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Abstract. Let M be a simple 3-manifold with F a boundary component of genus at

least two. Let a and b be separating slopes on F . It is shown that if both 2-handle

attachings M½a� and M½b� are toroidal and one of them contains an essential torus

whose intersection with M is a thrice punctured essential torus, then Dða; bÞa 8.

1. Introduction

This paper studies one of the problems concerning 2-handle additions

producing toroidal 3-manifolds, i.e., manifolds that contain essential tori. A

compact orientable 3-manifold M is said to be simple if it is irreducible,

q-irreducible, anannular and atoroidal. Let M be a simple 3-manifold with

F a boundary component of genus at least two. Let a be a slope, that is,

an isotopy class of a simple closed curve on F . Denote by M½a� the result

of attaching a 2-handle to M along a regular neighborhood of a representa-

tive of a in F . For two slopes a and b, denoted by D ¼ Dða; bÞ the minimal

geometric intersection number between the isotopy classes of a and b. Some

work has been done comparing non-simple 2-handle attachments to the bound-

ary of a simple 3-manifold. Earlier, Scharlemann and Wu [4] proved that

if M½a� is reducible and M½b� is boundary-reducible then D ¼ 0. In [5] Qiu

and Zhang proved that if a and b are separating slopes such that M½a�
and M½b� are reducible then Da 2. Zhang (unpublished) and the author

[1], respectively, showed that Da 4 if M½a� is reducible and M½b� is toroidal.

H. Lou and Zhang showed that Da 8 if M½a� and M½b� are q-reducible

in [3].

The case when M½a� and M½b� are both toroidal was studied in [1] and

we recall the main results.

Theorem 1.1. Let M be a simple 3-manifold and F a boundary component

of genus at least two. Suppose that a and b are two separating slopes on F such

that M½a� and M½b� are toroidal, anannular and q-irreducible then either
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(1) Dða; bÞ ¼ 18, each of M½a� and M½b� contains an essential torus that

intersects the 2-handle once and F has genus at least 8, or

(2) Dða; bÞ ¼ 12, each of M½a� and M½b� contains an essential torus that

intersects the 2-handle once and F has genus at least 4, or

(3) Dða; bÞa 10.

Corollary 1.2. Let M be a simple 3-manifold and F a boundary com-

ponent with gðF Þb 2 where gðF Þ denotes the genus of F. Suppose that a and b

are two separating slopes on F such that M½a� and M½b� are toroidal, anannular

and q-irreducible.

(1) If gðFÞ ¼ 3 then Dða; bÞa 10.

(2) If gðFÞ ¼ 2 then Dða; bÞ A f0; 4; 8g.

In this paper we consider the case where a thrice punctured essential torus

appears and the main result is the following:

Theorem 1.3. Let M be a simple 3-manifold and F a boundary component

of genus at least two. Suppose that a and b are two separating slopes on F such

that M½a� and M½b� are toroidal, anannular and q-irreducible. If M½b� contains
an essential torus Q̂Q such that Q̂Q \M is a thrice punctured essential torus then

Dða; bÞa 8.

It is unknown whether or not the bounds given in Theorem 1.1 and

Corollary 1.2 are optimal (we expect that it is not). Thus Theorem 1.3 shows

the bound 10 can be improved if we consider certain additional hypotheses.

Theorem 1.3 will be proved by applying the combinatorial techniques

developed in [1, 2, 5, 6].

2. Properties of the intersection graphs

In what follows, we shall assume all the conditions listed in Theorem

1.1. We may further assume that M½a� is irreducible, otherwise Theorem 2 in

[1] implies Dða; bÞa 4.

Lemma 2.1. Suppose that M is simple and M½a� is toroidal. If M½a� is

q-irreducible, irreducible and anannular then M contains an essential punctured

torus P with all boundary components of P parallel to a.

Proof. See Lemma 2.1 in [1]. r

Now let M be a simple 3-manifold and let F be a boundary component

of M with genus at least two. Suppose that a and b are separating, toroidal

slopes on F . Let P̂P (resp. Q̂Q) be an essential torus on M½a� (resp. M½b�) that
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minimises the intersection with the 2-handle. By Lemma 2.1, the punctured

torus P ¼ P̂P \M is essential and qP has components q1P; . . . ; quP; . . . ; qpP,

pb 1 such that quP and quþ1P bound an annulus in F with interior disjoin

from P. For Q̂Q there is a similar punctured torus Q ¼ Q̂Q \M whose boundary

components are similarly numbered q1Q; . . . ; qiQ; . . . ; qqQ, qb 1.

We isotope P and Q so that qP and qQ have minimal intersection, and

P \Q consists of arcs and circles that are essential in both P and Q. The

intersection P \Q defines two labeled graphs GP on P̂P and GQ on Q̂Q. The

vertices of the graphs correspond respectively to the boundary components

quP � qP and qiQ � qQ. Edges of each graph correspond to the arcs of inter-

section in P \Q. Circles of intersection are ignored. We need the following

results from [1].

Lemma 2.2. (1) There are no 1-sided disk faces in both GP and GQ.

(2) There are no common parallel edges in both GP and GQ.

Proof. See Lemma 2.2 in [1]. r

If e is an edge of GP with an endpoint x on a vertex quP, then x is labeled

i if x A quP \ qiQ. In this case i is called the Type A label of x in GP.

Thus, when going around quP, the labels of the endpoints of edges appear as

1; 2; . . . ; q; q; . . . ; 2; 1 in cyclic order and this sequence being repeated Dða; bÞ=2
times. Label the endpoints of edges in GQ similarly.

Now, following [6] we give a sign gðxÞ ¼ ‘‘þ’’ or ‘‘�’’ on x, such that the

signed labels þ1; . . . ;þq;�q; . . . ;�1 appear in the same direction around all

the vertices of GP. The signed label gðxÞi is called the Type B label of x in

GP. In other words, if e A GP is an edge with its two endpoints x and y labeled

ðu; iÞ and ðv; jÞ then ði; jÞ is called the Type A label pair of e and ðgðxÞi; gðyÞ jÞ
is called the Type B label pair of e. Without loss of generality, we take the

following assumption.

Assumption 2.3. The labels þ1;þ2; . . . ;þq;�q; . . . ;�2;�1 appear in the

clockwise direction on each vertex of GP.

Suppose the endpoints of edges in GP are labeled with Type B labels. An

edge of GP is called an x-edge if it has label x at its one endpoint. Let G x
P

denote the subgraph of GP consisting of all x-edges. A cycle in G x
P is a virtual

Scharlemann cycle if it bounds a disk face in GP. Notice by the Assumption

2.3 each edge of a virtual Scharlemann cycle has the same label pair for either

Type A or Type B, called the label pair of the virtual Scharlemann cycle.

A virtual Scharlemann cycle s with Type A label pair ði; jÞ is called a

Scharlemann cycle if i0 j. A Scharlemann cycle with only two edges is called

an S-cycle. We need some results from [5] and [6].
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Lemma 2.4. (1) Each edge of GP has di¤erent Type B labels at its two

endpoints.

(2) If S ¼ fe1; . . . ; eng is a set of parallel edges of GP and n > q, then there

is a virtual S-cycle in S.

(3) A virtual S-cycle is either an S-cycle or its Type A label pair is ð1; 1Þ
or ðq; qÞ.

(4) Let S ¼ fe1; . . . ; eng be a set of parallel edges in GP. If one of the

edges, say ek, has opposite Type B (or has the same Type A) labels

at its two endpoints, then each edge in S has opposite Type B labels

at its two endpoints.

Proof. (1) is Lemma 2.4 in [5]. See also Lemma 2.2 (3) in [1]. (2) is

Lemma 2.9 in [5]. (3) is Lemma 4.1 in [6]. (4) is Lemma 2.5 in [5]. r

Lemma 2.5. Suppose GP has Type B labels.

(1) If q > 1 and GP contains 2q parallel edges, then GQ contains q length

two essential cycles.

(2) If GP contains 2qþ 1 parallel edges then q ¼ 1 or q ¼ 3.

Proof. (1) is Lemma 5.1 in [1]. (2) is Lemma 5.2 in [1]. r

Now we give su‰cient conditions for a loop in GP to have identical labels

at both of its ends. More precisely, if e is a loop of GP joinning labels x and

y, let ex, ey denote the endpoints of e at x and y respectively. Let ðexeyÞa
denotes the arc in qP that goes from ex to ey with respect to some orientation.

Then define

]ðexeyÞ ¼ jðexeyÞa \ qQj � 2

to count (the number of labels on the arc ðexeyÞaÞ � 2 (depending on orien-

tation).

Lemma 2.6. Let e be a loop of GP. Then x ¼ y if and only if ]ðexeyÞ ¼
2qn� 1 for some positive integer n.

Proof. Around the vertex of GP that contain the ends of e we see the

signed labels

þ1;þ2; . . . ;þq;�q; . . . ;�2;�1

repeated D=2 times. Now, the result follows from the fact that between each

pair of identical labels there are exactly 2q� 1þ 2qm ¼ 2qðmþ 1Þ � 1 signed

labels for some non-negative integer m. r

Lemma 2.7. Let G be a graph embedded in a torus with V vertices and

E edges. If G contains no 1-sided disk faces and no 2-sided disk faces, then
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Ea 3V. Moreover, if each vertex of G has valency at least 6 then E ¼ 3V,

each vertex has valency 6 and each face is a disk with 3 sides.

Proof. See Lemma 3.2 in [1]. r

3. Proof of Theorem 1.3: q ¼ 3

In this section we prove Theorem 1.3, so we assume that the essential

punctured torus Q ¼ M \ Q̂Q has exactly three holes. Thus, GQ has exactly

three vertices and GP has exactly six labels þ1, þ2, þ3, �3, �2, �1. Recall

that q ¼ 3 implies that each Type A label pair of a Scharlemann cycle on GP

is ð1; 2Þ or ð2; 3Þ. Denote by At; tþ1 the part of F between consecutive com-

ponents qtQ and qtþ1Q of qQ. Then St ¼ Q [ At; tþ1 denotes a surface of genus

two with a hole for each t ¼ 1; 2.

Lemma 3.1. Let q ¼ 3 and suppose GP contains two Scharlemann cycles

s1 and s2 with the same Type A labels ðt; tþ 1Þ. Then,

(1) If D1 and D2 are the faces bounded by s1, s2, respectively, then qD1

and qD2 are parallel curves on St ¼ Q [ At; tþ1.

(2) s1 and s2 have the same length.

Proof. See Lemma 4.1 in [1]. r

Lemma 3.2. Suppose q ¼ 3 and let N denotes the number of Scharlemann

cycles on GP.

(1) If GP has two Scharleman cycles with distinct Type A label pairs then

F has genus two.

(2) If GQ contains no loops and Db 6 then Dpa 2N þ 2p.

Proof. (1) is Lemma 4.2 (1) in [1]. (2) is Lemma 4.4 (3) in [1]. r

Lemma 3.3. If Dða; bÞ ¼ 10 then F has genus at least 3.

Proof. See the proof of Corollary 1.1 (2) in [1]. r

Notice that the previous result is the best possible since there exist sep-

arating slopes a and b with D ¼ 10 on a surface of genus 3 as illustrated in

Figure 3.1.

Recall that if p ¼ 1 Lemma 5.1 of [2] implies that GP is of the form

Hðw1;w2;w3Þ, that is, the reduced graph with only one vertex and three edges.

Since this graph only have one vertex, Lemma 2.4 (1) implies that the endpoint

labels of each edge are di¤erent.

Lemma 3.4. Suppose p ¼ 1 and q ¼ 3. Then

(1) D ¼ 10 implies wi 1 1 ðmod 2Þ for each i ¼ 1; 2; 3;

(2) D ¼ 8 implies wi 1 0 ðmod 2Þ for each i ¼ 1; 2; 3.
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Proof. (1) Let D ¼ 10 and suppose wi even for some i ¼ 1; 2; 3. Since

w1 þ w2 þ w3 ¼ 3D=2 ¼ 15, wj þ wk is odd. By Lemma 2.2 (2) and Lemma

2.7, 0awl a 9 for each l ¼ 1; 2; 3. Hence wj þ wk A f7; 9; 11; 13; 15g. We

consider three cases separately and we rule out them one by one.

Case 1: wj þ wk A f7; 9; 11g. Then it is easy to see that there exists an

edge e of the wi-collection such that ]ðexeyÞ ¼ 6n� 1 with n ¼ 2.

Case 2: wj þ wk ¼ 13. Then wi ¼ 2 and without loss of generality,

suppose wj odd. Thus wj A f5; 7; 9g. This implies wi þ wj A f7; 9; 11g. Then

we can repeat the argument on Case 1 in order to find an edge e of the

wk-collection such that ]ðexeyÞ ¼ 6n� 1 with n ¼ 2.

Case 3: wj þ wk ¼ 15. Without loss of generality, suppose wj odd.

Thus wj A f7; 9g. Then exists an edge e of the wk-collection such that

]ðexeyÞ ¼ 6n� 1 with n ¼ 2.

In either case, Lemma 2.6 implies that e has identical labels at both of its

ends, which contradicts Lemma 2.4 (1).

(2) Let D ¼ 8 and suppose wi odd for some i ¼ 1; 2; 3. Since w1 þ w2 þ
w3 ¼ 3D=2 ¼ 12, wj þ wk is odd. By Lemma 2.2 (2) and Lemma 2.7,

0awl a 9 for each l ¼ 1; 2; 3. Hence wj þ wk A f3; 5; 7; 9; 11g. This implies

that there exists an edge e of the wi-collection such that ]ðexeyÞ ¼ 6n� 1 with

n ¼ 2. Again, Lemma 2.6 contradicts Lemma 2.4 (1). r

We use G to denote the reduced graph of G , by which we mean a graph

obtained from G by amalgamating each set of parallel edges of G into a single

Fig. 3.1. Dða; bÞ ¼ 10 on genus 3 surface F .

134 Luis C. Chan-Palomo



edge. The weight of a reduced edge is the number of edges of G in the

reduced edge.

Lemma 3.5. Suppose q ¼ 3. Then,

(1) Each set of parallel edges on GP contains at most two S-cycles and if

it contains two then they have distinct Type A label pairs.

(2) If GP has at least 7 parallel edges then GP has two S-cycles with

distinct Type A label pairs.

(3) Each 4-collection of parallel edges on GP has an S-cycle.

(4) If gðFÞb 3 then GP cannot contain two Scharlemann cycles with

di¤erent Type A label pairs and it contains at most 6 parallel edges.

Moreover, if S ¼ fe1; . . . ; e6g is a set of parallel edges in GP, then it is

one of the 6-collections of parallel edges illustrated in Figure 3.2 and

e3 [ e4 bounds an S-cycle (with Type A label pair).

(5) If gðF Þb 3 then each 3-gon of GP cannot have two edges of weight 6.

(6) If Db 8 then GP contains an S-cycle.

(7) Let N denotes the number of Scharlemann cycles of GP. If Db 8 and

gðFÞb 3 then 1aNa 2p and each Scharlemann cycle is an S-cycle

with the same Type A label pair.

Proof. (1)–(2) See Corollary 4.5 (1)–(2) in [1].

(3) Let C ¼ fe1; . . . ; e4g be a 4-collection of parallel edges of GP. By

Lemma 2.4 (2) each 4-collection of parallel edges has a virtual S-cycle s. If s

has Type A label pair ð1; 1Þ or ð3; 3Þ, then Lemma 2.4 (4) implies that the edges

of the 4-collection of parallel edges represent loops in GQ. Then GQ has two

loops C1 and C2 at vertex 1 or vertex 3 by Assumption 2.3. In each case GQ

has at least one loop C3 at vertex 2. Cutting the torus Q̂Q along C3 gives an

annulus containing vertices 1 and 3 in its interior. This implies that C1 [ C2

bounds a bigon D. By Lemma 2.2 (2), D contains a vertex. It is now easy to

check that in each case the fourth loop on GQ is an inessential loop or it is

Fig. 3.2. gðFÞb 3 and 6-parallel edges in GP.
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parallel to C3 in GQ, contradicting Lemma 2.2. Therefore s is an S-cycle by

Lemma 2.4 (3).

(4) First note that by Lemma 3.2 (1), GP cannot contain two Scharle-

mann cycles with di¤erent Type A label pairs. Then, GP contains at most

6-parallel edges by (2). Now, let S ¼ fe1; . . . ; e6g be a set of 6 parallel edges

in GP. By (3), each set of 4 parallel edges fe1; . . . ; e4g and fe3; . . . ; e6g con-

tains an S-cycle. Then, by (1) and Lemma 3.2 (1), e3 [ e4 bounds an S-cycle s.

Since q ¼ 3, s has Type A label pair ð1; 2Þ or ð2; 3Þ. Thus, there are two

possibilities (up to sign) for the labels of the set of 6-parallel edges as shown in

Figure 3.2.

(5) Suppose that GP has a 3-gon D with two edges of weight 6. Then (4)

implies that each 6-collection of parallel edges can be obtained from one of the

collections illustrated in Figure 3.2 (up to signs). Notice that q ¼ 3 implies

that the two 6-collections of parallel edges must have the same labels. With-

out loss of generality, assume that each one contains an S-cycle with Type B

label pair ðþ1;þ2Þ. This implies that each corner of D has label pair ð�2;�3Þ
as illustrated in Figure 3.3. Then D bounds a Scharleman cycle and Lemma

3.2 (1) implies gðFÞ ¼ 2 which is a contradiction.

(6) On the contrary assume that GP does not contain an S-cycle. By

(3), each collection of parallel edges on GP contains at most 3 edges. Now,

because each vertex of GP has valency 3Db 24 then each vertex of the reduced

graph GP has valency at least 8. Now, if V and E denote the vertices and

edges of GP then by taking the sum over all the vertices we obtain 2Eb 8V

which contradicts Lemma 2.7.

(7) By (6), 1aN. Also (4), (6) and Lemma 3.1 (2) imply each Scharle-

mann cycle in GP is an S-cycle with the same Type A label pair. Now, Lemma

2.7 implies Na 3p. Suppose 2pþ 1aNa 3p. Then Lemma 3.1 (1) implies

that GQ has two collections of at least 2pþ 1 parallel edges. Thus, Lemma 2.5

(2) implies p ¼ 1 or p ¼ 3. If p ¼ 3 then GQ has a 7-collection of parallel

Fig. 3.3. A 3-gon D of GP with two edges adjacent to a set of 6-parallel edges.
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edges and (2) contradicts (4). Therefore p ¼ 1, N ¼ 3 and GP ¼ Hðw1;w2;w3Þ.
By Theorem 1.1 (3), we distinguish the two cases D ¼ 10 and D ¼ 8 (See also

Lemma 7.8 in [1]).

Case 1: D ¼ 10. Then w1 þ w2 þ w3 ¼ Dq=2 ¼ 15. By (4) and Lemma

3.4 (1), wi a 5. Thus GP ¼ Hð5; 5; 5Þ. Let C ¼ fe1; . . . ; e5g be a set of edges

of GP which form one of the 5-parallel edges. Let exi , e
y
i denote the endpoints

of ei. Since for each i ¼ 1; 5 we have ]ðexi e
y
i Þ ¼ 18, Assumption 2.3 implies

e1 [ e2 and e4 [ e5 bound virtual S-cycles s1 and s2, respectively (see Figure

3.4). By the proof of (3), each si is an S-cycle. Then q ¼ 3 implies they

have di¤erent Type A label pair. Finally, Lemma 3.2 (1) implies gðFÞ ¼ 2, a

contradiction.

Case 2: D ¼ 8. Then w1 þ w2 þ w3 ¼ 12. By, (4) and Lemma 3.4 (2)

this case is subdivided into three subcases: GP ¼ Hð6; 6; 0Þ;Hð6; 4; 2Þ;
Hð4; 4; 4Þ.

If GP ¼ Hð6; 6; 0Þ then (4) implies N ¼ 2, a contradiction.

If GP ¼ Hð6; 4; 2Þ or Hð4; 4; 4Þ, let C ¼ fe1; . . . ; e4g be a set of edges of

GP which form one of the 4-parallel edges. Since for each i ¼ 2; 3 we have

]ðexi e
y
i Þ ¼ 12, Assumption 2.3 implies e2 [ e3 bounds a virtual S-cycle s (see

Figure 3.5). By (3), s is an S-cycle. Then if GP ¼ Hð6; 4; 2Þ, s has di¤erent

Type A label pair than the S-cycle given by (4), a contradiction. Finally,

if GP ¼ Hð4; 4; 4Þ then it is easy to see that one of the 4-collection of parallel

edges does not contain an S-cycle. This contradicts (3). r

Now, let fi; j; kg denote the three vertices of GQ. In the following two

lemmas we use the convention that G
ij
Q denotes the subgraph induced by

Fig. 3.4. D ¼ 10, q ¼ 3 and GP ¼ Hð5; 5; 5Þ.
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the vertices i and j in the graph GQ and G
ij

Q denotes the subgraph induced by

the vertices i and j in the reduced graph GQ.

Lemma 3.6. (1) If GQ contains a loop at i, then EðG jk

Q Þa 2.

(2) If EðG ij

QÞb 4, then EðG ik

Q Þa 2.

Proof. See Lemma 7.4 in [2]. r

Lemma 3.7. Suppose q ¼ 3 and D ¼ 10. Then,

(1) GQ has at least one loop and it has at most 2p parallel edges.

(2) GP contains 6 parallel edges as illustrated in Figure 3.2.

(3) GQ is the graph Rðw1; . . . ;w9Þ illustrated in Figure 3.6 with wi 0 0 for

each i ¼ 1; . . . ; 9 and pawi a 2p for each i ¼ 1; 2; 3.

Proof. (1) If GQ has no loops then Lemma 3.2 (2) implies

10p ¼ Dpa 2N þ 2p ) 4paN:

But, Lemma 3.3 and Lemma 3.5 (7) imply Na 2p, which is a contradiction.

Suppose, for a contradiction, that GQ has 2pþ 1 parallel edges. By

Lemma 2.5 (2), p ¼ 1 or p ¼ 3. Also, Lemma 3.3 implies gðFÞb 3. If

p ¼ 1 then GP ¼ Hðw1;w2;w3Þ and w1 þ w2 þ w3 ¼ Dq=2 ¼ 15. Then Lemma

3.4 (1) and Lemma 3.5 (4) imply wi A f1; 3; 5g. Hence GP ¼ Hð5; 5; 5Þ. By

the proof of Lemma 3.5 (3), this implies GQ has no loops which is a contra-

diction. If p ¼ 3 then GQ has 2pþ 1 ¼ 7 parallel edges, which contradicts

Lemma 3.5 (4).

(2) Suppose that GP has no edges with weight 6. Then Lemma 3.3 and

Lemma 3.5 (4) imply each edge has weight at most 5. D ¼ 10 implies each

vertex of GP has valency at least 6. Hence Lemma 2.7 implies each vertex of

Fig. 3.5. D ¼ 8, q ¼ 3 and GP ¼ Hð6; 4; 2Þ or Hð4; 4; 4Þ.
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GP has valency 6. Thus, each edge of GP has weight 5. This implies that GQ

has no loops by the proof of Lemma 3.5 (3). But this contradicts (1). There-

fore GP contains 6 parallel edges.

(3) First we prove the following two claims.

Claim 1. Each vertex of GQ has valency at least 5.

Proof. This follows from (1) and D ¼ 10. r

Claim 2. EðG ij

Q Þb 2.

Proof. This follows immediately from (2) and Lemma 2.5 (1). r

Now, by analysing the number of loops in GQ we consider three cases.

Case 1. GQ has one loop. Suppose GQ contains a loop at vertex

i. Then Lemma 3.6 (1) and Claim 2 imply EðG jk

Q Þ ¼ 2. This implies

EðG ij

QÞ;EðG
ik

Q Þb 3, by Claim 1. If EðG ik

Q Þb 4, Lemma 3.6 (2) implies

EðG ij

QÞa 2 which is a contradiction. Similarly, EðG ij

Q Þb 4 is impossible.

Therefore EðG ij

Q Þ ¼ 3 ¼ EðG ik

Q Þ. Hence the vertices j and k have valency 5

and each edge in GQ has weight 2p by (1). By counting edges at i we have

Dp ¼ 10p > 2p½EðG ij

QÞ þ EðG ik

Q Þ� ¼ 2pð6Þ ¼ 12p;

a contradiction.

Case 2. GQ has two loops. Subcase 1: two loops at i. Cutting the torus

Q̂Q along these two loops gives a disk. Now, by (2) and Lemma 2.5 (1), it is

easy to see that an innermost length 2 cycle in GQ contradicts Lemma 2.2 (2).

Subcase 2: one loop at i and one loop at j. By Lemma 3.6 (1), EðG jk

Q Þa 2

and EðG ik

Q Þa 2. This implies k has valency 4 which contradicts Claim 1.

Fig. 3.6. D ¼ 10 and GQ ¼ Rðw1; . . . ;w9Þ.
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Case 3. GQ has three loops. Suppose there are two loops at vertex k and

one loop at vertex j. This implies that these loops are parallel on the torus

Q̂Q. Then vertex i is on the bigon bounded by the loops incident at vertex k.

Hence, EðG ij

QÞ ¼ 0 which contradicts Claim 2. Therefore, GQ has one loop

at each vertex and by Claim 2 we obtain that GQ is the graph illustrated in

Figure 3.6.

Finally, we only prove paw2 a 2p because the other two inequalities are

similar. Now, (1) implies wi a 2p for each i ¼ 1; . . . ; 9 and by counting edges

at vertex 2 we have

10p ¼ Dp ¼ 2w2 þ
X7

k¼4

wk a 2w2 þ 8p:

Therefore paw2 a 2p. r

Proof (Proof of Theorem 1.3). We assume that Db 10 so as to obtain

a contradiction. By Theorem 1.1 (3), D ¼ 10. Hence, Lemma 3.7 (3) implies

GQ ¼ Rðw1; . . . ;w9Þ with pawi a 2p for each i ¼ 1; 2; 3.

Claim 1: GP has at least p edges with weight at most 3.

Proof. By Lemma 2.4 (4), a parallel family of edges of GP corresponds

to either loops in GQ, or edges in GQ. But, if it corresponds to loops then the

number of parallel edges is at most 3 by Lemma 3.5 (3). Now the result

follows from the fact that the number of loops in GQ is at least 3pa
P3

1 wi by

Lemma 3.7 (3). r

Claim 2: GP has p edges of weight 3 and 2p edges of weight 6.

Proof. Lemma 3.5 (4) implies that the edges of GP have weight at most

6. Also, we have 15p ¼ 3Dp=2 ¼ EðGPÞ. Let a be the number of edges with

weight at most 3 of GP. Then pa a, by Claim 1. Lemma 2.7 implies that

the number of edges of GP with weight at least 4 is at most 3p� a. Then we

obtain the following

15p ¼ EðGPÞa 3aþ 6ð3p� aÞ ¼ 18p� 3a ¼ 15pþ 3ðp� aÞ:

This implies a ¼ p and the above inequality is an equality. In particular, the

claim must hold. r

Claim 3: GP contains a 3-gon with two edges of weight 6.

Proof. Suppose for a contradiction that GP contains 3-gons with at most

one edge of weight 6. By Claim 2, the sum of the weights of the edges on

each 3-gon is at most 12. Let V , E, F denote the number of the vertices, edges

and disk faces of the reduced graph GP, respectively. Then V ¼ p. Also,
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Claim 2 implies E ¼ 3p and Lemma 2.7 implies that each face of GP is a

3-gon. By calculating the Euler number of the torus P̂P we have F ¼ 2p.

Hence

2EðGPÞa 12F ðGPÞ ¼ 12ð2pÞ ¼ 24p:

This implies 15p ¼ EðGPÞa 12p, a contradiction. r

Finally, Lemma 3.3 implies gðF Þb 3. Then Claim 3 contradicts Lemma

3.5 (5). Therefore Da 8. r
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Anillo Periférico Norte, Tablaje Cat. 13615,

Col. Chuburna Hidalgo Inn Mérida, Yucatán, México
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