 1 (cont.)

Oguiso-Shioda .
classification Sing(2) Raz, Es, (@)
31 -1
No. 17 (x, As) A, @ A sl
-1 3
No. 18 (x,Ds) Dy ® 4, (41)®
(X,Ag) @2 *
No. 20 (O a) AP* @ A, A; ®<1/6)
(x,43) @2 @2
No. 22 (3, A1) A3 @ A} (A7)77 @ 1/4)
(x, 42) 21
No. 23 (341 | doad Ai‘®%[ ]
1 2
(szl)
(val)
(yvAl) @5 +\@®3
No. 24 oA AS Un ez)2z
(w, A1)
No. 29 (x, As) As® A4, AT @<1/6)
No. 30 (x, Ds) Ds @ A, A; @ <1/4)
(X7A4) @2 1 21
No. 33 Gy | @4 ] I
(X7A3)
No. 37 A A A AT 1/12
o (y, 42) 3@ A D A4 @ <1/12)
(XvAZ)
No. 40 (3, 42) | AD> @ AP (1/6y®?
(ZvAl)
No. 47 (x, Ag) As @ A4, (1/14)
No. 49 (x, Eg) Eq® 4, {1/6
(X7A4)
No. 56 (7, A2) A3 @ 4, ® 4y {1/30)
(x,42)
No. 61 () | AP o4 /6> ®Z/3
z,42)
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We wuse the notation in [15] in order to describe the structure of
E, . (C(r)). Also, the Gram matrices of 4% and D) (n>1,m>4) are
given by the inverses of the following square matrices of sizes n and m,
respectively:

) ) (2 =1 0 0ceeeeenn 0
2 =1 0.eeeen 0 - T
_11 . . . - ... ."- B
0 0 and 0 § 0 0
I .. t. O 2 _1 _1
1 '
O eennnitn 0 -1 2 0o -1 2 0
- - 0. 0 -1 0 2|

2.4. Sections arising from lines and conics. Let 2 be a quartic curve satisfying
(f) and let z, be a smooth point on 2 satisfying ().
The following lemma gives a characterization of line-sections.

LemMma 2.11 ([3, Lemma 9]). Let s€ MW(Sy,-,) be an integral section with
§-0y1 =1 Then fzh(s) is a line Ly such that

(i) 12, Ly) is even for all x€ 2, and

(ii) =z, ¢ Ls.

Conversely, any line L satisfying the two conditions (1) and (ii) as above
gives rise to line-sections s; (i =1,2) such that s;-0=0, s5;-Oy =1 and

So.., (i) = L.

By the choice of z,, weak-bitangent lines do not pass through z,. There-
fore, by Lemma 2.11, weak-bitangent lines give rise to line-sections of Sy -,
and vice-versa. Under these settings, for a line L, whether L gives a line-
section or not can be determined by how L and 2 intersect. Table 2 shows ten
possibilities for how L and 2 intersect.

When we need to describe the type of a weak-bitangent line L and the
singularities of 2 on L, we use the following notation:

The type of L | Sing(2) N L
Li(x) (i=3,56,7,8,9,10) | x
L4()C, y) X,y

As for an integral section s with s- 0., o =1, we have:

LemMA 2.12. Let s€ MW(Sy,.,) be an integral section with s- 0. o= 1.
Then its image f, . (s) in P? is a smooth conic such that either
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Table 2
Type L and 2 How L and 2 intersect
Il L is a bitangent line at distinct
smooth points.
2 L is a 4-fold tangent line at a
smooth point.
L is a line tangent at a smooth
L3 . .
point and through a double point.
14 L is a line through distinct double
points.
L is an inflectional tangent line to
L5 one of the branches at an A4;-
singularity.
L is a unique tangent line to both
16 of the branches (resp. to the
branch) at an A,-singularity if
n>3is odd (resp. even).
17 L is a tangent line to one of the

branches at a Dj-singularity.

11
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Table 2 (cont.)

Type L and 2 How L and 2 intersect

I8 L is a tangent line to the smooth
branch at a Ds-singularity.

19 L is a tangent line to the singular
branch at a Ds-singularity.

110 L is a. tangent line at an Eg-
singularity.

(1) fy..,(s) is an irreducible component of 2 through z,, or

(i) fy.(s) is tangent to 2 at z, and Ix(fizo(s),,@) is even for every
X eflz[)(s) N 2.

ProOF. For simplicity, we put C; = f. ., (). Since fNQ.Z(,(@OC-O Uo) =z,
and 5s- 0@, 0 =1, z, € C;. This means that any line through' z, meets Cy at z,
and another point. As C is irreducible, C; is a smooth conic.

If Cy is an irreducible component of 2, then C; satisfies the condition (i) in
the statement. In the following, we may assume that C; is not any irreducible
component of 2. By our construction of JZ: : S, — P2, Cy is tangent to 2 at
z,. Choose x € C;N 2 arbitrary. If I.(Cy, 2) is odd, the restriction of fﬂ_z‘) to
C, gives rise to a ramified cover of C,. This means that f; .,(C;) contains a
unique irreducible component C, such that f:&zu Gt C, — C, is a double cover.
On the other hand, fj ., (Cy) contains two integral sections s and (1]}, as its
irreducible components. As f%% (s) = fgﬁza([—l];%s) — C,, this leads us to a
contradiction. ' W

Table 3 lists some cases of conics described in Lemma 2.12 which are
necessary for our later argument.

When we need to describe the type of C and the singularities of 2 on C,
similarly to lines we use the following notation:
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and passes through another double
point.

Table 3
Type C and 2 How C and 2 intersect
cl C is tangent to 2 at smooth points with
even multiplicities.
C passes through a double point of 2
c2 and is tangent to 2 at smooth points
with even multiplicities.
C passes through two distinct double
C3 points of 2 and is tangent to 2 at
smooth points.
C passes through three distinct double
c4 points of 2 and is tangent to 2 at a
smooth point.
cs C is tangent to 2 at a double point and
smooth points with even multiplicities.
C is tangent to 2 at a double point
6 with multiplicity 4 and a smooth point,

13
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Table 3 (cont.)

Type C and 2 How C and 2 intersect

C is tangent to 2 at a double point

Cc7
with multiplicity 6 and a smooth point.

C8 C is a component of two conics.

O/

The type of C | Sing(2)N C
Gi(x) (j=2,57) | x

CGi(x,y) (j=3,6) | x, »
C4(x,y,2) X, ),z

3. The Mumford representations of semi-reduced divisors

In this section, we describe the Mumford representations of semi-reduced
divisors on a hyperelliptic curve which are key tools to prove Theorem 1.3.

For terminology and notation for curves and divisors, we refer to [19]. As
for details on Mumford representations, we refer to [7, 20]. Let K be a perfect
field of char(K) # 2 and let K be its algebraic closure.

3.1. Mumford representations. Let % be a hyperelliptic curve of genus g
defined over K given by an affine equation

yi = f(x), F)=x¥ pox® ey (eK,i=1,...,2g+1).

We denote the point of C at infinity by O and the hyperelliptic involution by
1:(x,y)— (x,—y). For a divisor D=3 ,_,npP € Div(%¢) on %, we denote
the subset {P € € |np # 0} of € by Supp(d).

DerINITION 3.1, Let d =3 ,_, npP € Div(%) be an effective divisor on %
such that O ¢ Supp(d). We call d a semi-reduced divisor if it satisfies the
following conditions:

e if PeSupp(d) and P # i(P), then i(P) ¢ Supp(d), and

e if PeSupp(d) and P =i(P), then np = 1.
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We denote the coordinate ring K[x, y]/{y> — f> of ¥ by K[%] and the
image of g € K[x,y] in K[%] by [g]. For Pe %, we denote the local ring at
P by Op and its discrete valuation by ordp. Let D=}, ,npP be a semi-
reduced divisor on 4. We define ideals 1(b) C K[%] and I(d) C K|[x, )] as
follows:

I(d) := {¢ e K[%]| ordp(&) = np, VP € Supp(d)},
I(%) := {g € K[x, y] | ordp([g]) = np, VP & Supp(v)}.

ProposITION 3.2 ([20, Proposition 2.1]). Let d be a semi-reduced divisor
and let >, be the pure lexicographical order with y >, x in K[x,y). Then the
reduced Gréobner basis of I(d) with respect to >, is of the form {a(x),y — b(x)},
where a(x),b(x) € K[x] and they satisfy b(x)* — f € {a(x).

DeriniTION 3.3, Let d be a semi-reduced divisor on % and let
{a(x),y — b(x)} be as in Proposition 3.2. Then we call the pair (a,b) the
Mumford representation of D.

Mumford representations are characterized as follows:

LemMma 3.4. Let d=),_,npP be a semi-reduced divisor and we put
P = (xp,yp). Then the pair (a,b) e (I?[x])2 is the Mumford representation of
D if and only if (a,b) satisfies

( i ) a= HPeSupp(D) (X - xP)nP:

(ii) degb < dega, ordp([y — b)) > np, and

(iii) a|b? - f.

For a proof, see [20, Proposition 2.1].

REMARK 3.5. Let d be a semi-reduced divisor. In [7, 20], the Mumford
representation of O is defined by the pair (a,b) satisfying the three conditions in
Lemma 3.4.

A divisor D is said to be defined over K if 27 =D for all ¢ € Gal(K/K).

REMARK 3.6. Let d =Y ,n;P; be a semi-reduced divisor defined over K.
Then the Mumford representation (a,b) of d belongs to (K[x])?, while the points
P; are not necessarily K-rational points.

3.2. Semi-reduced divisors of degree 3 on elliptic curves. We refer to [1] for
the proof of the lemmas in this section. Let £ be an elliptic curve defined over
K given by a Weierstrass equation

y2:f(x)a f(X):X3+CIX2—|—C2x—|—C3 (Ci€K7i:17273)'
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Let D= Py + P, + P; be a semi-reduced divisor of degree 3. We put P, =
Py + P, + Ps.

LemMa 3.7 (|1, Lemma 6.2]). Assume that Py # O and let (a,b) be the
Mumford representation of d. Then we have

(i) Py#P; (i=1,2,3).

(i) degb=2.

LemmA 3.8 ([1, Lemma 6.3]). We keep the notation of the previous lemma.
Assume that d is defined over K. Put Py:= (xy, y»). Then we have the
following:

(i) The point Py is a K-rational point of E, ie., Xy, yy € K.

(i) The two polynomials a, b satisfy a,b € K[x|. In particular, b is of the

form

bo(x—xb)(x—bl)—yb (bo,b] EK)

4. Proof of Theorem 1.3

Before we prove Theorem 1.3, we prepare two lemmas. Let [T, X,Z] be
homogeneous coordinates of P> and let (z,x) = (T/Z,X/Z) be affine coor-
dinates for € = IP?\{Z = 0}.

LemMmA 4.1.  Let 2 be a reduced quartic curve that is not the union of four
lines and let z, be a smooth point on 2 satisfying (1). By choosing suitable
homogeneous coordinates [T, X ,Z], we may assume that z, =[0,1,0] and 2 is
given by an equation of the form

FoT,X,Z) = X3Z 4 A 2(T,Z2)X* + A3 3(T, Z)X + As4(T, Z),
where Ay ; is a binary form of degree i in T and Z such that
deg Ay :(t,1)=1i (i=2,3), and  deg Ay 4(1,1) < 3.
PrOOF. Our statement is immediate if we choose homogeneous coordi-

nates [T, X, Z] such that (i) z, = [0, 1, 0], (ii) the tangent line /., at z, is given by

Zo

Z =0 and (iii) [1,0,0] € 2. O

Let E be an elliptic curve given by the Weierstrass equation y> =
Fy(t,x,1). Let D= P; + P, + P3 € Div(E) be a semi-reduced divisor defined
over C(z) whose Mumford representation is given by (a,b). We put P, =
Py + P> + P5 and assume that Py # O. Then we can write Py = (Xp, ). By
Lemmas 3.4, 3.7 and 3.8, a, b are given as follows:

a=x+ax*+amx+a; (aq;€C(t),i=1,2,3) and
b:bo(x—xb)(x—bl)—yb (boe(lj([)x,bl E(E(l‘)),
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where the solutions of a(x) = 0 are the x-coordinates of the points P;. Also, a
and b satisfy the following relation

b* — Fy(t,x,1) = b*(x — xp)a. (1)
Under these circumstances, we have the next lemma.

Lemma 4.2, If xy € C[f] with deg xy < 1, a € C[t,x] and the total degree of
a is 3, then by e C*, by € C[f] and deg by < 1.

Proor. We first prove that by is of the form 1/¢, c € C[t]. Put by = ¢1/c2,
where ¢; and ¢, are coprime polynomials. By the relation (1), we have the
following two relations:

{(x = x0)(x = b1) = yo/bo}> = Fa/by® = (x — x)a,
{e1(x = xp)(x = by) — CQJ/D}Z = 612()6 — Xp)a — 2 F.

Since the right hand sides of both relations are in €]z, x|, so are the left hand
sides. In particular, the coefficient of x°, —2(xy + b;) — 1/by?, in the left hand
side of the first relation and that of x, ¢;(xy + b1), in the left hand side of the
second are polynomials.

Since —2(xy +b1) — 1/by* and c;(xy + b1) € €[f], we have ¢;%/c; e C[i].
Since ¢; and ¢, are coprime to each other, ¢; € €. Hence, 1/by = ¢2/c € CJt
and we have by € C[t] as ¢;(xy + by) € C[1].

Putting ¢ = 1/by, we have

{(x =) (x = b)) —em}’ — ?Fy = (x — xp)a.

By comparing coefficients of polynomials in C[f][x], we have the assertion.

O

We are now in a position to prove Theorem 1.3.

* Proof of Theorem 1.3. Let us assume that 2 and z, satisfy () and
(1). We may assume that 2 is given by an equation described in Lemma 4.1
and z, = [0,1,0]. The generic fiber of ¢, . is an elliptic curve given by y? =
Fy(t,x,1) and L; (i=1,2,3,4) are given by x — x;(1) =0. As L; (i=1,2,3)
are distinct, P; # [-1]P; (i # j,i,j=1,2,3). Hence P; + P, + P; is a semi-
reduced divisor defined over C€(¢). We denote its Mumford representation by
(a,b). Note that ¢ and b satisfy the relation:

b* — Fy(t,x,1) = by*(x —xa)a  (bge C(1)"),

where b = by(x — x4)(x — b1) — y4 (b1 € C(2)). A polynomial @ =[], (x — x,)
is of total degree 3. By Lemma 4.2, we have bye C”*, b, € C[s] and
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deg by < 1. Hence, the total degree of b is equal to max{2,deg y4}. On the
other hand, y4? = Fy(t,x4,1). By our choice of F,, we find deg y4> =
deg Fy(t,x4,1) <4. Therefore b(r,x) =0 gives rise to the desired conic C.
]

5. A classification of weak-bitangent lines

Our goal in this section is to give a list of weak-bitangent lines in terms of
Mordell-Weil lattices. Throughout this section, we assume that 2 is a singular
quartic curve satisfying (1) and z, is a smooth point on 2 satisfying (f), unless
otherwise stated.

5.1. Preparations for a classification of weak-bitangent lines. Let us start with
the following lemma.

LEmMA 5.1. Choose s € MW (S, ). If {Ps,Psy <3/2 then s is an inte-
gral section. Moreover, in the cases of Table 1 other than No. 24 and 61, if
(P, Pyy =3/2 then s is also an integral section.

Proor. By Theorem 2.8, we have

(P, P> =2+4+2s-0— Z contry(s, 5).
veRed(y, -,)

In our setting, the contribution term is of the form

Z contry(y (s, 5) 4 contry, (s, s).
xeSing(2)

By straightforward computation with Table 1, we see that the above value is
less than or equal to 5/2. Hence we have

Hence if <P, P;y <3/2, s-0=0.

In the cases other than No. 24 and 61, we see that the contribution term
is less than 5/2. In a similar way to the above case, we infer that if
(Ps,P;» <3/2, 5s-0=0. ]

Choose Py,...,P, and P, € E, ., (C(t)) such that

(i) {Pi,...,P,} is a basis of the free part of E, . (C(7)),

(ii) P, = O if there exists no torsion in Ej ., (C(¢)), while E, . (C(?)),, =
(P if Ey. (C(1)),, #{0} and

tor
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(iii) the Gram matrix [(P;, P;)]
Table 1.
In the following, we give descriptions for line-points through the above
Py,...,P, and P..

1<ij<n coincides with the one given in

LEmMA 5.2. Let s; (1 <i<mn) be the sections corresponding to P;
(1<i<mn) and let s, be the section corresponding to P, By relabeling
Py,...,P,, for each case in Table 1, f;z(s,) (1<i<n) and f:&za(sr) are
described as in Table 4.

Table 4
Oguiso-Shioda . Types of
. Sing(2 - - ~
classifcation | S8 | (7, (5),... fore (50, Fo (52)
No. 4 (x,41) | See the below*!
No. 6 (x,45) | (L3,C2,L1,C2,L3)
(val)
No. 7 L3(x),C1,L3(y),C3,L4
DD | 13,1 La0). €3.14)
No. 10 (x,43) | (L3,C5,L3,L6)
L4, L3(x), L3(y), L3(x
. oty | A 130 130, 13()
0. 12 (y, Ay) or
DAV (L4, 03, 103(y), 03)
x, A1)
No. 14 (yaAl) (L4(x,y),L4(y7z),L4(x,z),C4)
(’7’41)
No. 17 (x,As) | (L6,L3,L3)
No. 18 (x,Ds) | (L7,L7,L7)
()C,Az)
No. 20 C3,C3,14
(o) | ¢ )
(X,A3)
No. 22 C6(x, y), L6, L4)™
(. | (OO
(x,42) | (LA(p,z), LA(x, y), LA(x, )
No. 23 (y,41) | or
(z,41) | (L4(y,2), L4(x,z),C4)
oA (L, y), 2403, 2), L4(x,2), €8)
(yvAl)
No. 24 (- A1) or
%41 ) ) oW *3
(w, A1) (L4A(x,w), LA(y,w), L4(z,w), C8)
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Table 4 (cont.)

Oguiso-Shioda o Types of
classification | SED) | (F(50), . fo (50 Foa ()
No. 29 (x,4s5) | (C7,L6)
No. 30 (x,Ds) | (L8,L9)
(L4, L6)
No. 33 (x,j;;) or
DAV (L4, o0, )
No. 37 8 jz)) (L6(x), L4)
(XvAZ)
No. 40 (y,42) | (L4(x,y),C4)
(Z:Al)
No. 47 (x,4¢) | L6
No. 49 (x,E¢) | L10
(X, A4)
No. 56 (y, 45) L4
()C,Az)
No. 61 (y,42) | (L4(x,y),C4)*
(z,42)
“UIn the case of No. 4, the type of (f. 5.: (vl) (s ),f‘g)ﬁzn(AYS),f‘:?):’)(Sé)) is (L3,C1,L1,C2). On

the other hand, sy and sy satisfy

1 i=3

0=1 (i=3,4) and c(u(x),s,»):c(oo,si):{o o

2 In the case of No. 22, ifflzn(s,-) is of type C6(x,y), I (fz (5i),2) =4 and I, (f) . (s1),2) =2
3 In the case of No. 24, we only consider the cases when (i) three weak-bitangent lines of type L4 are
concurrent at w and (ii) three weak-bitangent lines of type L4 do not pass through w.  We omit other
cases to avoid redundancy in Table 4.

* In the case of No. 33, Ix(f]':”(sz),,@) =4 and Iy(fg_’z”(sz),@@) =2

*sIn the case of No. 61, we omit weak-bitangent lines of type L4 except for L4(x, y).

Here Li (1 <i<10) are the types of lines in Table 2 and Cj (1 < j <38)
are the types of conics in Table 3. When P. = O, we describe types of f, . (i)
(1 <i<n) only.

Proor. We give a proof for the case of No. 4 only as the other cases can
be proven similarly. In order to determine types of f, . (s;), we need to find
s+ 0, c(v(x),s;) and ¢(o0,s;). First, we have
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L1112 1/2]
12 2 2 1 1

12 3 332 32

P P)li<ij<6 = 1 2 3 4 2 2
/2 1 .32 2 32 1

[1/2 1 3/2 2 1 3/2

By Lemma 5.1, the sections s, s5 and s¢ are integral sections. Since the
configuration of reducible fibers is either III, I, or 2I,, we have

appy=2-5T0 =1 5),
o + p;
<PJ,PJ>:2+2S]0— lzﬁ/ (]:27374)7

where (o, ;) = (e(v(x), i), €(00,5))(= (Si - Opx),1,8i - O.1)). From the matrix
[<Pi7pj>]1si,js6> we infer the following:
Si ST S S3 S4 S5 S

50 0 0 1 1 0 0
w+pB 2 0 2 0 1 1.

Hence, s;, s, 53, 54, 55 and s¢ satisfy

(1, 1) for i=1,3
(o4, ;) = 4 (0,0) for i=2,4
(0,1) or (1,0) for i=S5,6.
By Lemmas 2.11 and 2.12, f37z()(sl) is a line and fg_zu(sz) is a smooth conic.

In particular, their types are L3 and CI.
m: (Oij,ﬁs) 7 (a67ﬁ6)'

PrOOF OF CLAIM. Assume that (as,fs) = (o, ;). By Theorem 2.8, we
have {(Ps,P¢y =3/2 —s5-5¢. This is impossible as {Ps, Psy = 1.
Therefore, for s5 and sq, the following conditions hold:
. fiy_,n(s,‘) is of type L1 if (¢(v(x),s;),¢(o0,s:)) = (0,1).
. fﬁ,zn(si) is of type C2 if (e(v(x),s:),e(00,5:)) = (1,0).
Hence> the type of (fjﬁzo(sl)vfﬁ,zo(sz)afﬂ,:()(s5)7f2,za(s6)) is
(L3,C1,L1,C2) or (L3,C1,C2,L1).

By relabeling s5 and s¢ if necessary, we may assume that they are as in Table 4.
As for s3 and s4, we have

1 i=3

0 i=4 =

5i-0=1 (i=3,4) and c(v(x),s;) = e(0, 1) = {
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In the other cases except for No. 40, for weak-bitangent lines of types L4
and Li (6 <i < 10), we see that all possible cases are classified by Lemma 5.2.
In the case of No. 40, weak-bitangent lines of types L4 and Li (6 <i < 10) are
also classified below.

Lemma 5.3. In the case of No. 40, let Py, P, be a basis such that types
of fs,(sp,) are those indicated in No. 40 in Table 4. Put Q) = P + Py and
O =P —Py. Then f,_ (sg,) are of types L4(x,z) and L4(y,z).

Proor.  Before we prove our statement, we start with the following claim.
Claim: If (P;,P;y =1/3 and s- 0, ; =1 then fj_,a(s) is a line of type
L4 and passes through a cusp and the node z.

ProoF OF CLAmM. If contr,(s,s) # 0, we have
contre(s,s) =2/3 (e =x,y) and contr:(s,s) = 1/2.
By Lemma 5.1, s is integral. Hence, s is a line-section and we have
1/3 = 3/2 — (contr,y)(s,s) + contr,(,) (s, 5) 4 contry (s, s)).
Hence the possibilities for contr,(s,s) are as follows:
(contry(y (s, ), contr,( (s, 5)) = (2/3,0) or (0,2/3),

contr,-y(s,s) = 1/2.

A line fl (s) passes through a cusp and the node z in both the cases of
(contr,y (s, ), contry(,y(s,s)) = (2/3,0), (0,2/3).

Now we go back to prove our statement. As (sp, +5p,) O 1 =1, we
have s- 0, ; =1 by Corollary 2.7. Since sg,- @ 1 =1 and <{Q;, Q;> =1/3,
any f; (sg,) is of type L4 through a cusp and z. Also, as Q) # +Q», the
fg"zo(sQi) are distinct lines. Hence, we obtain lines of types L4(x,z) and
LA(y,2). O

In the next section, for our classification of weak-bitangent lines, we
consider weak-bitangent lines of types L1, L2, L3 and LS.

5.2. A classification of weak-bitangent lines via Mordell-Weil lattices. We
next consider characterizations of weak-bitangent lines via Mordell-Weil
lattices. Let us start with the following proposition.

PROPOSITION 5.4. Let 2 be an irreducible quartic curve with double points
only. For se MW(Sy,,), the following conditions (i) and (ii) are equivalent:
(1) fig’zu (s) is a weak-bitangent line of type L3 or L5.
(ii) §-Ox 1 =1 and there exists a positive integer ny such that {Py, Py) =
3/2 —ng/(ng+1).
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ProOF. In the case when 2 has three cusps, there exists no weak-
bitangent line of type L3. In fact, if such a line exists, it gives rise to a
section s with (P, P> =5/6. On the other hand, as E, . (C(7)) ~<{1/6)@®
Z/37Z, there exists no C(¢)-rational point such that its height pairing equals
5/6. This leads us to a contradiction. Therefore, we omit the case of No. 61.

By our choice of z,, ¢, . has a singular fiber F,, of type I. By [13,
Table 6.2], the other reduced fibers of ¢, ., are of types III, IV and 1, (b > 2).
For each case, if contr,)(s,s) #0, it is as follows:

Type of Fy contryy) (s, s)
111 1/2
v 2/3
Ib k(b—k)/b (lf S-@v(x%k: 1)

Assume that fg_zﬂ(s) is a weak-bitangent line of type L3 or L5. Then
5:0,1 =1 and there exists a unique xo € Sing(2) N f, . (s). Then by our

construction of S, ., we have
1/2 if Fy, is of type III,
. ) 2/3 if Fy, is of type 1V,
CoNtru(x)(8:8) =\ k(b —k)/b if Fy) is of type Ty (b >2) and

S - @v(xo),k = 1

For weak-bitangent lines of types L3 and L5, the following conditions
hold:
* 5Oy, 1 = 1 if Fyy, is of type III,
* 5Oy 1 =1 0r 5-0y2=1if Fyy is of type IV, and
* 5Oy 1 =1 0r 50Oy 51 =1 if Fyy, is of type Ip.
Hence ny=1,2 or b—1 if Fyy, is of type III, IV or I,, respectively.
Conversely, assume that the condition (ii) in the statement holds. Then
as s- 0, 1 =1, s is an integral section by Lemma 5.1. Hence we have

0

(Py, Py =3/2=n/(ng+1)=3/2— > nf(n+1).

xeSing(2)

Hence, >, cqing(o)nx/(nx +1) =ns/(ng+1) <1. From the above possible
values of contr,(s,s), there exists a unique xo € Sing(2)N f,. (s). Also
5Oy 1 ~:1 or 50, p—1 = 1 if Fyy) is of type I’i‘ By our construction
of Sy.,, f5.,(s) is of type L5, if xo is a node and f, . (s) is an inflectional
tangent to one of the branches, while fj (s) is of type L3 for the remaining
cases. J

Similarly, we obtain the following proposition.
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PROPOSITION 5.5. Let 2 be a singular quartic curve satisfying (). For
se MW(Sy..,), the following conditions (i) and (ii) are equivalent:

(1) fgv_,u(s) is a weak-bitangent line of type L1 or L2.

(i) 5:-Op1=1, {(Ps,Psy=3/2 and s- O =0.

Moreover, in the cases other than No. 24 and 61, (i) is equivalent to the
Sollowing condition (ii)':

(i) s-O0,1=1 and {(Ps,P;y=3/2.

We next classify weak-bitangent lines of types L1, L2, L3 and LS.
Let Py,...,P, and P, be generators of Ej . (C(¢)) described just after
Lemma 5.1. For Qe E, . (C(¢)), we put

0 = [a1]P +o [Cn]Pn‘i' [cc] Pe,

where ¢; (1 <i<mn), c,eZ. Note that ¢, =0 if P, = 0. We classify weak-
bitangent lines of types L1 and L2 by vectors ‘[ci,...,¢,] if P, =0 and
Mery ..o yeny¢] if Pr# O. Similarly, [ey,...,¢,], and [c1,..., ¢y, ¢, denote
weak-bitangent lines of types L3(x) and L5(x).

THEOREM 5.6. If f, . (so) is of type L1, L2, L3 or LS, then '[c, ..., c,,

Meryooyeny o]y ety enl, and ey, ... cp 0], are given as in Table 5.
Table 5
No. Sing(2) L1 or L2 L3 or L5
17 T7r11r13[1717] 1 1
-1 0 -1 0 -1 0 -1
1 —1 1 —1 0 0 0
—1 0 0 1 0 0
1 1 —1 —1 0 0 0
LOJLO]JLOJL[LO][—-1] 0f, LO],
177 17717707017 o1 [0
0 0 —1 1 -1 0 0
0 0 0 0 0 0 0
No. 4 | () 1o llo]|]=1]]o “1| | o
0 0 0 1 1 1 1
P l=t]L1]lo]lo] L1 ], [-1],
0 0 0 0 0 0 [0 0
0 0 0 -1 0 —1 -1 0
0 0 1 1 1 1 1
0 —1 —1 -1 0 0 0 -1
1 1 0 0 0 0 0 0
of Lo Lol l=t)l=t]]Lo],[o]
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Table 5 (cont.)

No. Sing(2) Ll or L2 L3 or L5
1 1
0| |-1

1 1 1 1 1 g g
~1]]=1]]0 0| |-1 o 0
1 1| |=1||=1]]0 x x
1] o0 0 1 0 0
] 1 1 1]]o0 ! 0
No. 6 (x,42) | 0 0 0 0 (1) 11
ol]of]-1]]-1 1 0 70
ol|1]]1 0 0 A LT
1| ]o 1o 1 0 0
R (el ]
0 0
0| |-t
_l_X_l_)v
1o
0| | -1
0 1
0 1
_O.X-O-X
0 -1
0 1
0 0 —1 1 _11 8
) o |=t||o]]-1 0 0
No. 7 | oA ol|ol]1 1 ¥
(y,41) 41 | 0 0 0 -1
0 ] L] [ 0 0
=Ll L 1 0
0 1
o], Lol
1 0
1 -1
0 1
1 0
o, Lol

25
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Table 5 (cont.)

No. Sing(2) Ll or L2 L3 or L5
17 [0
ol |o
0 17711 ol |1
1 {]|=1]]o0 0], 10],
No. 10 | (x,43) 0 1 1 1 T o
1] [+1] [+1 1| | -1
0 1
0.10
07 T0
1 |o
o |o
o], L1],
17 [-1
0 1
217-17T717[-2 1] | -1
(x, 42) o] o 1 1 1 . lo
No 120 4 o [=1]|=1]]o 07 [0
1] |1 0 0 0 1
1] | -1
of, L1},
1
-1
0
L 1 y
R
0 0
0 0
_1_3 _71_.,
5.41) +17 [+1 07 107
No. 14 (y:At) -t ! !
o) 1 1 0 0
ollo 1], [-1],
01 F o7
0 0
1 1
L1, -1,
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Table 5 (cont.)

surfaces

No. Sing(2) Ll or L2 L3 or L5
0] [o
17127 [-2 Ho
B B 0 1
No. 17| (x,44) 1] ]of |1 e
Ll]t]]o
-1
1 X
+1 +1
1] -1
No. 18 | (x,Dy) . N/A
o]lo
1 0
0 1
1 Ry 71 X
, 0 1 1
No. 20 Ex’ Azg 0 -1 0
YV, Az 3 _1 . 1 ,
01
1 |-
1 1
RUMIRH
1
. o| |o
1 1
No. 22 | (43) +1 SR
(y,41) 1 -1
2
1 1
ol |o
L1y L7 dy
1 -1
B I
(x, 42) +1 : 1
No. 23 | (1,4 1 x x
RN : K
’ -1 |2
2 1.
y z
(x, A1) +17 [+l
(y,41) 1 -1
No. 24 N/A
¢ (z,A) 1 1 /
(w, A1) o]lo
0 17 [-1
No. 29 4
’ () M M [ I ]

27
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Table 5 (cont.)

No. Sing(2) L1 or L2 L3 or L5
No. 30 | (x,Ds) {-‘1-12] N/A
(x, As) 2 27 1-1
No 31 () B LG }
0 1
() Rl
No. 31| (o N/A {_1}
2],
(x, 4a) 3 ~17 [1
No. 40 | (y,4,)
) 210
No. 47 | (x,As) N/A B3],
No. 49 | (x,Es) 3] N/A
(X=A4)
No.s6 | N/A (5],
(X7A2)
No. 61 | (y,4,) {(3)] N/A
(Z,Az)
(We give either '[c1,...,cy) or '[—ci,...,—cy| since they give the same line

f (sQ) ) Here, Py,...,P, and P, are chosen in the following manner:
For No. 12, 23, 24 and 33, types of f, )., (8i) are the first types indicated
in the corresponding no. in Table 4.
e For the other remaining cases, the types of f;z_]zn (s7) are those indicated in
the corresponding no. in Table 4.

Proor. The case No. 4. Let G be the Gram matrix [{P;, P)]_; ;¢ and
let ¢ ="[cy,...,c6]. As for ¢(oo,s;), the following holds:

Si S1 82 S3 S4 S5 S¢

c(oo,s;) 10 1 0 1 0.

We remark that sg - @, =1 if and only if Zle cie(00,8) =c1 4¢3+ ¢s
is odd by Corollary 2.7.

a) The case when f:;z}zo(SQ) is of type L1 or L2:
In this case, by Proposition 5.5, ¢; +¢3 +¢sisoddand ;e Z (i=1,...,6)
satisfy the following equality:
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3/2 ="'eGe
2 2
[ cs + ¢6
=<C1+6‘2+C3+C4+ 3 >+<62+C3+C4+ > )
2 2 2 2
3 C5 + Co 3 Cs Co
21 = —_— =+ —. 2
+ <2+q4 3 )#2r2+2 (2)

From the above equality, we see that |¢;|] <1 (i =3,5,6).
Claim: |¢s| # |ce].

ProorF oF Cram. If |cs| =]cs), we see that both (c¢s+c¢g)/2 and
(es> 4+ ¢6?)/2 are integers. Hence, the right hand side of (2) becomes an
integer but this is impossible. Therefore, |c¢s| # |cs].

* The case (¢3,¢5,¢6) = (1,1,0). In this case, the equality (2) becomes

1 3\’ 3\° 2
EZ Cl—|—62+C4+§ + 62+C4+§ +2(C4—|—1).

Hence, we have ¢4 = —1 and

LIy A +l2+ +12
2— (4] (&) 3 (&) 3 .
This implies that the possibilities for (cj,c;) are

(0,0),(—1,0),(0,—1),(1,-1).

Since ¢; +¢3+c¢5 is odd, ¢='-1,0,1,—1,1,0],7[1,—1,1,—1,1,0] in this
case.
e The case (c3,¢s5,¢6) = (0,1,0). In this case, we have

1\ 1\’ 1\’
1—<Cl+62+64+2) +<02+C4+2> +2<C4+2> .

Hence ¢4 must be 0 or —1 and we have

N (c1,¢2)

0 (Oa0)7 (—1,0), (Oa_l)5 (L_l)
1 (1,0), (0,0), (0,1), (—1,1).

Since ¢ +e¢3+¢5 is  odd, ¢=7'0,0,0,0,1,0], ‘[0,—1,0,0,1,0],
10,0,0,—1,1,0], “[0,1,0,—1,1,0] in this case.
e The case (c3,¢s5,¢6) = (—1,1,0). In this case, we have

LIy PR —12+ + —12+22
3 =\ C (&) C4 3 (&) Cyq 3 Cq.
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Hence ¢4 =0 and (c¢1, ) = (0,0),(1,0),(0,1),(=1,1). As ¢; +¢3 + ¢s is odd,
¢="1,0,-1,0,1,0],"[-1,1,—1,0,1,0]. For the cases ¢s =0 and —1, we can
compute ¢ similarly and we have the list for No. 4, L1 and L2.

b) The case when f%ZO(SQ) is of type L3 or L5:

In this case, such a line passes through the A;-singularity x. By Prop-
osition 5.4 and its proof, fj‘z,z(,(SQ) is of type L3 or L5 if and only if ¢;
(i=1,...,6) satisfy the folloWing equality and ¢ + ¢3 + ¢5 is odd:

2 2
[ s+ ¢
l=(c+ec+ec3+cq+ +le+e3+cq+

2 2

2 2 2 2
c Cc5 + ¢ c c C
+2(33+C4+ = 6) T B

By a similar argument to the above case for L1 and L2, we have the list for
No. 4, L3 and L5. Note that the assertion in other cases except for No. 24
and 61 can be proven similarly. See Remark 5.7 below.

The case No. 24. There exists no weak-bitangent line of type L3 or L5.
Therefore, in this case, we only need to consider the case when f. .., (s0) is of
type L1 or L2. Let ¢ = "[ci,¢2,¢3,¢] and put a, =sg - 0, ;. By Proposition
5.5, sp is a line-section for a line of type L1 or L2 if and only if Q satisfies the
following conditions:

(i) <0,0>=3/2, (i) s0-0=0 and (i) ap = 1.
Claim 1: <Q,0>=3/2 if and only if |¢;] =1 (i=1,2,3).

PrOOF OF CLAIM. Since <{Q, 0> = (1% + 2> + ¢3%)/2, our claim follows.

Claim 2: If <Q,Q) = 3/2, then a,, =0 (e = x, y,z,w) if and only if Q
satisfies (ii) and (iii).

Proor oF Cram. Recall
1
<Q7 Q> =2+ 2SQ -0 — 5 (aL<X) + Ay(y) + Ay(z) + Ap(w) + a%)'
Since {Q, Q) = 3/2, the above equality becomes
1 1
3 = 2SQ -0 — 3 (av(X) + ay(y) + ayz) + Ayw) aw).

As a, =0 or 1, possibilities for (sg - O, ay(x), dy(y), Qu(z), do(w), do) are
(0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0), (0,0,0,0,0,1), (1,1,1,1,1,1).
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Hence, s9-O=0 and a, =1 if and only if (@), dy(y), =) doew) =
(0,0,0,0).

By Claims 1 and 2, fim (s9) is of type L1 or L2 if and only if |¢;| =1
(i=1,2,3) and a,e) =0 (e =x,y,z,w). In the following, consider a condi-
tion for ¢; to satlsfy aye) =0 (o =x, p,z,w) under |¢;| =1 (i =1,2,3). As for
¢(v,s;), we have the followmg table:

c(v(x),5:) e(w(y),si) ew(z),s:) e(v(w),s;) e(o0,s)

5] 1 1 0 0 1
52 0 1 1 0 1
53 1 0 1 0 1
S 1 1 1 1 0

By our construction of Sy, singular fibers of ¢, . are of type I, or IIL
Hence, by Corollary 2.7, we have
* ayy =0 if and only if ¢; +¢3 +¢; is even,

* ayy =0 if and only if ¢; + ¢y + ¢, is even,
* ay) =0 if and only if ¢ +¢3 + ¢, is even, and
* ay) =0 if and only if ¢; is even.

By Claim 1, (dy(x),do(y), @u(z)s dupw)) = (0,0,0,0) if and only if ¢ is even.
Therefore, [¢;] =1 (i=1,2,3) and ¢, is even if and only if f,_ (sg) is of
type L1 or L2. Since P, = O is a 2-torsion, we may assume ¢, = 0. Hence,
fﬂzu(sQ) depends on ¢, ¢; and ¢; only. Therefore, line-points for weak-
bitangent lines of type L1 or L2 are given by +/[1,1,1,0], +[1,—1,1,0] and
+1,1,-1,0].
We omit our proof for the case of No. 61 as we can prove it similarly.
L

REMARK 5.7. Except for the cases No. 24 and 61, our proof is based on
the following form of 'c¢Ge (we omit those cases of rank <2, and some obvious
cases):

No. 4 (C1+Cz+63+04+%5
+2(C3+C4+65+06)2
No. 6 ‘3—‘(“+cz+ a+s3

e
No. 7 (Cl+Cz+”+“‘)2+(cz+%+%‘)2+% ol g
No. 10 (§+e+9) +4+5+9

No 12 3(a+5-9) +(3+a+9) +5+%

No. 17 (e +%-9 "+ (a+9"+4

No.20 3 +9) 5
e
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REMARK 5.8. From Table 5, we see that there are many examples that
satisfy the assumption of Theorem 1.3.

6. Applications of Theorems 1.3 and 5.6

6.1. Proof of Corollary 1.5. We may assume that C; + C, is given by an
equation described in Lemma 4.1, and let z, = [0,1,0]. Then the structure
of Ec,4c, -, (C(2)) corresponds to that of No. 24 in Table 1. Choose a basis,
{Py, P>, P3}, of the free part of E¢ ¢, ., (C(t)) such that fcl+cg,zu(SP,-) are the
first types indicated in No. 24 in Table 4. Define

Qi:=[-1|P\+ P, +P;5,  Qy:=P +[-1]P,+P;,
Q3 =P +Py+[-1]Ps,  Q4:=P +P,+P;

Then, from Theorem 5.6, fC] 1.2, (80,) (i=1,2,3,4) are distinct bitangent lines
of C; + C,. On the other hand, Qs = Q1 + Q> + Q3 holds. By Theorem 1.3,
the eight points of (C; + ;)N (U;‘:1 fCIJrCZ?:U(SQI.)) lie on a conic C. Hence
our statement follows. O

REmMARK 6.1.  Corollary 1.5 is well-known as Salmon’s theorem. Its his-
tory and references to this well-known result can be found in [6, Chapter 2].

6.2. Proofs of Corollaries 1.6 and 1.7. We may assume that the quartic
curves are given by equations described in Lemma 4.1. Let z, = [0,1,0]. We
choose bases of E, . (C(¢)) as follows:

Corollary 1.6: The structure of E, ., (C(¢)) corresponds to that of No. 14.
By Lemma 5.2, we can choose a basis {Py, P, P3, P4} as follows:

Eo - (C(1)  (foz(5p)s foz, (sp,)s forz, (5P)), foz (5,))
No. 14 (4)®* (L4(x,y), L4(y,z), L4(x,z), C4)

Corollary 1.7:  The structure of E, ., (C(#)) corresponds to that of No. 18.
Choose its basis as in Table 4. By abuse of notation, we denote it by
{P, P>, P3}.

For each case, we define

01 :=[-1]P; 4+ P, + P53, 0s := P+ [-1]P, + Ps,
Q3 := Py + P, + [-1]P5, Q4 := P+ P, + P.

By a similar argument to the previous section, our statements follow. O

6.3. Another application. We give another application.
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COROLLARY 6.2. Let 2 be an irreducible quartic curve with exactly two
singularities x and y such that x is a simple cusp and y is a node. Then

(1) there exist four weak-bitangent lines Ly, L, Ly and Ly of type L3(x),
and there exist three weak-bitangent lines My, M, and M; of type
L3(y) or L5.

(i) If M; (i=1,2,3) are of type L3, then for each pair (L;,L;) (1 <i<
J <4), there exists a unique pair (M, My,) (1 < a; < by <3) such
that
(x) the six points in 20 (L; + L; + M, + My,) all lie on a conic.

Proor. (i) We may assume that 2 is given by an equation described
in Lemma 4.1. Let z, =[0,1,0]. Then the structure of E,. (C(z)) corre-
sponds to that of No. 12 in Table 1. By Lemma 5.2, we choose a basis,
{P1, Py, P3,Ps}, of E,.(C(f)) such that the type of (fg,zvzﬁ(slol)7fﬁvz()(sP2),
fﬂ’zu (spy), fz) (sp,)) is the first type indicated in No. 12 in Table 4. Define
Qr:=Py, Oy:=Py, Q3:=P + [~1]P;3 + P4, Q4= [-1]Py + Py + [-1]P3,
Ry :=P;, Ry ;=P + [—1]P3 + P4, and Rz := Py + [—1]P2 + P4. From Theo-
rem 5.6, we have

. fz,zU(SQz) (1=1,2,3,4) are of type L3(x),

. fN&_,n(sRm) (m=1,2,3) are of type L3(y) or L5, and

e the seven lines are distinct.

Put L, = f,_ (so) and M, = f,. (sr,) (I=1,2,3,4,m=12,3).

(i) Suppose that M; (i=1,2,3) are of type L3.

Claim 1: For (L;,L;) (1 <i<j<4), there exists (M,,, Mp,) (1 <a; <
by < 3) satisfying (x).

Proor ofF CramM. Let us only consider the case when i =1 and j =2,
since the other cases follow similarly. We have R, = Q; + Qs + [-1]R;.
By Theorem 1.3, the six points of 2N (L; + L, + M| + M;) lie on a conic.
Hence, (M, M) satisfies () for (L, L,).

Claim 2: For (L;,L;), there exists a unique pair satisfying (x).

ProOF OF CLAIM. Suppose that there exist two pairs as in Claim 1. Since
there exist three lines of type L3(y), two pairs of weak-bitangent lines of type
L3(y) have at least one common line. Hence we may assume that two pairs
satisfying (x) for (L;, L;) are either (M, My,) or (M, M,). Let C; and Cj;
be two conics such that

(Li+Lj+Mai/+M},ij)ﬂQC C,] and (Li+Lj+Ma,-j+Mc,,)ﬂ=@C Cl//

Putting {x, p;, pj} = 20 (Li + L), {y,q4,} = 20 M,
{r,9,,} = 2N M., we have

{v,a,} = 20 M, and

i
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Gy

9 =2X+2y+ pi+ P+ qa; + and

Cily = 2X+2y + pi + pj + quy + qeys

where C|, denotes the divisor on a curve C cut out by 2. Then C; and Cj
pass through the five points x, y, p;, p; and ¢,,. Since there are no four
colinear points among the above five points, we have Cj; = Cl; Therefore
qb; = qc; and My, = M,,. O

REMARK 6.3. The referee informed the author that Corollary 6.2 is
more obvious than Corollaries 1.5, 1.6 and 1.7. In fact, we find this theorem
from the application of a standard qudratic transformation, centered at the two
singularities and a smooth point, and the group law on the resulting smooth
cubic.
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