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Belyi injectivity for outer representations on certain quotients of
étale fundamental groups of hyperbolic curves of genus zero
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ABSTRACT. In the present paper, we study certain quotients of the étale fundamental
group of a hyperbolic curve over a field. We prove that the action of the outer auto-
morphism group of a certain quotient of the étale fundamental group of a hyperbolic
curve over an algebraically closed field on its conjugacy classes of open subgroups is
faithful. Also, we prove that, if k is either a number field or a p-adic local field, then
the outer Galois representation associated to a certain quotient of the geometric funda-
mental group of P}\{0,1, 0} is injective.
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1. Introduction

Anabelian geometry is an area of arithmetic geometry in which one studies
how much information about a variety is contained in its étale fundamental
group or, equivalently, in the category of finite €tale coverings of the variety.

In the present paper, we study certain quotients of the étale fundamental
group of a hyperbolic curve over a field. This amounts to studying certain
types of full sub-Galois categories of the Galois category of finite étale coverings
of such a curve.

The full sub-Galois categories we will treat have less information than the
original Galois category, but satisfy some properties which hold for the original
Galois category.
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If k is a field with algebraic closure &k and X a geometrically connected
scheme of finite type over k, then there is a natural exact sequence of étale
fundamental groups:

1 — 71'1<Xl;) — 7T1(X) — nl(Speck) — 1.

Note that 7;(Spec k) is naturally isomorphic, up to inner automorphism, to
the absolute Galois group Gy of k. Thus, this exact sequence induces a group
homomorphism [cf. §2]

p : G — Out(m (X))

Belyi proved in [Bel], Corollary to Theorem 4 [cf. also [Bel], the discussion
preceding Theorem 1], that, if k is a number field and X = IP;\{0, 1, o0}, then
p 18 injective. This injectivity plays an important role in various aspects of
anabelian geometry and the study of the Grothendieck-Teichmiiller group.

Belyi proved the injectivity of p by showing that the composite

Gy — Out(m; (X;)) — Sym(Dp(m1(X;)))

[cf. the explanation of notation given below]| is injective. This approach to
proving the injectivity of p motivated Theorems A and B of the present paper.

Next, we introduce some notation.

A full formation [cf. Definition 3.1] is a set of isomorphism classes of
finite groups which contains a class distinct from the class of trivial groups, and
which is closed under the operations of passing to subgroups, quotients, and
extensions.

Let 4 be a profinite group and C a full formation. For a closed normal
subgroup N <24, we construct another closed normal subgroup N¢ 4 <24 [cf.
Definition 3.2] as follows:

Nea= () () U
NcV <4 U=V

open open

[v/Ulec
where [V/U] denotes the isomorphism class of V'/U |[cf. Definition 3.1]. We
shall write X [cf. Definition 3.1] for the set of prime numbers /# such that
[Z//Z)€eC.

Let G be a profinite group. We shall write Op(G) [cf. Definition 3.6]
for the set of conjugacy classes of open subgroups of G. Then Aut(G) acts
naturally on Op(G), and Inn(G) is contained in the kernel of this action. In
particular, we obtain a natural homomorphism

Out(G) — Sym(Dp(G)).

Our first main result is the following [cf. Proposition 3.5 and Theorem 3.8].
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THEOREM A. Let X be a hyperbolic curve over an algebraically closed field
of characteristic p > 0 with étale fundamental group A; N = A a closed normal
subgroup; C a full formation such that X¢ # {p}. Set A* := A/N¢ 4. Then 4*
is slim [cf. §2], and the homomorphism

Out(4") — Sym(Dp(4"))
is injective.

In the present paper, we also prove that the absolute Galois group of @
can be embedded in the outer automorphism group of certain nontrivial quo-
tient groups of m(]P(}-)\{O, 1,00}).

Let k be a field of characteristic 0 with algebraic closure k. If N is a closed
normal subgroup of 7 (]PI%\{O, 1, 0}) which is also normal in 7;(IP}\{0, 1, 0}),
then we obtain a short exact sequence of profinite groups

1 — m (PA{0,1,00})/N — m (P\{0, 1, 00}) /N — Gal(k/k) — 1.
This exact sequence induces an outer Galois representation
pi. v : Gal(k/k) — Out(m (P}\{0,1,0})/N).

Let Ny [cf. Definition 4.1] denote the intersection of open subgroups U of
3 (]P/%\{O, 1, c0}) such that the finite étale covering of ]P/%\{O7 1,0} correspond-
ing to U is of genus 0.

Our second main result is the following [cf. Proposition 4.7 and Theorem
4.14]. Note that, as Ny # {1} [cf. Lemma 4.3], this is a nontrivial result.

THEOREM B. Assume that N C Ny. Then 711(IP/1;\{07 1, 0})/Ny is center-
free, and the kernel of the natural outer representation

P, v+ Gal(k/k) — Out(m (P\{0,1,0})/N)

is equal to the kernel of the natural restriction homomorphism Gal(k/k) —
Gal(Q/Q), where Q denotes the algebraic closure of Q in k. In particular, if
k is either a number field or a p-adic local field for some prime number p, then
Pi,n IS injective.

2. Notations and conventions

Sets: Let S be a set. Then we shall write |S| for the cardinality of S.
We shall write Sym(S) for the group of permutations of S, i.e., the group of
bijections S = S.

Numbers: The notation @ will be used to denote the field of rational
numbers. The notation Z will be used to denote the set, group, or ring of
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rational integers. For a prime number /, the notation Z, will be used to
denote the ring of /-adic integers. The notation @, will be used to denote the
field of /-adic numbers. A finite extension field of @ (resp. @) will be referred
to as a number field (resp. an /-adic local field).

Topological groups: Let G be a group and H < G a subgroup. Then
we shall write Zg(H) for the centralizer of H in G and Z(G) := Z(G) for the
center of G. We shall say that G is center-free if G has trivial center, i.e.,
Z(G) ={1}. A

Let G be a group. Then we shall write G for the profinite completion of
G, i.e., the inverse limit of quotient groups G/H of G, where H is a normal
sugbroup of finite index in G.

We shall say that a profinite group G is slim if the centralizer Zg(U) of
any open subgroup U < G in G is trivial. A profinite group G is slim if and
only if every open subgroup of G has trivial center [cf. [Mzk2], Remark 0.1.3].

Let G be a profinite group and U an open subgroup. Then we shall refer
to

Uror .— ﬂ gflUg
geG

as the normal core of U in G. We shall write G®° for the abelianization of G,
i.e., the quotient of G by the closure of the commutator subgroup of G. Let p
be a prime number. Then we shall write

G

for the maximal pro-p quotient of G, i.e., the quotient of G by the intersection
of all open normal subgroups U <1 G such that G/U is a p-group;

Gabr

for the maximal abelian pro-p quotient of G, i.e., the abelianization of G») or
equivalently, the maximal pro-p quotient of G2°;

G(h)

for the maximal pro-prime-to-p quotient of G, i.e., the quotient of G by the
intersection of all open normal subgroups U <2 G whose index in G is prime
to p.

Let G be a profinite group. Then we shall write Aut(G) for the group of
automorphisms of the profinite group G. Conjugation by elements of G deter-
mines a homomorphism G — Aut(G) whose image Inn(G) < Aut(G) is the
normal subgroup of Aut(G) consisting of the inner automorphisms of G. We
shall write Out(G) := Aut(G)/Inn(G) for the outer automorphism group of G.
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Let
l—-d4—-1—G—1

be an exact sequence of profinite groups. Then conjugation in /7 by liftings
of elements of G determines a homomorphism

p: G — Out(4).

We shall refer to this homomorphism p as the outer representation determined
by the exact sequence 1 -4 — IT — G — 1.

Schemes: If x is a point of a scheme X, then we shall write x(x) for the
residue field of x. 1If X is an integral scheme, then we shall write K(X) for the
function field of X, i.e., the residue field of the generic point of X.

Let X be a noetherian connected scheme and & a geometric point. Then
we shall write 7, (X; &) for the étale fundamental group of X relative to the base
point £. We shall write /7y for the ¢tale fundamental group of X relative to
some choice of base point. If X is geometrically connected and of finite type
over a field k, and k is an algebraic closure of k that is fixed throughout
the discussion, then we sI_lall write Ay := 11 Yook for the geometric fundamental
group of X [relative to kJ.

Let k be a field. Then we shall write Gy for the absolute Galois group of k
relative to some choice of separable closure K of k. Here, we recall that Gy is
determined up to inner automorphism by £, i.e., independently of the choice of
separable closure of k, and that there is a natural outer isomorphism

G — HSpec k-

Curves: Let k be a field. Then we shall say that X is a smooth curve
over k if X is a scheme of dimension 1 that is separated, geometrically con-
nected, of finite type, and smooth over k. Recall that if X is a smooth curve
over k, then there exist a smooth projective curve X Pt over k and an open
immersion 7: X — XP'.  Such a pair (X*°P',:1) is unique up to unique isomor-
phism. We shall refer to this X°** [and 1] as the compactification of X. We
shall say that a smooth curve X over k is of type (g,r) if X°P is of genus g,
and the closed subset XP\X of X equipped with the reduced induced
subscheme structure is finite étale of degree r over k. A hyperbolic curve over
k is a smooth curve over k of type (g,r) such that 2g —2 +r > 0. Note that
a smooth curve over an algebraically closed field of type (g,r) is hyperbolic
if and only if (g,r) is not equal to one of the following: (0,0); (0,1); (0,2);
(1,0). If X is a smooth curve over k and U < ITy is an open subgroup, then,
we define the genus gy of U to be the genus of the isomorphism class of finite
étale coverings of X determined by the conjugacy class of U.
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3. Faithfulness of the action on conjugacy classes of open subgroups
In this section, we prove Theorem A.

DerFiNiTION 3.1. Let G denote the set of isomorphism classes of finite
groups. [Here, we observe that G is indeed a set.] For a finite group G, we
shall write [G] for the isomorphism class to which G belongs. A subset C of
G is called a formation if it contains the class of trivial groups [i.e., groups
with only one element]. A formation C is said to be nontrivial if it contains
some class different from the class of trivial groups. A nontrivial formation
C is said to be a full formation if it is closed under the operations of passing to
subgroups, quotients, and extensions. Let C be a formation. Then we shall
write X¢ for the set of prime numbers / such that [Z//Z] € C. Note that if C is
a full formation, then X is nonempty, and 7 € 2 if and only if C contains all
isomorphism classes of finite /-groups.

DerINITION 3.2.  Let 4 be a profinite group and C a formation. If N <24
is a closed normal subgroup, then we define:

Nea= () () U

NcV <4 U=V

open open

(v/Ulec
Note that N 4 is a closed normal subgroup of 4 contained in N.

ReMARK 3.3. Note that N¢ 4 C N. Indeed,

Nea= () [) Uc () V=N

NcV <4 U=V NCcV <4

open open open

[V/UleC

Furthermore, N¢ 4 coincides with the kernel Ky ¢ of the natural map from N
to its maximal pro-C quotient. Indeed, N is a closed subgroup of the profinite
group 4, hence is itself a profinite group, so it makes sense to consider the
maximal pro-C quotient of N. By definition,

Kyc= ﬂ H.
H=N

open

[N/H]eC

If V and U are open subgroups of 4 satisfying NC V <4, U=V, and
[V/U]eC, then UNN is an open normal subgroup of N, and there exists a
natural injective homomorphism

N/UNN < V/U.
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Since C is a full formation, it follows that [N/JUNN]e(C. Hence

Ne,4 :NC,A NN = ﬂ m (UQN) DKNﬁc.
NCV <4 U=V

open open
[v/Ulec
Conversely, let H < N be an open normal subgroup such that [N/H]eC.
Then H is a closed subgroup of A4, and thus

H= (] W.

HCW <4

open

If W satisfies the condition that H C W < A4, then
open
HC ﬂ n'Wn=N - ﬂ n~'Wn,
neN neN

and (,.y 7 'Wn is an open subgroup of A. [Indeed, since W is an open
subgroup of 4, it follows immediately that there are only finitely many con-
jugates of W in 4.] Therefore, by replacing W by (,.y n~ ' Wn, we conclude

that
H= (] W.
HCW < 4
open
W<N-W
Now let W be an open subgroup of A4 such that H C W and W =N - W.
Then N - W is an open subgroup of A4 containing N, and there exist natural

homomorphisms
N/H—N/NNW S N-W/W,

where the first arrow is a surjection, and the second one is an isomorphism.
[Note that NNW=N.] Since C is a full formation, it follows that
[N-W/W]eC. Therefore

Kve= () [) W2 Nea
H=N HCW <4

open open

[N/H|eC W=N-W
Hence N¢ 4 = Ky,¢. In particular, N¢ 4 is in fact independent of the group 4
containing N.

PrOPOSITION 3.4. Let X be a hyperbolic curve over an algebraically closed
field k of characteristic p >0 with étale fundamental group Iy, U=a1Ily an
open normal subgroup;, ¢ # p a prime number. Then the natural action of
Iy /U on U™’ induced by conjugation is faithful.
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ProOOF. Write Y — X for the finite Galois covering corresponding to
U=1IIy [so Y is also a hyperbolic curve over k]. Then I7y/U may be nat-
urally identified with Aut(Y/X), and U*/ with /7>, Under these identi-
fications, the natural action I7y/U ~ U2’ coincides with the natural action

Aut(Y/X) ~ T3

[Note that the choice of a base point for Y is not a matter of concern since
we are only interested in the present discussion in abelianizations.]

Suppose that idy # o € Aut(Y /X) acts trivially on 17 ?,b’/. Write ¢ for the
extension of ¢ to Y°P.

Case 1: gy > 2. The existence of the natural surjection

ab,/ ab,/
Iy — Iy

and natural isomorphisms
Homcom(ﬂibcgf,lf(l)) =~ HL (YU Z,(1)) = T,(Pic’ (YY)

implies that the natural action of & on T,(Pic®(Y°)) is trivial. Here,
“Homyy” denotes the group of continuous homomorphisms of topological
groups, “Pic’” denotes the Picard group of invertible sheaves of degree 0,
and “T,” denotes the /-adic Tate module of an abelian group. Thus, by the
Lefschetz-Weil fixed point formula, the number n of fixed points of &, counted
with their multiplicities, is

n=1-TrG|T,(Pic"(YP))) +1=2—2gy <0,

which is a contradiction. [This argument is based on the argument of [DM],
Lemma 1.14.]

Case 2: gy =0. We may assume without loss of generality that
yert = ]P,lc. Note that since Y is hyperbolic, it is an affine curve, and
Y°P'\'Y consists of three or more points. We claim that ¢ fixes each point
of Y\ Y. By [MT], Proposition 5.2 (v), there exists a natural exact sequence

0— Homcom(nycm, Q/(l)) — Homcont(HY7 Q/(l))
- @ Q — Hi(Y™ Q1) — Hi(Y,Q(1)).

Peyo\Y
In our case, we can rewrite this sequence as follows:
ab,/ ab,/
0— Homcont(n;cpt ) Q/(l)) - Homcont<H; , Q/(l))

v
L@ Qer-Q—0,

PeYo\Y
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where ep is the 1€ @Q, in the direct summand corresponding to Pe YP'\'Y,
and ¢ is the codiagonal morphism, i.e., the homomorphism that sends each ep
to 1 € Q,. Then ¢ acts naturally on @Pe ye\ ¥ Q,ep by permutation of the ep.
Write ¢* for the automorphism of (—Dpeycm\y(l)/ep induced by . Then, for
each Pe Y\ Y,

7" (es(p) — ep) = ep — e5-1(p).-

However, since e;p) —ep ekery =im ¢ and ¢ acts trivially on I7 ayb"/, hence
also trivially on im ¢, we have

€p — €5-1(p) = 5'*(85@) —ep) = €s(p) — €p.

This implies that P = G(P). Hence & fixes each point of Y*'\'Y, so g is an
automorphism of P, which has three or more fixed points. Thus G = idpr,
which is a contradiction.

Case 3: gy = 1. Note that since Y is hyperbolic, it is an affine curve.
By a similar argument to the argument given in Case 1, the number n of fixed
points of &, counted with their multiplicities, is

n=2-2gy=0.

Therefore ¢ has no fixed point. However, by a similar argument to the
argument given in Case 2, ¢ fixes each point of Y°P'\Y # @f. This is a
contradiction. O

PrOPOSITION 3.5. Let X be a hyperbolic curve over an algebraically closed
field k of characteristic p > 0 with étale fundamental group A; N A4 a closed
normal subgroup; C a full formation such that X¢ # {p}. Then A/N¢ 4 is slim.

Proor. Fix a prime number /€ Xo\{p} # &. Let UaA4/Ng 4 be an
open normal subgroup. Suppose that Z(U) = Zy(U) contains an element u
which is not the identity element. Then there exists an open normal subgroup
V<24 such that u¢ V=2 U. Write U [resp. V] for the inverse image of U
[resp. V'] under the natural quotient map 4 — A/N¢ 4. Then U is isomorphic
to the étale fundamental group of a hyperbolic curve over k. Clearly the
natural homomorphism U/V — U/V is an isomorphism of groups, and since C
is a full formation such that / € ¢, the natural homomorphism V2"’ — Jab/
is an isomorphism of profinite groups. Therefore, by Proposition 3.4, the nat-
ural action U/V ~ V2 induced by conjugation is faithful. Since u e Z(U),
umod V acts trivially on 2>/, This contradicts the assumption that u ¢ V.
Thus Z(U) = {1}. Hence 4/N¢ 4 is slim, as desired. O

DEerINITION 3.6. Let G be a profinite group. Then we shall write Op(G)
for the set of conjugacy classes of open subgroups of G.
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Observe that Aut(G) acts naturally on Op(G), and Inn(G) is contained in
the kernel of this action. In particular, we obtain a natural homomorphism
Out(G) — Sym(Op(G)).

LemMA 3.7. Let G be a profinite group and o an automorphism of G acting
trivially on Op(G). Then for every closed subgroup H of G, there exists an
element g€ G such that

o(H) =g 'Hy.

In other words, a acts trivially on the set of conjugacy classes of closed subgroups
of G.

Proor. Let A denote the set of open subgroups of G containing H.
Then A is a directed set with respect to inclusion. For every U € A, by our
assumption, there exists an element gy € G such that o(U) = g;' Ugy. Thus
the map

A— G
U gu

determines a “net” in G. Since G is compact, there exists a subnet B — G
converging to some element g € G. Next, fix Ve B. For every W e B con-
tained in V,

gwo(H)gy! C gwo(W)gy! =W C V,
9w Hgw C gy Waw = a(W) C a (V).

Taking the limit, we obtain

go(H)g™' C V,
g 'Hg ca(V).
Thus
o(H)C ()9~ 'Vg=g'Hy,
VeB
g'Hg C () a(V) =o(H),
VeB
hence o(H) = g~'Hy, as desired. O

THEOREM 3.8. Let X be a hyperbolic curve over an algebraically closed
field of characteristic p >0 with étale fundamental group A; N 24 a closed
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normal subgroup; C a full formation such that X. # {p}. Set A" := A/Ng¢ 4.
Then the homomorphism

Out(4*) — Sym(Op(4*))
is injective.

ProOF. Let ¢ be an automorphism of A* that acts trivially on Op(4%)
and 7€ X¢\{p}. Set

A:={U=4"|U is open}.

Then A is a directed set with respect to inclusion.

For each U e A, ¢ acts naturally on U and thus on U’  Let Y
denote the automorphism induced by ¢ on U®’. Note that U’ is a free
Z,-module of rank > 2. Let

gy A7 /U — Aut(U™’) (= GL4(Z,) for some integer d > 2)

be the action induced by conjugation, which, by Proposition 3.4 and a similar
argument to the argument applied to prove Proposition 3.5, is injective.

Let {gu.1,...,9u.n} C 4" be a complete system of representatives of 4/ U,
where n := [4" : U]. For ge 4", write g for the image of g in 4*/U. Write
)vgi), . J.Ef) for the eigenvalues of the automorphism on U2/ ®z, Q, induced
by (6Y)7" opy(du.i); Wl(i>,...,WSE.i) for the corresponding eigenspaces.

Now for every Z,-submodule V' of rank 1 of U*’ by Lemma 3.7,

g’ (V) =ou(du.i,)V)
for some iy € {1l,...,n}. This shows that

Uab‘/ ®Z/ Q/ — U I/I/j(l)
i,j

Since @, is an infinite field, this implies that U™’ ®4 Q, = Wj(i) for some
i, j. Since U™ C U™’ ®z, Q,, we conclude that (¢Y)"" oy (gy ;) is mul-
tiplication by /1](’). In particular, (7Y)" 0 gy (gy.;) € Sc(Aut(U*)), where
we write Sc(—) for the subgroup given by multiplication by elements of
Z;. This shows that, if we denote by fy the following composite map of
sets

) SUV oo
A — 47U 2% AUt ) T2 Auuan),
then

Cu = fy' (Se(Aut(U™))) # &.
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Since fy is continuous, Cy is closed in 4*. Moreover, one verifies easily that
if U, U, € A such that U, C U,, then Cy, C Cy,. [Indeed, if g € Cy,, then

(@) opy (9Un)

is multiplication by some A€ Z/. The inclusion U; C U, induces a Z,-linear
map U™’ — U™, whose image is open. Clearly (5%2) " 0 ¢y, (gUs) acts on
the image of this linear map by multiplication by 4. Since any two automor-
phisms of a finite free Z,-module coincide if and only if they coincide on an
open submodule of the module, we thus conclude that (6U2)71 o @y, (gla) is
multiplication by /4, hence that g € Cy,.] Since 4™ is compact, we thus con-

clude that (N, .4, Cuv # &. Let ge Nyecy Cu. Then
@Y) " 0 py(g) € Sc(Aut(U™7)) C Z(Aut(U™7))
for all Ue A. In particular, for any he 4™,

@) opy(@) o pu(h) = py(h)o (V)" o py(),

hence

ou(gh) = pu(9) o pu(h) = (@) e py(h) 0 (6Y) " 0 9y () = pu(a(h)g).
Since ¢, is injective, this implies that a(h)gh~'g~' e U. Since Ny, U = {1},
we conclude that a(h)gh~'g~' =1, i.e., a(h) = ghg~'. Thus & is an inner auto-
morphism, as desired. ]

4. Belyi injectivity for outer representations
In this section, we prove Theorem B.

DErFINITION 4.1, Let k be a field, k an algebraic closure of k, and X a
smooth geometrically connected curve over k. Write Ay for the étale fun-
damental group of X := X x; k [relative to some choice of base point]. Let g
be a nonnegative integer. Write

Nyx= () U Nex= [] U
U < Ay U<y

open open

gu=yg Ju=g
Thus N, y and N., y are closed normal subgroups of /7y, hence also of Ay.

REMARK 4.2. Let k be an algebraically closed field of characteristic 0
and K/k a field extension such that K is also an algebraically closed field.
Further let X be a smooth connected curve over k. As is well-known [cf., e.g.,
assertion (a) of the proof of [Mzkl, Proposition 2.3]], base-change from k to K
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yields an isomorphism 7y, = [Ty [for suitable choices of base points]. For
each integer g > 0, this isomorphism clearly maps N, x, onto Ny y and N<, v,
onto N.y4 y. In particular, Ny y and N, y are independent of the algebrai-
cally closed base field over which one considers X.

Next, recall that we have [for suitable choices of base points] a natural
short exact sequence

1 > dy - Iy — G — 1.

For a closed normal subgroup N of A4y which is also normal in ITy, we can
construct a new short exact sequence:

l - A4y/N — IIxy/N — Gy — 1.
Thus we obtain an outer representation
Pr.n : Gk — Out(4x/N).

The goal of this section is to show [cf. Theorem 4.14 below| that ker p y
is equal to the kernel of the natural restriction homomorphism [which is well-
defined up to composition with an inner automorphism]

G — Gq

if X =1P}\{0,1,00} and N is contained in Ny .
To ensure the nontriviality of this result, we prove the following.

LemMmA 4.3. Let k be an algebraically closed field of characteristic 0, X
a smooth curve over k of type (0,r) with r >3, and g a nonnegative integer.
Then N.y:=N<4x # {1}

To prove Lemma 4.3, we use the following theorem, which, prior to its
proof, was known as the Guralnick-Thompson Conjecture [cf. [FM]].

THEOREM 4.4. For each nonnegative integer g, there exists a finite set
E(g) of isomorphism classes of finite simple groups such that if X is a compact
Riemann surface of genus ¢, ¢ : X — IP(}j is a finite branched cover, and S is
a nonabelian composition factor of the monodromy group Mon(X,¢) of (X, ¢)
[¢f- Remark 4.5 below ], then either S is isomorphic to an alternating group, or
S belongs to a class of £(g).

REMARK 4.5. The monodromy group of a finite branched cover ¢ : ¥ — X
of Riemann surfaces with respect to a base point x € X which is not a branch
point of ¢ is the image of the natural homomorphism

m1(X;x) — Sym(q~'(x)).



76 Hiroyuki WATANABE

Since, as is well-known, any finite branched cover of a Riemann surface that
arises from an algebraic curve is itself algebrizable, we may restate the above
theorem as follows:

For each nonnegative integer g, there exists a finite set £(g) of iso-
morphism classes of finite simple groups such that if X is a smooth
curve over C of genus g, D C ]P(1D is a closed subset, ¢ : X — IP&T\D
is a finite étale morphism with Galois closure ¥ — P}, and S is a
nonabelian composition factor of Aut(Y/IPL) = IT Pl /Iy, then either
S is isomorphic to an alternating group, or S belongs to a class of

&(g)-

Proor (Lemma 4.3). By Remark 4.2, we may assume that k = C. For
each integer i, let £(i) be as in Theorem 4.4, and write

Since there are infinitely many simple groups that are neither cyclic nor iso-
morphic to an alternating group [such as the projective special linear groups
PSLy(IF,), for p > 5], there exists a finite simple group G such that G is neither
cyclic, alternating, nor isomorphic to a group that determines a class of £,,.
Since the genus of an open normal subgroup of I7xy can be arbitrarily large
[cf. our assumption that r > 3], there exists an open normal subgroup V of ITy
such that the rank of V as a free profinite group is > |G|. [Note that any open
subgroup of ITy is a free profinite group of finite rank.] Let V' — G be a
surjection [which exists in light of our assumption on the rank of V" as a free
profinite group] and write W for the kernel of this surjection.

Now suppose that No, = {1}. Then N, C W, and thus it follows from
the compactness of ITy\W that there exist open subgroups Ui,..., U, of
Iy such that gy, <g and Mj>; U; C W. Let U™ denote the normal core
Noerry a’lUja of U;. For a finite group G, write CF(G) for the set of iso-
morphism classes of composition factors of G. By considering the short exact
sequence

1 N Ulllor/mjzl (]jnor N HX/O/'Z] anor N HX/Ulnor — 1
and applying the Jordan-Holder theorem, we conclude that
CF(IIx /0= U) = CF(IIx /UP) U CE (U /0y>1 U).
Since

Ulnor/mjzl anor ~ (Ulnor . mjzz anor)/mj22 anor
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and
(UM Miz2 U) [y U S My /020 U,
we conclude that
CE(U /Nj=1 Uj) € CF(Ix /N2 U™)
and hence
CF(IIx /M1 U™) C CE(ITx /U") U CF (1 x /M2 US).
Thus, by applying induction on n, we conclude that

CF(Ix/Mj=1 UM™) C | J CF(ITx/UM).

Jj=1
In particular,
CF(IIx/Mj=1 U™) CCUAUE,

where we write C for the set of isomorphism classes of finite simple cyclic
groups and A for the set of isomorphism classes of alternating groups.
Since M1 U= W=V =1ly, G appears as a composition factor of
ITx/Nj>1 UP®". This contradicts the choice of G. Hence N, # {1}. O

REMARK 4.6. In the pro-/ case, where / is a prime number, the analogue
of Lemma 4.3 is false for g =0. Namely,

N v={1}
Uoénn;’)

gu=0
where U ranges over the open subgroups of I7 §9 such that the genus gy of the
inverse image of U in ITy is 0 [cf. [Al, Theorem 1B]]. On the other hand, if
¢ 1s a prime number distinct from 2, then the analogue of Lemma 4.3 for the
pro-prime-to-/ case holds, i.e.,

N Uv=#{1}
U<
gu<g
for every g € Z-(. Indeed, there are infinitely many isomorphism classes of
finite simple groups which are neither cyclic nor alternating groups, and whose
order is prime to /. [Indeed, consider, for instance, for / # 5, the Suzuki
groups 2B, (22(~V1) e Z.,, whose order is

)

24(/71)142(24(/71)#2 T 1)(22(/71)#1 —1);
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for £ =5, the Chevalley groups G,(5i+2), i € Z>; such that 5i+ 2 is prime
[a condition that holds for infinite many i, by Dirichlet’s theorem on arithmetic
progressions], whose order is

(5i4+2)%((5i +2)° = 1)((5i +2)* = 1) ]

This proves the assertion, by applying a similar argument to the argument
applied in the proof of Lemma 4.3. Note that, as every finite group of odd
order is solvable by the Feit-Thompson theorem, this proof does not work for
/=2.

PropoSITION 4.7. Let k be an algebraically closed field of characteristic
0 and X a smooth curve over k of type (0,r) with r > 3. Write Ny := No x.
Then Iy /Ny is center-free.

Proor. Let ye Z(IIx/Ny). Fix an open subgroup U of ITy of genus 0
and write Y =P{\{Py,..., P} [where Pi,..., P, are distinct k-valued points
of IP}] for the corresponding smooth curve [so U may be identified with ITy].
Then we may naturally identify U?® with the quotient group of the group
ZP, +---+ZP, of formal sums over the set {Py,..., P} by the diagonal
Z- (Pi+---+ P;). For each neZ-y, let f,: IP,l — ]P,i be a cyclic ramified
covering of degree n that is totally ramified over the points P;, P, of the
codomain and unramified over the other points of the codomain. Then the
restriction

fot £ PIN(Py, .. PY) — PI{Py,... P}
is an abelian covering that corresponds to the following subgroup of I73":
(nZP\ 4+ nZPy +ZPs+ - -+ ZP,)/(nZ - (Py + - -- + Py)).

Therefore, by replacing P, P, by various P;, P; and applying the same argu-
ment, we conclude that

() # = {0},

where H ranges over the set of subgroups of I7 ";‘/b which correspond to abelian
coverings of Y of genus 0. From this fact, one verifies immediately that the
natural surjection I7%° = U® — (U /No)™ is an isomorphism. Hence, in par-
ticular, if we write Ny, (U) for the normalizer of U in ITy, then it follows
immediately from Proposition 3.4 that the natural conjugation action

N1, (U)/U = (Ni1,,(U)/No)/(U/No) — Aut((U/No)™)

is injective. [Note that, since Np,(U) is an open subgroup of Iy, it is
isomorphic to the étale fundamental group of a hyperbolic curve over k.|
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Since y € Z(ITx/Ny) C N1, (U)/No = Nz, /n,(U/Ny), it follows that y € U/Ny.

Since
() U=,
gu=0
we conclude that y = 1. Thus ITx/Ny is center-free. O

The following well-known result of Belyi [cf. [Bel], Theorem 4 and its
proof] plays an important role in the proof of Theorem 4.14 below.

THEOREM 4.8 (Belyi). Let @ be an algebraic closure of Q, X a projective
smooth curve over Q, and f:X — IP(}—) a nonconstant morphism. Then there
exists a nonconstant polynomial g € Q[t] over Q such that the composite

S 1l 9l
X = Il’(]—2 — IP(]—2
is unramified over the complement of the points 0, 1, oo in the codomain of g.

To show the main result of this section, we need a few lemmas.

LemMA 4.9. Let k be an algebraically closed field of characteristic 0; X, Y,
Z proper smooth curves over k; fi,f,: X — Y and g,9, : Y — Z nonconstant
morphisms over k satisfying deg fi =deg fo and gy0 fi =gro fo. [Here,
“deg(—)"" denotes the degree of a morphism.] Suppose that there exists a
closed point z e Z such that (gi ofl)fl(z) consists of only one point x € X.
[ Note that x is necessarily a closed point.] Then there exists an automorphism
A of Y over k such that Lo fi = f3, ie., such that the triangles of the diagram

commute.

Proor. The following argument is based on the argument of [Ritt],
Sections III and IV.
We have a commutative diagram of field extensions:

K(X)
K(Y) K(Y)
\ (/
K(Z).
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The existence of an automorphism as asserted in the statement of Lemma 4.9
is equivalent to the condition that 11 (K(Y)) = in(K(Y)).

Since X (resp. Z) is smooth over k, the point x (resp. z) determines a
discrete valuation w on K(X) (resp. v on K(Z)) which is trivial on k. Write
K(X),, (resp. K(Z),) for the completion of K(X) (resp. K(Z)) with respect to
w (resp. v). Since x is the unique point of X lying over z, K(X), is nat-
urally isomorphic to K(X) ®xz K(Z),. By the Cohen structure theorem,
K(Z), is isomorphic to a field of formal Laurent series k((¢)). In par-
ticular, the absolute Galois group of K(Z), is isomorphic to Z. Therefore
K(X),/K(Z), is Galois, and its Galois group is a cyclic group. In particular,
the field extension K(X),/K(Z), has at most one intermediate field of a given
degree over K(Z),. Since [K(X):1(K(Y))]=[K(X):n(K(Y))], we have
1 (K(Y)) ®z) K(Z), = 2(K(Y)) Qk(z) K(Z),. By faithfully flat descent, we
thus conclude that 1(K(Y)) = n(K(Y)), as desired. O

CoRrROLLARY 4.10. Let k be a field of characteristic 0 and fi, f3, g1, 92
nonconstant polynomials in an indeterminate t with coefficients in k satisfying
deg gy =deggsr and g1o fi =goo fo. Then f; =afi +b for some a,bek.

PrOOF. Let k be an algebraic closure of k, and regard fi, f>, g1, g» as
endomorphisms of ]P/%. Note that since deg g; = deg g, and g; o fi =g 0 f, it
follows that deg f; = deg f>. Then (g; o fl)_l(oo) = {00} and thus by Lemma
4.9,

_ah +b
c¢fi+d

fa

for some a,b,c,d € k with ad — bc # 0. Since the left-hand side is a non-
constant polynomial, we may assume that ¢ =0 and d =1. Thus

fr=afi +0b.

Finally, since f; is nonconstant, the k-rationality of the coefficients of f; implies
that a,b e k. O

LemmMa 4.11. Let 1 —-A4—1I1 —G—1 be an exact sequence of
profinite groups and N, M closed subgroups of A which are normal in II.
Write py (resp. py) for the outer representation G — Out(4/N) (resp. G —
Out(4/M)) determined by the exact sequence. Suppose that N C M. Then
ker py C ker p,,.

Proor. Write

Aut’/N(4/N) := {6 € Aut(4/N) |6(M/N) = M/N}



Belyi injectivity on certain quotients 81

and
Out™™N(4/N) := Aut™/N(4/N)/Inn(4/N).
Then py and p,, factor as follows:

Out(4/N)

G —— Out™™(4/N)

T~

Out(4/M).
The assertion follows immediately. O

Write Xgq := ]P(})\{O, 1,00} and Xg = ]P;-z\{O, 1,00}. Recall that, for any
Galois category % and fiber functor F, with associated fundamental group 17
[so F induces an equivalence of categories @ between % and the category of
finite sets on which I7 acts continuously], and any closed normal subgroup
N =211, the equivalence @ induces a natural equivalence between the category
of finite sets on which I7/N acts continuously and the full subcategory of
% whose objects are finite coproducts of connected objects X of & such that
the open subgroup of I7T corresponding to X contains N. Thus we obtain a
natural homomorphism

¥ : Out(4dx, /Ny x,) — Sym({isomorphism classes of connected coverings Y
of X@ with ITy D Ng,XQ})'

TueOREM 4.12. Write Ny := No x,. Then the composite

Pa, N
G Q, Ny Out(4 Xo /No) i Sym({isomorphism classes of connected coverings

Y of Xg with Iy > No})

[¢f. Definition 4.1 and the following discussion] is injective. In particular, pg, v,
is injective.

Proor. The following argument is based on the argument of [Sch],
Section II.

Observe that, by transport of structure, the action of Gg on the set of
isomorphism classes of connected coverings Y of XQ with ITy D Ny can be
described explicitly as follows: For 7€ Gg and [Y] an isomorphism class of
a connected covering ¥ — Xg, VU (7)([Y]) is the class of the base-change of Y
over Xg by the morphism

idy, x (t9) 7" Xg = X
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Let o€ Gy be an element which is not the identity, o e @ such that
o(ax) # o, and f(¢) a polynomial with coefficients in @ whose derivative is
given by 3(r— 1)*(t —«). Then, by Belyi’s theorem [cf. Theorem 4.8], there
exists a polynomial g(¢) with coefficients in @ such that go f is branched at
most over 0, 1, co. Write Y, := (gof)fl(Xq—z) [where we regard g and f as
endomorphisms of ]P;}]' Since Y, has genus 0, ITy, D Ny. Write [Y,] for the
isomorphism class of Y.

Observe that the isomorphism class ¥ o pg v, (9)([Y,]) is represented by

Z:= (g0 /)" (Xg) L X c P,

where [ is a polynomial obtained by applying ¢ to the coefficients of f.
Suppose that ¥ o pg y,(0)([Ys]) = [Ys]. Then there exists an isomorphism /
from Y, to Z over Xgp- Passing to compactifications, we obtain the following
diagram:

1 1 1
ol —

Q

PL

PL PL
Q Q
A
IPQ.
Since 4 is an isomorphism and
{0} =(go /) ()
= (9o f7oh)”!(e0)
=h((go /") ()
=h"!(e0),

we conclude that /2 is a linear polynomial, i.e., /(¢f) =ct+d. Then by
Corollary 4.10, there exist constants a,b € @ such that

fo(ct+d)=af(t)+b.
Differentiating both sides, we obtain
clet+d)(ct+d—1)(ct+d—o(a)) = at>(t — 1)*(t — o).

Comparing the orders of zeroes of both sides of this last relation, we conclude
that o(x) = o, a contradiction. Thus ¥ o pg y,(0)([Ys]) # [Y,], and therefore
Yo pg. N, 1s injective, as desired. O
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COROLLARY 4.13. Let k be a field of characteristic 0. Write

No := No,w;\{o,mo}%
PrNy * Gk = OUt(AJP;,\{o.Loc}/NO)

Jor the outer representation associated to No. Then ker py v, is equal to the
kernel of the natural restriction homomorphism ¢ : Gy — Gg [which is well-
defined up to composition with an inner automorphism |.

Proor. For a field K, write Xg := IP,1<\{0,1,oo} and Ny g = No x,-
Base-changing from @ to k yields a commutative diagram with exact rows:

l —— 4y, —— Iy, Gy 1
I T
] — AXQ — Iy, Go 1.

By Remark 4.2, the left-hand vertical arrow is an isomorphism, and this iso-
morphism maps Ny (= Np) onto Ny . Therefore we obtain a commutative
diagram:

Pk, Ny i

Gy Out(AXk/N()"k)

§ |

(DANO‘Q

p)
Go = Out(AXQ/N()A’Q),

where the right-hand vertical arrow is an isomorphism, and the lower hori-
zontal arrow is injective by Theorem 4.12. Thus ker py, , = ker ¢. |

THEOREM 4.14. Let k be a field of characteristic 0. Write X :=
P\{0,1,0}. Suppose that N is a closed normal subgroup of Ay, which is
also normal in Ily,. Assume that N C Ny x,. Then the kernel of the natural
outer representation

pix ¢ Gi — Out(dx, /N)

is equal to the kernel of the natural restriction homomorphism Gy — Gq [which
is well-defined up to composition with an inner automorphism]. In particular, if
k is either a number field or a p-adic local field for some prime number p, then
Pk, N IS injective.

Proor. First we observe that the various assertions of Theorem 4.14 hold
when N = {1}. Indeed, this follows from a similar argument to the argument
applied to prove Corollary 4.13, together with the original Belyi theorem,
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which asserts that the natural outer representation Gg — Out(4y,) is injective
[cf. [Bel], Corollary to Theorem 4 and the discussion preceding Theorem 1].

Now the various assertions of Theorem 4.14 follow immediately from
Corollary 4.13 and Lemma 4.11. Here, we apply Lemma 4.11 twice, i.c., once
to compare ker p; y to ker p; Nox, and once to compare ker p; 1y to ker py v,
and thus we obtain ker p; 1y C ker py 5 C ker Pk, No O

REMARK 4.15. Note that it follows immediately from Belyi’s Theorem
[cf. Theorem 4.8] that

Ny := Ny x, C No,x, = No

for every g € Z-(. In particular, it follows from Theorem 4.14 that the kernel
of the natural outer representation

G — Out(4dyx, /Ny)

is equal to the kernel of the natural restriction homomorphism Gy — Gy.
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