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ABSTRACT. Let X, (n>1) be a finitistic space with cohomology type (0,0). Let
(X,, E, 7, B) be a fibre bundle and (IR¥, E’,7’, B) be a k-dimensional real vector bundle
with fibre preserving G = Z,, p > 2 a prime, action such that G acts freely on E and
E' — {0}, where {0} is the zero section of the vector bundle. We determine a lower
bound of the cohomological dimension of the set 4, = {xe E|u(x)Nu(gx)N---N
u(g”~'x) # ¢} for an admissible multivalued fibre preserving map u: E — E'.

1. Introduction

For every continuous map f:S" — R”, the coincidence set A(f) =
{xeS"|f(x)=f(—x)} is nonempty relative to the antipodal action on
n-sphere S". This result is known as the classical Borsuk-Ulam theorem.
Another version of the Borsuk-Ulam theorem states that if f: S" — R is a
continuous map with n >k then cd,(A(f)) =n—k, where cda(A(f)) is the
cohomological dimension of A(f) with the coefficient group Z,. Dold [1]
determined the cohomological dimension of the coincidence set A(f) of a fibre
preserving Z,-equivariant map f : E — E’, where E is the total space of a fibre
bundle with fibre S” and E’ is the total space of a k-dimensional real vector
bundle with base space a paracompact space B. He proved that cdy(A(f)) >
cdy(B)+n—k. This result is known as the parameterized version of the
Borsuk-Ulam theorem. Dold introduced the concept of Stiefel-Whitney poly-
nomials for vector bundles with the antipodal actions. These polynomials are
called the characteristic polynomials. Using these polynomials, Nakaoka [10]
proved Dold’s result for non-free Z, and S'-actions. Jaworowski [7] estab-
lished Dold’s result for free Z,-actions, p > 2 a prime. The Borsuk-Ulam type
theorem of Dold’s results were determined for fibre bundles with different
fibres, for example: (i) S" x S™ with free Z,-actions, p > 2 a prime, or sl
action [9], (ii) spaces of cohomology of type (a,b) with free actions of Z, or
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S! [8] and IFP" x S*, where F = R, € or H, with free Z,-actions [11], etc.
Izydorek and Jaworowski [4] extended Dold’s result for an admissible multi-
valued fibre preserving map u: E — E’ for G = Z,-actions and also, for these
maps u: E — E’, Izydorek and Rybicki [5] proved the parallel result for
G =1Z, actions, p > 2 a prime.

Throughout the paper, all spaces are assumed to be paracompact Haus-
dorff spaces. We use Cech cohomology with coefficient in the group Z,, where
p>2 is a prime.

In this paper, we determine parametrized versions of the Borsuk-Ulam
type theorem. We obtain a lower bound of the cohomological dimension of
the set 4, = {x e E|u(x) Nu(gx) N---Nu(g?~'x) # ¢} for an admissible multi-
valued fibre preserving map u: E — E’ for a fibre bundle (X, E,#, B) and a
k-dimensional (k is odd) real vector bundle (R¥, E’, 7', B), where X, is a space
of cohomology type (0,0).

2. Preliminaries

A finitistic space X, (n > 1 is a natural number) is said to have coho-
mology type (a,b) if H/(X,;Z)=7Z for j=0,n2n and 3n only, and the
generators x € H"(X,;Z), ye H*(X,;Z) and z e H(X,;Z) satisfies x> = ay
and xy = bz, where a and b are integers. For example, S"vS% vS¥ and
N Ugn-1 S* which is obtained by attaching the spheres S* and S*' along
S" ! are spaces of type (0,0). The 3-dimensional projective spaces IFP3, where
IF = C,H are spaces of type (1,1). Note that if there exists a space of type
(a,b) then there are spaces (ma,nb) for all integers m and n. Such spaces were
first investigated by James [6] and Toda [12].

We recall some definitions and results which were used to prove our main
theorem.

DEerFINITION 2.1 ([4]). Let X, Y be spaces and let # be a multivalued map
from X to Y, i.e., a function which assigns to each x € X a nonempty subset
u(x) of Y. We say that u is upper semicontinuous (u.s.c.), if each u(x) is
compact and if the following condition holds: For every open subset V' of Y
containing u(x) there exists an open subset U of X containing x such that for
each x' e U, u(x") C V.

For instance, if X and Y are compact then y is upper semicontinuous iff
its graph is closed in X x Y.

DErFINITION 2.2 ([4]). An us.c. map u from X to Y is said to be Z,-
admissible (briefly admissible), if there exist a space I and two single valued
continuous maps o : ' — X and f:I"— Y such that
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(i) «is a Vietoris map, i.e., it is surjective, proper and each set a~!(x) is
Z,-acyclic,
(ii) for each xe X, the set B(a~!(x)) is contained in u(x).
We will say that the pair («,f) is a “selected pair” for u.

For instance, if each u(x) is acyclic (and if g is u.s.c.) then u is
admissible.

Note that an example of free action of G = Z,, where p is an odd prime,
on spaces of cohomology type (0,0) has been constructed in [2] and the
cohomological structure of the orbit space has been discussed in [3].

ProposiTION 2.1 ([3])). Let G=1Z,, p an odd prime, act freely on a space
X, (n is an odd) of cohomology type (0,0). Then, as a graded commutative
algebra

H*(X,/G) =Z,u,v, w]/(u?, w2, wptD/2 g, Bnth/2s

where degu =1, degv=2, degw=n and v=f,(u) (f, being the mod-p
Bockstein).

3. A lower bound of the cohomological dimension of zero set and
coincidence set

Let G=Z, (p an odd prime) be a group and X, (n an odd natural
number) be a space of cohomology type (0,0). Let f: E — E’ be a fibre
preserving G-equivariant map, where (X, E, 7, B) is a fibre bundle equipped
with fibre preserving free G-action such that the quotient bundle (X, /G, E, 7, B)
has the cohomology extension property and n’ : E' — B is a k-dimensional real
vector bundle equipped with fibrewise free G-action on E’ — {0}, where {0} is
the zero section of the vector bundle. We denote the zero set f~'({0}) by
Ey. First, we obtain the characteristic polynomials associated to the fibre
bundle and vector bundle, respectively.

The characteristic polynomials associated to the fibre bundle (X, E, 7, B). Re-
call that graded algebra of H*(X,/G) is generated by the elements

n—1 and Osi£3n_1

o’ uv’, wol uv’w where 0 < j <

subject to the relations u? = p(37+1/2 = ptD/2y, — 2 — 0, where ue H'(X,/G),
ve H*(X,/G), we H"(X,/G). As the quotient bundle (X, /G, E,#, B) has the
cohomology extension property, so by the Leray-Hirsch theorem, there exist
elements a € H'(E), be H*(E) and c¢e H"(E) such that the natural homo-
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morphism j* : H*(E) — H*(X,/G) maps (a,b,c) — (u,0,w). We observe that
H*(E) is an H*(B)-module, via, the homomorphism #* and generated by the
basis

3n—1

S -1
bl ab',ch! ab’c  where 0< <~ and 0<i<

Thus the elements a® e H*(E), bC"1/2 e H¥(E), ¢* e H*(E), b")/2c e
H*1(E) can be expressed as a linear combination of generatmg elements with
coefficients in H*(B). Thus, there exist unique elements y/, ¢/ and n/ € H'(B),
where j = 1,2, such that

a*> =0,
(3n+1)/2 (3n+1)/2 n+1
'%n+l (3n+1)/2—i 3n+1 2—i 2 n+1—i
Z pab GV 4 Z 11 / +Zﬂzi710b
i=1
n+1

2 n+1—i
+ E W;_rab c,
i=1

(n=1)/2

n n
c2 _ anlibn—t + Zﬂ;iflabn_l + Z 7721+1(,b n—1)/2—i
i=0 i=1

i=0

(n—1)/2
+ Z n3; 2ach D/

i=0

7 (n—1)/2

b(n+l)/2 _ : 1 i - 1 b 2 b(nfl)/Zfi
c= ZV2i+1 + Zyzia + Z 2i42€

i=0 i=0 i=0
(n-1)/2

+ Z V21+1aCbn D2,
i=0

The characteristic polynomials associated to the fibre bundle (X, E,n,B) in
the indeterminates x, y and z of degrees 1, 2 and n, respectively, are x2,

WI(X,J/:Z)> WQ(X, y7Z) and W3(X,J/72)> where

(Bnt1)/2 EEE o ‘
W](X,y,Z): Z /’t;iy(3n+l)/2_l+ Z /121,-,136)/(3"“)/2_’+Z,u§,»,12y"+l_’

i=1 i=1 i=1

n+1

4 Z'u%iizxynﬂfiz _ G2
i=1
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n n (n—1)/2
Wa(x,2,2) = > my" "+ > m "+ M2y
i=0 i=1 i=0
(n—1)/2
+ Z ”gixzy(nfl)/Zfl 7227
i=0
(n—1)/2
(x, 3,2 ZV2:+1J’” ‘+Zyz,xy” f4 Z P2y
"y 2 1)/2—i 1)/2
Y Ry e,
i=0

The map o : H*(B)[x, y,z] — H*(E) defined by (x, y,z) — (a,b,¢) is a homo-
morphism of H*(B)-algebras. Clearly, ker o is generated by the characteristic
polynomials x?, Wi(x, y,z), Wa(x,,z) and Ws(x,y,z). So, we have

H*<B)[X7 Y, Z]/<x27 Wl(xa y7Z)7 WZ(x7y7Z)7 W3(x7y72)> = H*<EA‘)

The characteristic polynomials associated to (R* E’ 7' B). Let (le JE', 7', B)
be a real vector bundle and G =Z, acts fibrewise and freely on E’ — {0}.
Suppose that SE’ is the total space of the sphere bundle associated to (]Rk JE',
n',B). Note that the quotient bundle of the vector bundle (R¥, E’,z’, B) is
(k — 1)-dimensional lens space bundle (L)™', 7’ ,SE',B). Let h: L" — Bg
and i: SE' — ~ Bg be classifying maps of the pr1nc1pal G-bundles S*~ i — Lk !
and SE’ — SE’, respectively. We denote a’ = h* (s), a’ =i*(s), b’ = h*(1) and
b’ = i*(r), where s € H'(Bg) and t = f8,(s) € H*(Bg). Consequently, we have
B,(a’) =0b" and f,(a’) =b'. Then, we get

H*(L;(—l) _ Zp[a’,b’]/<a’2,b'<k/2>>.

Define a map 0: H*(L} ™) — H*(SE') by a’ —a’ and b'+—b’. Then 0 is
a G-module homomorphism and cohomology extension of the fibre bundle
(L;‘*l,ﬁ’,@’,B). We know_that H*(SE') is an H*(B)-module. By the
Leray-Hirsch Theorem, H*(SE') is generated by the elements

b’ and ab”,  where 0 < j < /%2

We can express b'*/2 ¢ H¥(SE') as
b2 — 1 412’ + 1eob’ 4 - 4 b D2 4 g0y (272

where 7; are the unique elements of H/(B). Clearly, a> =0. Thus, the char-
acteristic polynomials associated to (R, E’,n’, B) are x> and W'(x,y) = tx +
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T X+ ooy 4+ -+ 1oy ® D2 4 xp*=2/2 _ 1k/2 where the degrees of x and
y are 1 and 2, respectively. Clearly, we have

H*(B)[x, y]/<x% W'(x, »)) = H'(SE').

Now, we see that each element q(x,y,z) € H*(B)[x, y, z] determines an element
of H*(E), denote by q(x, y,z z)|g. The image of ¢(x, y,z)|z by the H*(B)-
homomorphism i} : H*(E) — H* (Ef) is denoted by ¢(x, y, )|E, where i} is
induced by the natural inclusion i; : E; < E. With these COIldlthIlS and nota-
tions, we have the following lemmas.

LemMma 3.1. Let X, (n an odd natural number) be a space of cohomol-
ogy type (0,0) and let q(x,y,z) e H*(B)[x, y,z] be a polynomial such that
q(x, y7z)\Ef = 0. Then there exist polynomials r;(x, y,z) € H*(B)[x, y,z] (i =1,
2,3,4) such that

([(X7 y,Z)W,<X7 y) = rl(x7 y7Z)W1(x7 y7Z) + Vz(x,y,Z)Wz(X, y,Z)
+ }’3()6, Y Z) W3(X, .VvZ) + V4(X, y>Z)x2,
where W;s and W' are characteristic polynomials defined above.

ProoF. We have a polynomial ¢(x,y,z) in H*(B)[x,y,z] such that
q(x, y,z2)| B = =0. Thus, the contlnulty property of Cech cohomology, implies
that there exist an open subset V' C E such that Ey C ¥ and ¢(x, y,2)|;,, = 0.
From the cohomology exact sequence

= HY(E, V) HY(E) — H*(V) —» H* ' (E, V) —

of the pair (E, V), there exists (€ H*(E, V) such that j;(¢) = q(x, »,2)|g,
where ji:E < (E,V) is the natural inclusion. The G-equivariant map
f:E—E' gives the map f: E Ef — E' — {0} which induces H*(B)-
homomorphism. We know that SE' is homotopically equivalent to £’ — {0},
so we get f*(a’) =ij(u) and f*(b') =ii(v), where i: E— E; — E is the
natural inclusion map and W'(a’,b’) = 0. Therefore,

W', 0)g g, = W' (W), 05 () = W'(f* @), f* (b)) = f(W'(@',b) = 0
Next, we consider the long exact cohomology sequence
o H'(EE—E) > HY(E) - H*(E — E;) -

for the pair (E,E —E/»). By the property of exactness, there exists & e
H*(E,E — Ey) such that j; (&) = W'(x, y)|z, where jr: E — (E,E — Ey) is the
inclusion map. By the naturality of the cup product, we get

q(x, y,2)W'|g = ji () U j5 (&) = j* (cU &),
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where j: E — (E', VUE — Ef) is the inclusion map. Note that
cUCeH'(E,VU(E - E)) = H'(E,E),

which gives cU& = 0. Therefore, g(x, y,z)W'|; =0. q(x,y,z)W’ belongs to
the kernel of o. Therefore, there exist polynomials r;(x, y,z) € H*(B)[x, y,z]
(i=1,2,3,4) such that

C](X7y,Z)W/(X7y) :rl(x,y,Z)Wl(x7y7Z)+r2(x,y,z)W2(x,y,z)
+}"3(X, yaZ)W3(x7 yvz) +V4(x;y7z)x2-

To prove our main result, we show that Lemma 3.1 holds true for
following more general conditions:

Suppose that Z is any space with a free G =Z, (p an odd prime) action
and v:Z — E is an equivariant Vietoris map. Let 0:Z — E’ be a single
valued, equivariant map which makes the diagram

zZ L F

L

E-—". B

commutative. Note that the zero set Z; =0 '({0}) is invariant under the
action of G and H*(Zs) is an H*(B)-module, via, the homomorphism ¥*7* :
H*(B) — H*(Zs). As v is a Vietoris map, it is easy to see that ¥:Z — E is
also a Vietoris map. Then the homomorphism v* induced by the Vietoris map
¥ is an isomorphism. Let ¢(x, y,z)|; denote the image of ¢(x,y,z) by the
H*(B)-homomorphism i} : H*(Z) — H*(Z;), where i; is induced by the nat-
ural inclusion i : Zs — Z. We have the following lemma.

LemMA 3.2. Let X, (n an odd natural number) be a space of cohomology
type (0,0) and let q(x, y,z) € H*(B)[x, y,z] be polynomial such that q(x, y,z)|;,
=0. Then there exist polynomials ri(x, y,z) € H*(B)[x, y,z] (i =1,2,3,4) such
that

q(x,y,Z)W/(x,y) = rl(X7 )’aZ)Wl(XJ/J) +}’2(X,y,Z)W2<X, y,Z)
+r3(x7 y,Z)W3(X,y,Z) +r4(x,y7z)x2,
where W;s and W' are characteristic polynomials defined above.

Note that the proof of the above lerréma follows from the fact that the
homomorphism induced by the arrows E' < Z - E works in the same way as
it works for a single arrow E — E’.
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With above notations and lemma, we are interested in determining a lower
bound of the cohomological dimension of the zero set Zjs.

THEOREM 3.1. Let (X, E,n,B) be a fibre bundle equipped with a fiber-
wise free G =17, (p an odd prime) action such that the quotient bundle (X,/G,
E #,B) has the cohomology extension property. Let (R¥ E' 7' B) be a
k-dimensional real vector bundle and 6 : Z — E' be a G-equivariant map such
that ©n'6 = nv, where v:Z — E is a Vietoris map. Then, cd,(Zs;) > cd,(B) +
3n+1-—*k

ProOF. Suppose deg ¢(x, y,z) < 3n+ 1 —k, where ¢g(x, y,z) € H*(B)[x, y, 7]
is a nonzero polynomial. We observe that ¢(x, y,z)[; #0. If ¢(x,,2)|; =
0 then by Lemma 3.2, we have

CI(XJ/’Z)W/(XJ/) :rl(xvyaZ)Wl(x7y7Z) +V2(X,y,Z)W2<X,y,Z)
+}’3(X, yvz) WS(X, y,Z) +r4(x,y,z)x2,

where deg Wi(x,y,z) =3n+1, deg Wh(x,y,z) =2n and deg Wi(x,y,z) =
2n+ 1. Thus,

deg g(x, v.2) +k = max {deg r(x, ,) + deg W, deg ra(x, 7,) + 2},
<i<

Consequently, degg(x,y,z)+k >degri(x,y,z)+3n+1. If ri(x,y,z)=0
then deggq(x,y,z) >3n+1—k, a contradiction. Thus, ¢(x,»,z)|; #0.
Then the H*(B)-module homomorphism

(Bn+1-k)/2 ) R
© H(B)Y — H(Z)
i=0

defined by y'+ y’|, is a monomorphism. Thus, for 3n+ 1>k, we obtain
cdy(Zs) = cd,(B) +3n+1—k.

As defined above, we are interested in determining a lower bound of the
cohomological dimension of the coincidence set 4(0) of J, where J is a map
such that zn'0 = nv.

CorOLLARY 3.1. Let (X, E,n, B) be a fibre bundle equipped with a fiber-
wise free G =17, (p an odd prime) action such that the quotient bundle (X,/G,
E,#,B) has the cohomology extension property. Let (R¥ E' 7' B) be a
k-dimensional real vector bundle and 0 : Z — E' be a map such that 7’6 = nv,
where v:Z — E is a Vietoris map. Let A(0) = {xe Z|d(x) =d(gx)=---=
3(g”~'x), g is a generator of G}. Then, cd,(A(0)) > cd,(B)+3n+ 1 —k, where
3n+1=k.
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ProOF. Let M =E' @ ---@® E' be the total space of Whitney sum of
p-copies of the k-dimensional real vector bundle ' : E' — B. A map y: M —
M defined by (e{,eé,...,el’,) — (e[;,e{,...,e,’,_l) generates a fibre preserving
G-action on M with fixed point set diagonal A. It is easy to see that the
orthogonal A% is invariant under the action induced by y on M. This action
is free outside the zero section {0}. A map ¢:Z — M defined by ¢(x) =
(6(x),0(gx),...,0(g""1x)) is a fiber preserving G-equivariant map. Thus, the
diagonal A and its orthogonal AL are the total spaces of k-dimensional and
k(p — 1)-dimensional sub-bundles of Whitey sum 7’ @ --- @z’ (p copies). The
linear projection r: (M, M — /) — (A*, A+ —{0}) along the diagonal A is
also a fiber preserving map. This implies that r is a fibre preserving equiv-
ariant map. Therefore, the map h:Z — A is fibre preserving G-equivariant
map, where 7 = rq. Consequently, the zero set Z, = A(0). If 3n+ 1 > k then
by applying Theorem 3.1, we get cd,(4(6)) > cd,(B) +3n+ 1 —k. Hence, our
claim holds.

Now, we prove our main result:

THEOREM 3.2. Let (X,,E,n,B) be a fibre bundle equipped with a fiber-
wise free G =17, (p an odd prime) action such that the quotient bundle (X, /G,
E,7,B) has the cohomology extension property. Let (R¥ E'.n'.B) be a
k-dimensional real vector bundle and p: E — E' be an admissible multivalued
fibre preserving map. Let A, = {x € E|u(x)Npu(gx) - Nu(g?'x) #¢, g is a
generator of G}. Then, cd,(A4,) = cd,(B) +3n+1—k, where 3n+1=>k.

PrROOF. As u: E — E’is an admissible multivalued map, then there exists
a space I' and single valued maps o: I" — E and ff: I' — E’ such that («, f) is
a selected pair for u. Let Z = {(yy,72,---,7,) €[ X ' x---x I (p copies) |
a(yy) = go(yy) =--- =g” 'a(y,)}. Now, we have the following commutative
diagram:

&

B
—_—

z 1. r

E
where ¢ is the first protection (yy,7,,...,7,) — 7 and v=og. Note that
v:Z — FE is a Vietoris map since for each e e E, we have

T
—

& ——
a\

V*I(E) = orl(e) X Otfl(ge) N, 0571(91]716)

is acyclic being the cartesian product of acyclic sets. A map defined on Z
by (7157205 7p) = (Vps 15 -+ ¥p—1) induces a free G-action on Z and v is a
G-equivariant map with respect to this action. Let 6 =fg:Z — E’. Note
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that if 0(yy,72,--,7,) =0y V153 Vpet) = - =0(P2y V3,5 ¥y, 71) for some
(1572, -5 7p) € Z then pu(o(yy)) N pu(a(y2)) N -+ - N(ee(y,)) # ¢ Thus, v(A(0)) C
A,. Let u' =1i;h"(s) and o' =i;h"*(f), where se H'(Bg) and t=p,(s) €
H?(Bg), h': Z — Bg is a characteristic map of the principle G-bundle
Z — Z and iy : A(0) — Z is the inclusion map. Let u” = i}(a) and v" = i} (b),
where @, b are characteristic classes of the principle G-bundle E — E and
iy : A, — E is the inclusion map. As v:A(d) — A, is a G-equivariant map,
we have 7*(u”) =u’ and v*(v") =v’. Thus

ok

C](X, y)|/f(§) = C](u/, U/) = q(f}*(u”)a v (U”)) = f}*(Q(u 7U/l)) =

<>

alx, 9)4,)-

Thus, if v*(q(x, y)|A},) =0 then ¢(x, y)|/;<(s) = 0. Therefore, by Lemma 3.2 and
Corollary 3.1, we have cd,(4,) >cd,(B) +3n+1—k.

Taking B as a singleton set in the previous theorem, we have

COROLLARY 3.2. Let G=17Z, (p an odd prime) act freely on a space X,
of cohomology type (0,0). Let u: X, — R* be an admissible multivalued map.
Then, cd,(A,) > 3n+1—k, where 3n+1 > k.
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