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Abstract. In the present paper, we study certain quotients of the étale fundamental

group of a hyperbolic curve over a field. We prove that the action of the outer auto-

morphism group of a certain quotient of the étale fundamental group of a hyperbolic

curve over an algebraically closed field on its conjugacy classes of open subgroups is

faithful. Also, we prove that, if k is either a number field or a p-adic local field, then

the outer Galois representation associated to a certain quotient of the geometric funda-

mental group of P1
knf0; 1;yg is injective.
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1. Introduction

Anabelian geometry is an area of arithmetic geometry in which one studies

how much information about a variety is contained in its étale fundamental

group or, equivalently, in the category of finite étale coverings of the variety.

In the present paper, we study certain quotients of the étale fundamental

group of a hyperbolic curve over a field. This amounts to studying certain

types of full sub-Galois categories of the Galois category of finite étale coverings

of such a curve.

The full sub-Galois categories we will treat have less information than the

original Galois category, but satisfy some properties which hold for the original

Galois category.
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If k is a field with algebraic closure k and X a geometrically connected

scheme of finite type over k, then there is a natural exact sequence of étale

fundamental groups:

1! p1ðXk
Þ ! p1ðX Þ ! p1ðSpec kÞ ! 1:

Note that p1ðSpec kÞ is naturally isomorphic, up to inner automorphism, to

the absolute Galois group Gk of k. Thus, this exact sequence induces a group

homomorphism [cf. § 2]

r : Gk ! Outðp1ðXk
ÞÞ:

Belyi proved in [Bel], Corollary to Theorem 4 [cf. also [Bel], the discussion

preceding Theorem 1], that, if k is a number field and X ¼ P1
knf0; 1;yg, then

r is injective. This injectivity plays an important role in various aspects of

anabelian geometry and the study of the Grothendieck-Teichmüller group.

Belyi proved the injectivity of r by showing that the composite

Gk ! Outðp1ðXk
ÞÞ ! SymðOpðp1ðXk

ÞÞÞ

[cf. the explanation of notation given below] is injective. This approach to

proving the injectivity of r motivated Theorems A and B of the present paper.

Next, we introduce some notation.

A full formation [cf. Definition 3.1] is a set of isomorphism classes of

finite groups which contains a class distinct from the class of trivial groups, and

which is closed under the operations of passing to subgroups, quotients, and

extensions.

Let D be a profinite group and C a full formation. For a closed normal

subgroup NtD, we construct another closed normal subgroup NC;D tD [cf.

Definition 3.2] as follows:

NC;D :¼
\

N�V a
open

D

\
U t

open
V

½V=U � AC

U ;

where ½V=U � denotes the isomorphism class of V=U [cf. Definition 3.1]. We

shall write SC [cf. Definition 3.1] for the set of prime numbers l such that

½Z=lZ� A C.
Let G be a profinite group. We shall write OpðGÞ [cf. Definition 3.6]

for the set of conjugacy classes of open subgroups of G. Then AutðGÞ acts
naturally on OpðGÞ, and InnðGÞ is contained in the kernel of this action. In

particular, we obtain a natural homomorphism

OutðGÞ ! SymðOpðGÞÞ:

Our first main result is the following [cf. Proposition 3.5 and Theorem 3.8].
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Theorem A. Let X be a hyperbolic curve over an algebraically closed field

of characteristic pb 0 with étale fundamental group D; NtD a closed normal

subgroup; C a full formation such that SC 0 fpg. Set D� :¼ D=NC;D. Then D�

is slim [cf. § 2], and the homomorphism

OutðD�Þ ! SymðOpðD�ÞÞ

is injective.

In the present paper, we also prove that the absolute Galois group of Q
can be embedded in the outer automorphism group of certain nontrivial quo-

tient groups of p1ðP1
Qnf0; 1;ygÞ.

Let k be a field of characteristic 0 with algebraic closure k. If N is a closed

normal subgroup of p1ðP1
k
nf0; 1;ygÞ which is also normal in p1ðP1

knf0; 1;ygÞ,
then we obtain a short exact sequence of profinite groups

1! p1ðP1
k
nf0; 1;ygÞ=N ! p1ðP1

knf0; 1;ygÞ=N ! Galðk=kÞ ! 1:

This exact sequence induces an outer Galois representation

rk;N : Galðk=kÞ ! Outðp1ðP1
k
nf0; 1;ygÞ=NÞ:

Let N0 [cf. Definition 4.1] denote the intersection of open subgroups U of

p1ðP1
k
nf0; 1;ygÞ such that the finite étale covering of P1

k
nf0; 1;yg correspond-

ing to U is of genus 0.

Our second main result is the following [cf. Proposition 4.7 and Theorem

4.14]. Note that, as N0 0 f1g [cf. Lemma 4.3], this is a nontrivial result.

Theorem B. Assume that N � N0. Then p1ðP1
k
nf0; 1;ygÞ=N0 is center-

free, and the kernel of the natural outer representation

rk;N : Galðk=kÞ ! Outðp1ðP1
k
nf0; 1;ygÞ=NÞ

is equal to the kernel of the natural restriction homomorphism Galðk=kÞ !
GalðQ=QÞ, where Q denotes the algebraic closure of Q in k. In particular, if

k is either a number field or a p-adic local field for some prime number p, then

rk;N is injective.

2. Notations and conventions

Sets: Let S be a set. Then we shall write jSj for the cardinality of S.

We shall write SymðSÞ for the group of permutations of S, i.e., the group of

bijections S !@ S.

Numbers: The notation Q will be used to denote the field of rational

numbers. The notation Z will be used to denote the set, group, or ring of
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rational integers. For a prime number l, the notation Zl will be used to

denote the ring of l-adic integers. The notation Ql will be used to denote the

field of l-adic numbers. A finite extension field of Q (resp. Ql) will be referred

to as a number field (resp. an l-adic local field).

Topological groups: Let G be a group and HaG a subgroup. Then

we shall write ZGðHÞ for the centralizer of H in G and ZðGÞ :¼ ZGðGÞ for the
center of G. We shall say that G is center-free if G has trivial center, i.e.,

ZðGÞ ¼ f1g.
Let G be a group. Then we shall write ĜG for the profinite completion of

G, i.e., the inverse limit of quotient groups G=H of G, where H is a normal

sugbroup of finite index in G.

We shall say that a profinite group G is slim if the centralizer ZGðUÞ of
any open subgroup U aG in G is trivial. A profinite group G is slim if and

only if every open subgroup of G has trivial center [cf. [Mzk2], Remark 0.1.3].

Let G be a profinite group and U an open subgroup. Then we shall refer

to

U nor :¼
\
g AG

g�1Ug

as the normal core of U in G. We shall write G ab for the abelianization of G,

i.e., the quotient of G by the closure of the commutator subgroup of G. Let p

be a prime number. Then we shall write

G ðpÞ

for the maximal pro-p quotient of G, i.e., the quotient of G by the intersection

of all open normal subgroups U tG such that G=U is a p-group;

G ab;p

for the maximal abelian pro-p quotient of G, i.e., the abelianization of G ðpÞ, or

equivalently, the maximal pro-p quotient of G ab;

G ðpFÞ

for the maximal pro-prime-to-p quotient of G, i.e., the quotient of G by the

intersection of all open normal subgroups U tG whose index in G is prime

to p.

Let G be a profinite group. Then we shall write AutðGÞ for the group of

automorphisms of the profinite group G. Conjugation by elements of G deter-

mines a homomorphism G ! AutðGÞ whose image InnðGÞaAutðGÞ is the

normal subgroup of AutðGÞ consisting of the inner automorphisms of G. We

shall write OutðGÞ :¼ AutðGÞ=InnðGÞ for the outer automorphism group of G.
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Let

1! D! P ! G ! 1

be an exact sequence of profinite groups. Then conjugation in P by liftings

of elements of G determines a homomorphism

r : G ! OutðDÞ:

We shall refer to this homomorphism r as the outer representation determined

by the exact sequence 1! D! P ! G ! 1.

Schemes: If x is a point of a scheme X , then we shall write kðxÞ for the

residue field of x. If X is an integral scheme, then we shall write KðXÞ for the
function field of X , i.e., the residue field of the generic point of X .

Let X be a noetherian connected scheme and x a geometric point. Then

we shall write p1ðX ; xÞ for the étale fundamental group of X relative to the base

point x. We shall write PX for the étale fundamental group of X relative to

some choice of base point. If X is geometrically connected and of finite type

over a field k, and k is an algebraic closure of k that is fixed throughout

the discussion, then we shall write DX :¼ P
X�kk

for the geometric fundamental

group of X [relative to k].

Let k be a field. Then we shall write Gk for the absolute Galois group of k

relative to some choice of separable closure K of k. Here, we recall that Gk is

determined up to inner automorphism by k, i.e., independently of the choice of

separable closure of k, and that there is a natural outer isomorphism

Gk !@ PSpec k:

Curves: Let k be a field. Then we shall say that X is a smooth curve

over k if X is a scheme of dimension 1 that is separated, geometrically con-

nected, of finite type, and smooth over k. Recall that if X is a smooth curve

over k, then there exist a smooth projective curve X cpt over k and an open

immersion i : X ,! X cpt. Such a pair ðX cpt; iÞ is unique up to unique isomor-

phism. We shall refer to this X cpt [and i] as the compactification of X . We

shall say that a smooth curve X over k is of type ðg; rÞ if X cpt is of genus g,

and the closed subset X cptnX of X cpt equipped with the reduced induced

subscheme structure is finite étale of degree r over k. A hyperbolic curve over

k is a smooth curve over k of type ðg; rÞ such that 2g� 2þ r > 0. Note that

a smooth curve over an algebraically closed field of type ðg; rÞ is hyperbolic

if and only if ðg; rÞ is not equal to one of the following: ð0; 0Þ; ð0; 1Þ; ð0; 2Þ;
ð1; 0Þ. If X is a smooth curve over k and U aPX is an open subgroup, then,

we define the genus gU of U to be the genus of the isomorphism class of finite

étale coverings of X determined by the conjugacy class of U .

67Belyi injectivity on certain quotients



3. Faithfulness of the action on conjugacy classes of open subgroups

In this section, we prove Theorem A.

Definition 3.1. Let G denote the set of isomorphism classes of finite

groups. [Here, we observe that G is indeed a set.] For a finite group G, we

shall write ½G� for the isomorphism class to which G belongs. A subset C of

G is called a formation if it contains the class of trivial groups [i.e., groups

with only one element]. A formation C is said to be nontrivial if it contains

some class di¤erent from the class of trivial groups. A nontrivial formation

C is said to be a full formation if it is closed under the operations of passing to

subgroups, quotients, and extensions. Let C be a formation. Then we shall

write SC for the set of prime numbers l such that ½Z=lZ� A C. Note that if C is

a full formation, then SC is nonempty, and l A SC if and only if C contains all

isomorphism classes of finite l-groups.

Definition 3.2. Let D be a profinite group and C a formation. If NtD

is a closed normal subgroup, then we define:

NC;D :¼
\

N�V a
open

D

\
U t

open
V

½V=U � AC

U :

Note that NC;D is a closed normal subgroup of D contained in N.

Remark 3.3. Note that NC;D � N. Indeed,

NC;D ¼
\

N�V a
open

D

\
U t

open
V

½V=U � AC

U �
\

N�V a
open

D

V ¼ N:

Furthermore, NC;D coincides with the kernel KN;C of the natural map from N

to its maximal pro-C quotient. Indeed, N is a closed subgroup of the profinite

group D, hence is itself a profinite group, so it makes sense to consider the

maximal pro-C quotient of N. By definition,

KN;C ¼
\

H t
open

N

½N=H� AC

H:

If V and U are open subgroups of D satisfying N � V aD, U tV , and

½V=U � A C, then U \N is an open normal subgroup of N, and there exists a

natural injective homomorphism

N=U \N ,! V=U :
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Since C is a full formation, it follows that ½N=U \N� A C. Hence

NC;D ¼ NC;D \N ¼
\

N�V a
open

D

\
U t

open
V

½V=U � AC

ðU \NÞ � KN;C :

Conversely, let HaN be an open normal subgroup such that ½N=H� A C.
Then H is a closed subgroup of D, and thus

H ¼
\

H�W a
open

D

W :

If W satisfies the condition that H �W a
open

D, then

H �
\
n AN

n�1WntN �
\
n AN

n�1Wn;

and
T

n AN n�1Wn is an open subgroup of D. [Indeed, since W is an open

subgroup of D, it follows immediately that there are only finitely many con-

jugates of W in D.] Therefore, by replacing W by
T

n AN n�1Wn, we conclude

that

H ¼
\

H�W a
open

D

WtN�W

W :

Now let W be an open subgroup of D such that H �W and W tN �W .

Then N �W is an open subgroup of D containing N, and there exist natural

homomorphisms

N=H !! N=N \W !@ N �W=W ;

where the first arrow is a surjection, and the second one is an isomorphism.

[Note that N \W tN.] Since C is a full formation, it follows that

½N �W=W � A C. Therefore

KN;C ¼
\

H t
open

N

½N=H� AC

\
H�W a

open
D

WtN�W

W � NC;D:

Hence NC;D ¼ KN;C . In particular, NC;D is in fact independent of the group D

containing N.

Proposition 3.4. Let X be a hyperbolic curve over an algebraically closed

field k of characteristic pb 0 with étale fundamental group PX ; U tPX an

open normal subgroup; l0 p a prime number. Then the natural action of

PX=U on U ab;l induced by conjugation is faithful.
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Proof. Write Y ! X for the finite Galois covering corresponding to

U tPX [so Y is also a hyperbolic curve over k]. Then PX=U may be nat-

urally identified with AutðY=X Þ, and U ab;l with P ab;l
Y . Under these identi-

fications, the natural action PX=U 1 U ab;l coincides with the natural action

AutðY=X Þ1 P ab;l
Y :

[Note that the choice of a base point for Y is not a matter of concern since

we are only interested in the present discussion in abelianizations.]

Suppose that idY 0 s A AutðY=XÞ acts trivially on P ab;l
Y . Write ~ss for the

extension of s to Y cpt.

Case 1: gY b 2: The existence of the natural surjection

P ab;l
Y !! P ab;l

Y cpt

and natural isomorphisms

HomcontðP ab;l
Y cpt ;Zlð1ÞÞGH 1

�eetðY cpt;Zlð1ÞÞGTlðPic0ðY cptÞÞ

implies that the natural action of ~ss on TlðPic0ðY cptÞÞ is trivial. Here,

‘‘Homcont’’ denotes the group of continuous homomorphisms of topological

groups, ‘‘Pic0’’ denotes the Picard group of invertible sheaves of degree 0,

and ‘‘Tl’’ denotes the l-adic Tate module of an abelian group. Thus, by the

Lefschetz-Weil fixed point formula, the number n of fixed points of ~ss, counted

with their multiplicities, is

n ¼ 1� Trð~ss jTlðPic0ðY cptÞÞÞ þ 1 ¼ 2� 2gY < 0;

which is a contradiction. [This argument is based on the argument of [DM],

Lemma 1.14.]

Case 2: gY ¼ 0: We may assume without loss of generality that

Y cpt ¼ P1
k . Note that since Y is hyperbolic, it is an a‰ne curve, and

Y cptnY consists of three or more points. We claim that ~ss fixes each point

of Y cptnY . By [MT], Proposition 5.2 (v), there exists a natural exact sequence

0! HomcontðPY cpt ;Qlð1ÞÞ ! HomcontðPY ;Qlð1ÞÞ

! 0
P AY cptnY

Ql ! H 2
�eetðY cpt;Qlð1ÞÞ ! H 2

�eetðY ;Qlð1ÞÞ:

In our case, we can rewrite this sequence as follows:

0! HomcontðP ab;l
Y cpt ;Qlð1ÞÞ ! HomcontðP ab;l

Y ;Qlð1ÞÞ

!j 0
P AY cptnY

QleP !
c

Ql ! 0;

70 Hiroyuki Watanabe



where eP is the 1 A Ql in the direct summand corresponding to P A Y cptnY ,

and c is the codiagonal morphism, i.e., the homomorphism that sends each eP
to 1 A Ql. Then ~ss acts naturally on 0

P AY cptnY QleP by permutation of the eP.

Write ~ss� for the automorphism of 0
P AY cptnY QleP induced by ~ss. Then, for

each P A Y cptnY ,

~ss�ðe~ssðPÞ � ePÞ ¼ eP � e~ss�1ðPÞ:

However, since esðPÞ � eP A ker c ¼ im j and ~ss acts trivially on P ab;l
Y , hence

also trivially on im j, we have

eP � e~ss�1ðPÞ ¼ ~ss�ðe~ssðPÞ � ePÞ ¼ e~ssðPÞ � eP:

This implies that P ¼ ~ssðPÞ. Hence ~ss fixes each point of Y cptnY , so ~ss is an

automorphism of P1
k which has three or more fixed points. Thus ~ss ¼ idP1

k
,

which is a contradiction.

Case 3: gY ¼ 1: Note that since Y is hyperbolic, it is an a‰ne curve.

By a similar argument to the argument given in Case 1, the number n of fixed

points of ~ss, counted with their multiplicities, is

n ¼ 2� 2gY ¼ 0:

Therefore ~ss has no fixed point. However, by a similar argument to the

argument given in Case 2, ~ss fixes each point of Y cptnY 0q. This is a

contradiction. r

Proposition 3.5. Let X be a hyperbolic curve over an algebraically closed

field k of characteristic pb 0 with étale fundamental group D; NtD a closed

normal subgroup; C a full formation such that SC 0 fpg. Then D=NC;D is slim.

Proof. Fix a prime number l A SCnfpg0q. Let U tD=NC;D be an

open normal subgroup. Suppose that ZðUÞ ¼ ZUðUÞ contains an element u

which is not the identity element. Then there exists an open normal subgroup

V tD such that u B V tU . Write ~UU [resp. ~VV ] for the inverse image of U

[resp. V ] under the natural quotient map D!! D=NC;D. Then ~UU is isomorphic

to the étale fundamental group of a hyperbolic curve over k. Clearly the

natural homomorphism ~UU= ~VV ! U=V is an isomorphism of groups, and since C

is a full formation such that l A SC , the natural homomorphism ~VV ab;l ! V ab;l

is an isomorphism of profinite groups. Therefore, by Proposition 3.4, the nat-

ural action U=V 1 V ab;l induced by conjugation is faithful. Since u A ZðUÞ,
u mod V acts trivially on V ab;l. This contradicts the assumption that u B V .

Thus ZðUÞ ¼ f1g. Hence D=NC;D is slim, as desired. r

Definition 3.6. Let G be a profinite group. Then we shall write OpðGÞ
for the set of conjugacy classes of open subgroups of G.
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Observe that AutðGÞ acts naturally on OpðGÞ, and InnðGÞ is contained in

the kernel of this action. In particular, we obtain a natural homomorphism

OutðGÞ ! SymðOpðGÞÞ:

Lemma 3.7. Let G be a profinite group and s an automorphism of G acting

trivially on OpðGÞ. Then for every closed subgroup H of G, there exists an

element g A G such that

sðHÞ ¼ g�1Hg:

In other words, s acts trivially on the set of conjugacy classes of closed subgroups

of G.

Proof. Let A denote the set of open subgroups of G containing H.

Then A is a directed set with respect to inclusion. For every U A A, by our

assumption, there exists an element gU A G such that sðUÞ ¼ g�1U UgU . Thus

the map

A! G

U 7! gU

determines a ‘‘net’’ in G. Since G is compact, there exists a subnet B ! G

converging to some element g A G. Next, fix V A B . For every W A B con-

tained in V ,

gWsðHÞg�1W � gWsðWÞg�1W ¼W � V ;

g�1W HgW � g�1W WgW ¼ sðWÞ � sðVÞ:

Taking the limit, we obtain

gsðHÞg�1 � V ;

g�1Hg � sðVÞ:

Thus

sðHÞ �
\
V A B

g�1Vg ¼ g�1Hg;

g�1Hg �
\
V A B

sðVÞ ¼ sðHÞ;

hence sðHÞ ¼ g�1Hg, as desired. r

Theorem 3.8. Let X be a hyperbolic curve over an algebraically closed

field of characteristic pb 0 with étale fundamental group D; NtD a closed
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normal subgroup; C a full formation such that SC 0 fpg. Set D� :¼ D=NC;D.

Then the homomorphism

OutðD�Þ ! SymðOpðD�ÞÞ

is injective.

Proof. Let s be an automorphism of D� that acts trivially on OpðD�Þ
and l A SCnfpg. Set

A :¼ fU tD� jU is openg:

Then A is a directed set with respect to inclusion.

For each U A A, s acts naturally on U and thus on U ab;l. Let sU

denote the automorphism induced by s on U ab;l. Note that U ab;l is a free

Zl-module of rankb 2. Let

jU : D�=U ! AutðU ab;lÞ ðGGLdðZlÞ for some integer db 2Þ

be the action induced by conjugation, which, by Proposition 3.4 and a similar

argument to the argument applied to prove Proposition 3.5, is injective.

Let fgU ;1; . . . ; gU ;ng � D� be a complete system of representatives of D�=U ,

where n :¼ ½D� : U �. For g A D�, write g for the image of g in D�=U . Write

l
ðiÞ
1 ; . . . ; lðiÞsi for the eigenvalues of the automorphism on U ab;l nZl

Ql induced

by ðsUÞ�1 � jUðgU ; iÞ; W
ðiÞ
1 ; . . . ;W

ðiÞ
si for the corresponding eigenspaces.

Now for every Zl-submodule V of rank 1 of U ab;l, by Lemma 3.7,

sU ðVÞ ¼ jUðgU ; iV ÞðVÞ

for some iV A f1; . . . ; ng. This shows that

U ab;l nZl
Ql ¼

[
i; j

W
ðiÞ
j :

Since Ql is an infinite field, this implies that U ab;l nZl
Ql ¼W

ðiÞ
j for some

i, j. Since U ab;l � U ab;l nZl
Ql, we conclude that ðsUÞ�1 � jUðgU ; iÞ is mul-

tiplication by l
ðiÞ
j . In particular, ðsUÞ�1 � jUðgU ; iÞ A ScðAutðU ab;lÞÞ, where

we write Scð�Þ for the subgroup given by multiplication by elements of

Z�l . This shows that, if we denote by fU the following composite map of

sets

D� !! D�=U �!jU AutðU ab;lÞ ������!ðsU Þ�1�ð�Þ
AutðU ab;lÞ;

then

CU :¼ f �1U ðScðAutðU ab;lÞÞÞ0q:
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Since fU is continuous, CU is closed in D�. Moreover, one verifies easily that

if U1;U2 A A such that U1 � U2, then CU1
� CU2

. [Indeed, if g A CU1
, then

ðsU1Þ�1 � jU1
ðgU1Þ

is multiplication by some l A Z�l . The inclusion U1 � U2 induces a Zl-linear

map U ab;l
1 ! U ab;l

2 , whose image is open. Clearly ðsU2Þ�1 � jU2
ðgU2Þ acts on

the image of this linear map by multiplication by l. Since any two automor-

phisms of a finite free Zl-module coincide if and only if they coincide on an

open submodule of the module, we thus conclude that ðsU2Þ�1 � jU2
ðgU2Þ is

multiplication by l, hence that g A CU2
.] Since D� is compact, we thus con-

clude that
T

U AA CU 0q. Let g A
T

U AA CU . Then

ðsUÞ�1 � jUðgÞ A ScðAutðU ab;lÞÞ � ZðAutðU ab;lÞÞ

for all U A A. In particular, for any h A D�,

ðsUÞ�1 � jUðgÞ � jUðhÞ ¼ jUðhÞ � ðsUÞ�1 � jUðgÞ;

hence

jUðghÞ ¼ jUðgÞ � jU ðhÞ ¼ ðsUÞ � jUðhÞ � ðsUÞ�1 � jUðgÞ ¼ jUðsðhÞgÞ:

Since jU is injective, this implies that sðhÞgh�1g�1 A U . Since
T

U AA U ¼ f1g,
we conclude that sðhÞgh�1g�1 ¼ 1, i.e., sðhÞ ¼ ghg�1. Thus s is an inner auto-

morphism, as desired. r

4. Belyi injectivity for outer representations

In this section, we prove Theorem B.

Definition 4.1. Let k be a field, k an algebraic closure of k, and X a

smooth geometrically connected curve over k. Write DX for the étale fun-

damental group of X
k
:¼ X �k k [relative to some choice of base point]. Let g

be a nonnegative integer. Write

Ng;X :¼
\

U a
open

DX

gU¼g

U ; Nag;X :¼
\

U a
open

PX

gUag

U :

Thus Ng;X and Nag;X are closed normal subgroups of PX , hence also of DX .

Remark 4.2. Let k be an algebraically closed field of characteristic 0

and K=k a field extension such that K is also an algebraically closed field.

Further let X be a smooth connected curve over k. As is well-known [cf., e.g.,

assertion (a) of the proof of [Mzk1, Proposition 2.3]], base-change from k to K
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yields an isomorphism PXK
!@ PX [for suitable choices of base points]. For

each integer gb 0, this isomorphism clearly maps Ng;XK
onto Ng;X and Nag;XK

onto Nag;X . In particular, Ng;X and Nag;X are independent of the algebrai-

cally closed base field over which one considers X .

Next, recall that we have [for suitable choices of base points] a natural

short exact sequence

1! DX ! PX ! Gk ! 1:

For a closed normal subgroup N of DX which is also normal in PX , we can

construct a new short exact sequence:

1! DX=N ! PX=N ! Gk ! 1:

Thus we obtain an outer representation

rk;N : Gk ! OutðDX=NÞ:

The goal of this section is to show [cf. Theorem 4.14 below] that ker rk;N
is equal to the kernel of the natural restriction homomorphism [which is well-

defined up to composition with an inner automorphism]

Gk ! GQ

if X ¼ P1
knf0; 1;yg and N is contained in N0;X .

To ensure the nontriviality of this result, we prove the following.

Lemma 4.3. Let k be an algebraically closed field of characteristic 0, X

a smooth curve over k of type ð0; rÞ with rb 3, and g a nonnegative integer.

Then Nag :¼ Nag;X 0 f1g.

To prove Lemma 4.3, we use the following theorem, which, prior to its

proof, was known as the Guralnick-Thompson Conjecture [cf. [FM]].

Theorem 4.4. For each nonnegative integer g, there exists a finite set

EðgÞ of isomorphism classes of finite simple groups such that if X is a compact

Riemann surface of genus g, f : X ! P1
C is a finite branched cover, and S is

a nonabelian composition factor of the monodromy group MonðX ; fÞ of ðX ; fÞ
[cf. Remark 4.5 below], then either S is isomorphic to an alternating group, or

S belongs to a class of EðgÞ.

Remark 4.5. The monodromy group of a finite branched cover q : Y ! X

of Riemann surfaces with respect to a base point x A X which is not a branch

point of q is the image of the natural homomorphism

p1ðX ; xÞ ! Symðq�1ðxÞÞ:
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Since, as is well-known, any finite branched cover of a Riemann surface that

arises from an algebraic curve is itself algebrizable, we may restate the above

theorem as follows:

For each nonnegative integer g, there exists a finite set EðgÞ of iso-

morphism classes of finite simple groups such that if X is a smooth

curve over C of genus g, D � P1
C is a closed subset, f : X ! P1

CnD
is a finite étale morphism with Galois closure Y ! P1

C, and S is a

nonabelian composition factor of AutðY=P1
CÞ ¼ PP1

C
=PY , then either

S is isomorphic to an alternating group, or S belongs to a class of

EðgÞ.

Proof (Lemma 4.3). By Remark 4.2, we may assume that k ¼ C. For

each integer i, let EðiÞ be as in Theorem 4.4, and write

Eag :¼
[

0aiag

EðiÞ:

Since there are infinitely many simple groups that are neither cyclic nor iso-

morphic to an alternating group [such as the projective special linear groups

PSL2ðFpÞ, for pb 5], there exists a finite simple group G such that G is neither

cyclic, alternating, nor isomorphic to a group that determines a class of Eag.

Since the genus of an open normal subgroup of PX can be arbitrarily large

[cf. our assumption that rb 3], there exists an open normal subgroup V of PX

such that the rank of V as a free profinite group isb jGj. [Note that any open

subgroup of PX is a free profinite group of finite rank.] Let V !! G be a

surjection [which exists in light of our assumption on the rank of V as a free

profinite group] and write W for the kernel of this surjection.

Now suppose that Nag ¼ f1g. Then Nag �W , and thus it follows from

the compactness of PXnW that there exist open subgroups U1; . . . ;Un of

PX such that gUj
a g and \jb1 Uj �W . Let U nor

j denote the normal core

\s APX
s�1Ujs of Uj. For a finite group G, write CFðGÞ for the set of iso-

morphism classes of composition factors of G. By considering the short exact

sequence

1! U nor
1 =\jb1 U

nor
j ! PX=\jb1 U

nor
j ! PX=U

nor
1 ! 1

and applying the Jordan-Hölder theorem, we conclude that

CFðPX=\jb1 U
nor
j Þ ¼ CFðPX=U

nor
1 Þ [ CFðU nor

1 =\jb1 U
nor
j Þ:

Since

U nor
1 =\jb1 U

nor
j G ðU nor

1 � \jb2 U
nor
j Þ=\jb2 U

nor
j

76 Hiroyuki Watanabe



and

ðU nor
1 � \jb2 U

nor
j Þ=\jb2 U

nor
j tPX=\jb2 U

nor
j ;

we conclude that

CFðU nor
1 =\jb1 U

nor
j Þ � CFðPX=\jb2 U

nor
j Þ

and hence

CFðPX=\jb1 U
nor
j Þ � CFðPX=U

nor
1 Þ [ CFðPX=\jb2 U

nor
j Þ:

Thus, by applying induction on n, we conclude that

CFðPX=\jb1 U
nor
j Þ �

[
jb1

CFðPX=U
nor
j Þ:

In particular,

CFðPX=\jb1 U
nor
j Þ � C [A [ Eag;

where we write C for the set of isomorphism classes of finite simple cyclic

groups and A for the set of isomorphism classes of alternating groups.

Since \jb1 U
nor
j tW tV tPX , G appears as a composition factor of

PX=\jb1 U
nor
j . This contradicts the choice of G. Hence Nag 0 f1g. r

Remark 4.6. In the pro-l case, where l is a prime number, the analogue

of Lemma 4.3 is false for g ¼ 0. Namely,
\

U a
open

P
ðlÞ
X

gU¼0

U ¼ f1g;

where U ranges over the open subgroups of P
ðlÞ
X such that the genus gU of the

inverse image of U in PX is 0 [cf. [AI, Theorem 1B]]. On the other hand, if

l is a prime number distinct from 2, then the analogue of Lemma 4.3 for the

pro-prime-to-l case holds, i.e.,
\

U a
open

P
ðlFÞ
X

gUag

U 0 f1g

for every g A Zb0. Indeed, there are infinitely many isomorphism classes of

finite simple groups which are neither cyclic nor alternating groups, and whose

order is prime to l. [Indeed, consider, for instance, for l0 5, the Suzuki

groups 2B2ð22ðl�1Þiþ1Þ, i A Zb1, whose order is

24ðl�1Þiþ2ð24ðl�1Þiþ2 þ 1Þð22ðl�1Þiþ1 � 1Þ;
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for l ¼ 5, the Chevalley groups G2ð5i þ 2Þ, i A Zb1 such that 5i þ 2 is prime

[a condition that holds for infinite many i, by Dirichlet’s theorem on arithmetic

progressions], whose order is

ð5i þ 2Þ6ðð5i þ 2Þ6 � 1Þðð5i þ 2Þ2 � 1Þ:�

This proves the assertion, by applying a similar argument to the argument

applied in the proof of Lemma 4.3. Note that, as every finite group of odd

order is solvable by the Feit-Thompson theorem, this proof does not work for

l ¼ 2.

Proposition 4.7. Let k be an algebraically closed field of characteristic

0 and X a smooth curve over k of type ð0; rÞ with rb 3. Write N0 :¼ N0;X .

Then PX=N0 is center-free.

Proof. Let g A ZðPX=N0Þ. Fix an open subgroup U of PX of genus 0

and write Y ¼ P1
knfP1; . . . ;Psg [where P1; . . . ;Ps are distinct k-valued points

of P1
k ] for the corresponding smooth curve [so U may be identified with PY ].

Then we may naturally identify U ab with the quotient group of the group

ẐZP1 þ � � � þ ẐZPs of formal sums over the set fP1; . . . ;Psg by the diagonal

ẐZ � ðP1 þ � � � þ PsÞ. For each n A Z>0, let fn : P1
k ! P1

k be a cyclic ramified

covering of degree n that is totally ramified over the points P1, P2 of the

codomain and unramified over the other points of the codomain. Then the

restriction

fn : f
�1
n ðP1

knfP1; . . . ;PsgÞ ! P1
knfP1; . . . ;Psg

is an abelian covering that corresponds to the following subgroup of P ab
Y :

ðnẐZP1 þ nẐZP2 þ ẐZP3 þ � � � þ ẐZPsÞ=ðnẐZ � ðP1 þ � � � þ PsÞÞ:

Therefore, by replacing P1, P2 by various Pi, Pj and applying the same argu-

ment, we conclude that
\

H ¼ f0g;

where H ranges over the set of subgroups of P ab
Y which correspond to abelian

coverings of Y of genus 0. From this fact, one verifies immediately that the

natural surjection P ab
Y ¼ U ab !! ðU=N0Þab is an isomorphism. Hence, in par-

ticular, if we write NPX
ðUÞ for the normalizer of U in PX , then it follows

immediately from Proposition 3.4 that the natural conjugation action

NPX
ðUÞ=U ¼ ðNPX

ðUÞ=N0Þ=ðU=N0Þ ! AutððU=N0ÞabÞ

is injective. [Note that, since NPX
ðUÞ is an open subgroup of PX , it is

isomorphic to the étale fundamental group of a hyperbolic curve over k.]
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Since g A ZðPX=N0Þ � NPX
ðUÞ=N0 ¼ NPX =N0

ðU=N0Þ, it follows that g A U=N0.

Since
\
gU¼0

U ¼ N0;

we conclude that g ¼ 1. Thus PX=N0 is center-free. r

The following well-known result of Belyi [cf. [Bel], Theorem 4 and its

proof ] plays an important role in the proof of Theorem 4.14 below.

Theorem 4.8 (Belyi). Let Q be an algebraic closure of Q, X a projective

smooth curve over Q, and f : X ! P1
Q a nonconstant morphism. Then there

exists a nonconstant polynomial g A Q½t� over Q such that the composite

X !f P1
Q !

g
P1

Q

is unramified over the complement of the points 0, 1, y in the codomain of g.

To show the main result of this section, we need a few lemmas.

Lemma 4.9. Let k be an algebraically closed field of characteristic 0; X, Y,

Z proper smooth curves over k; f1; f2 : X ! Y and g1; g2 : Y ! Z nonconstant

morphisms over k satisfying deg f1 ¼ deg f2 and g1 � f1 ¼ g2 � f2. [Here,

‘‘degð�Þ’’ denotes the degree of a morphism.] Suppose that there exists a

closed point z A Z such that ðg1 � f1Þ�1ðzÞ consists of only one point x A X.

[Note that x is necessarily a closed point.] Then there exists an automorphism

l of Y over k such that l � f1 ¼ f2, i.e., such that the triangles of the diagram

X

Y Y

Z

f1

f2

g1
g2

4@ �
���  �
���

 �
���

 �
���

commute.

Proof. The following argument is based on the argument of [Ritt],

Sections III and IV.

We have a commutative diagram of field extensions:

KðX Þ

KðY Þ KðY Þ

KðZÞ:

i1
i2

x????U

x ? ? ? ? U

x ? ? ? ? U

x????U
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The existence of an automorphism as asserted in the statement of Lemma 4.9

is equivalent to the condition that i1ðKðY ÞÞ ¼ i2ðKðYÞÞ.
Since X (resp. Z) is smooth over k, the point x (resp. z) determines a

discrete valuation w on KðXÞ (resp. v on KðZÞ) which is trivial on k. Write

KðX Þw (resp. KðZÞv) for the completion of KðXÞ (resp. KðZÞ) with respect to

w (resp. v). Since x is the unique point of X lying over z, KðX Þw is nat-

urally isomorphic to KðXÞnKðZÞ KðZÞv. By the Cohen structure theorem,

KðZÞv is isomorphic to a field of formal Laurent series kððtÞÞ. In par-

ticular, the absolute Galois group of KðZÞv is isomorphic to ẐZ. Therefore

KðX Þw=KðZÞv is Galois, and its Galois group is a cyclic group. In particular,

the field extension KðXÞw=KðZÞv has at most one intermediate field of a given

degree over KðZÞv. Since ½KðXÞ : i1ðKðY ÞÞ� ¼ ½KðXÞ : i2ðKðYÞÞ�, we have

i1ðKðY ÞÞnKðZÞKðZÞv ¼ i2ðKðY ÞÞnKðZÞKðZÞv. By faithfully flat descent, we

thus conclude that i1ðKðYÞÞ ¼ i2ðKðY ÞÞ, as desired. r

Corollary 4.10. Let k be a field of characteristic 0 and f1, f2, g1, g2
nonconstant polynomials in an indeterminate t with coe‰cients in k satisfying

deg g1 ¼ deg g2 and g1 � f1 ¼ g2 � f2. Then f2 ¼ af1 þ b for some a; b A k.

Proof. Let k be an algebraic closure of k, and regard f1, f2, g1, g2 as

endomorphisms of P1
k
. Note that since deg g1 ¼ deg g2 and g1 � f1 ¼ g2 � f2, it

follows that deg f1 ¼ deg f2. Then ðg1 � f1Þ�1ðyÞ ¼ fyg and thus by Lemma

4.9,

f2 ¼
af1 þ b

cf1 þ d

for some a; b; c; d A k with ad � bc0 0. Since the left-hand side is a non-

constant polynomial, we may assume that c ¼ 0 and d ¼ 1. Thus

f2 ¼ af1 þ b:

Finally, since f1 is nonconstant, the k-rationality of the coe‰cients of f2 implies

that a; b A k. r

Lemma 4.11. Let 1! D! P ! G ! 1 be an exact sequence of

profinite groups and N, M closed subgroups of D which are normal in P.

Write rN (resp. rM) for the outer representation G ! OutðD=NÞ (resp. G !
OutðD=MÞ) determined by the exact sequence. Suppose that N �M. Then

ker rN � ker rM.

Proof. Write

AutM=NðD=NÞ :¼ fs A AutðD=NÞ j sðM=NÞ ¼M=Ng
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and

OutM=NðD=NÞ :¼ AutM=NðD=NÞ=InnðD=NÞ:

Then rN and rM factor as follows:

OutðD=NÞ

G ���! OutM=NðD=NÞ

OutðD=MÞ:
x????U

�����!

The assertion follows immediately. r

Write XQ :¼ P1
Qnf0; 1;yg and XQ :¼ P1

Qnf0; 1;yg. Recall that, for any

Galois category C and fiber functor F , with associated fundamental group P

[so F induces an equivalence of categories F between C and the category of

finite sets on which P acts continuously], and any closed normal subgroup

NtP, the equivalence F induces a natural equivalence between the category

of finite sets on which P=N acts continuously and the full subcategory of

C whose objects are finite coproducts of connected objects X of C such that

the open subgroup of P corresponding to X contains N. Thus we obtain a

natural homomorphism

c : OutðDXQ=Ng;XQÞ ! Symðfisomorphism classes of connected coverings Y

of XQ with PY � Ng;XQgÞ:

Theorem 4.12. Write N0 :¼ N0;XQ . Then the composite

GQ ��!
rQ;N0

OutðDXQ=N0Þ !
c

Symðfisomorphism classes of connected coverings

Y of XQ with PY � N0gÞ

[cf. Definition 4.1 and the following discussion] is injective. In particular, rQ;N0

is injective.

Proof. The following argument is based on the argument of [Sch],

Section II.

Observe that, by transport of structure, the action of GQ on the set of

isomorphism classes of connected coverings Y of XQ with PY � N0 can be

described explicitly as follows: For t A GQ and ½Y � an isomorphism class of

a connected covering Y ! XQ, cðtÞð½Y �Þ is the class of the base-change of Y

over XQ by the morphism

idXQ � ðt�Þ
�1 : XQ !

@
XQ:
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Let s A GQ be an element which is not the identity, a A Q such that

sðaÞ0 a, and f ðtÞ a polynomial with coe‰cients in Q whose derivative is

given by t3ðt� 1Þ2ðt� aÞ. Then, by Belyi’s theorem [cf. Theorem 4.8], there

exists a polynomial gðtÞ with coe‰cients in Q such that g � f is branched at

most over 0, 1, y. Write Ya :¼ ðg � f Þ�1ðXQÞ [where we regard g and f as

endomorphisms of P1
Q]. Since Ya has genus 0, PYa

� N0. Write ½Ya� for the

isomorphism class of Ya.

Observe that the isomorphism class c � rQ;N0
ðsÞð½Ya�Þ is represented by

Z :¼ ðg � f sÞ�1ðXQÞ ��!
g�f s

XQ � P1
Q;

where f s is a polynomial obtained by applying s to the coe‰cients of f .

Suppose that c � rQ;N0
ðsÞð½Ya�Þ ¼ ½Ya�. Then there exists an isomorphism h

from Ya to Z over XQ. Passing to compactifications, we obtain the following

diagram:

P1
Q P1

Q???y f

???y f s

P1
Q P1

Q

P1
Q:

g
g �
���
 �

���

���������!h

Since h is an isomorphism and

fyg ¼ ðg � f Þ�1ðyÞ

¼ ðg � f s � hÞ�1ðyÞ

¼ h�1ððg � f sÞ�1ðyÞÞ

¼ h�1ðyÞ;

we conclude that h is a linear polynomial, i.e., hðtÞ ¼ ctþ d. Then by

Corollary 4.10, there exist constants a; b A Q such that

f sðctþ dÞ ¼ af ðtÞ þ b:

Di¤erentiating both sides, we obtain

cðctþ dÞ3ðctþ d � 1Þ2ðctþ d � sðaÞÞ ¼ at3ðt� 1Þ2ðt� aÞ:

Comparing the orders of zeroes of both sides of this last relation, we conclude

that sðaÞ ¼ a, a contradiction. Thus c � rQ;N0
ðsÞð½Ya�Þ0 ½Ya�, and therefore

c � rQ;N0
is injective, as desired. r
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Corollary 4.13. Let k be a field of characteristic 0. Write

N0 :¼ N0;P1
knf0;1;yg

;

rk;N0
: Gk ! OutðDP1

knf0;1;yg
=N0Þ

for the outer representation associated to N0. Then ker rk;N0
is equal to the

kernel of the natural restriction homomorphism j : Gk ! GQ [which is well-

defined up to composition with an inner automorphism].

Proof. For a field K, write XK :¼ P1
Knf0; 1;yg and N0;K :¼ N0;XK

.

Base-changing from Q to k yields a commutative diagram with exact rows:

1 ���! DXk
���! PXk

���! Gk ���! 1???y
???y

???yj

1 ���! DXQ ���! PXQ ���! GQ ���! 1:

By Remark 4.2, the left-hand vertical arrow is an isomorphism, and this iso-

morphism maps N0;k ð¼ N0Þ onto N0;Q. Therefore we obtain a commutative

diagram:

Gk �����!
rk;N0; k

OutðDXk
=N0;kÞ???yj

???y @

GQ OutðDXQ=N0;QÞ;x????U rQ;N0;Q

where the right-hand vertical arrow is an isomorphism, and the lower hori-

zontal arrow is injective by Theorem 4.12. Thus ker rN0; k
¼ ker j. r

Theorem 4.14. Let k be a field of characteristic 0. Write Xk :¼
P1

knf0; 1;yg. Suppose that N is a closed normal subgroup of DXk
which is

also normal in PXk
. Assume that N � N0;Xk

. Then the kernel of the natural

outer representation

rk;N : Gk ! OutðDXk
=NÞ

is equal to the kernel of the natural restriction homomorphism Gk ! GQ [which

is well-defined up to composition with an inner automorphism]. In particular, if

k is either a number field or a p-adic local field for some prime number p, then

rk;N is injective.

Proof. First we observe that the various assertions of Theorem 4.14 hold

when N ¼ f1g. Indeed, this follows from a similar argument to the argument

applied to prove Corollary 4.13, together with the original Belyi theorem,
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which asserts that the natural outer representation GQ ! OutðDXQÞ is injective

[cf. [Bel], Corollary to Theorem 4 and the discussion preceding Theorem 1].

Now the various assertions of Theorem 4.14 follow immediately from

Corollary 4.13 and Lemma 4.11. Here, we apply Lemma 4.11 twice, i.e., once

to compare ker rk;N to ker rk;N0;Xk
and once to compare ker rk;f1g to ker rk;N ,

and thus we obtain ker rk;f1g � ker rk;N � ker rk;N0;Xk
. r

Remark 4.15. Note that it follows immediately from Belyi’s Theorem

[cf. Theorem 4.8] that

Ng :¼ Ng;Xk
� N0;Xk

¼: N0

for every g A Zb0. In particular, it follows from Theorem 4.14 that the kernel

of the natural outer representation

Gk ! OutðDXk
=NgÞ

is equal to the kernel of the natural restriction homomorphism Gk ! GQ.
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