Borsuk-Ulam type theorems for multivalued maps

Hemant KUMAR SINGH and Konthoujam SOMORJIT SINGH

(Received September 8, 2021)

(Revised January 11, 2022)

ABSTRACT. Let X_n $(n > 1)$ be a finitistic space with cohomology type $(0, 0)$. Let (X_n, E, π, B) be a fibre bundle and $(\mathbb{R}^k, E', \pi', B)$ be a k-dimensional real vector bundle with fibre preserving $G = \mathbb{Z}_p$, $p > 2$ a prime, action such that G acts freely on E and $E'-\{0\}$, where $\{0\}$ is the zero section of the vector bundle. We determine a lower bound of the cohomological dimension of the set $A_{\mu} = \{x \in E \mid \mu(x) \cap \mu(gx) \cap \cdots \cap$ $\mu(g^{p-1}x) \neq \phi$ for an admissible multivalued fibre preserving map $\mu : E \to E'$.

1. Introduction

For every continuous map $f : \mathbb{S}^n \to \mathbb{R}^n$, the coincidence set $A(f) =$ ${x \in \mathbb{S}^n | f(x) = f(-x)}$ is nonempty relative to the antipodal action on *n*-sphere \mathbb{S}^n . This result is known as the classical Borsuk-Ulam theorem. Another version of the Borsuk-Ulam theorem states that if $f : \mathbb{S}^n \to \mathbb{R}^k$ is a continuous map with $n \ge k$ then $cd_2(A(f)) \ge n - k$, where $cd_2(A(f))$ is the cohomological dimension of $A(f)$ with the coefficient group \mathbb{Z}_2 . Dold [1] determined the cohomological dimension of the coincidence set $A(f)$ of a fibre preserving \mathbb{Z}_2 -equivariant map $f : E \to E'$, where E is the total space of a fibre bundle with fibre $Sⁿ$ and E' is the total space of a k-dimensional real vector bundle with base space a paracompact space B. He proved that $\text{cd}_2(A(f)) \geq$ $cd_2(B) + n - k$. This result is known as the parameterized version of the Borsuk-Ulam theorem. Dold introduced the concept of Stiefel-Whitney polynomials for vector bundles with the antipodal actions. These polynomials are called the characteristic polynomials. Using these polynomials, Nakaoka [10] proved Dold's result for non-free \mathbb{Z}_p and \mathbb{S}^1 -actions. Jaworowski [7] established Dold's result for free \mathbb{Z}_p -actions, $p > 2$ a prime. The Borsuk-Ulam type theorem of Dold's results were determined for fibre bundles with different fibres, for example: (i) $\mathbb{S}^n \times \mathbb{S}^m$ with free \mathbb{Z}_p -actions, $p > 2$ a prime, or \mathbb{S}^1 action [9], (ii) spaces of cohomology of type (a, b) with free actions of \mathbb{Z}_2 or

This paper is supported by the Science and Engineering Research Board (Department of Science and Technology, Government of India) with reference number-MTR/2017/000386.

²⁰²⁰ Mathematics Subject Classification. Primary 55R10; Secondary 55N20.

Key words and phrases. Free action, Parametrized Borsuk-Ulam Theorem, Characteristic polynomial, Coincidence set.

 \mathbb{S}^1 [8] and $\mathbb{F}P^m \times \mathbb{S}^3$, where $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} , with free \mathbb{Z}_2 -actions [11], etc. Izydorek and Jaworowski [4] extended Dold's result for an admissible multivalued fibre preserving map $\mu : E \to E'$ for $G = \mathbb{Z}_2$ -actions and also, for these maps $\mu : E \to E'$, Izydorek and Rybicki [5] proved the parallel result for $G = \mathbb{Z}_p$ actions, $p > 2$ a prime.

Throughout the paper, all spaces are assumed to be paracompact Hausdorff spaces. We use Čech cohomology with coefficient in the group \mathbb{Z}_p , where $p > 2$ is a prime.

In this paper, we determine parametrized versions of the Borsuk-Ulam type theorem. We obtain a lower bound of the cohomological dimension of the set $A_{\mu} = \{x \in E \mid \mu(x) \cap \mu(gx) \cap \cdots \cap \mu(g^{p-1}x) \neq \emptyset\}$ for an admissible multivalued fibre preserving map $\mu : E \to E'$ for a fibre bundle (X_n, E, π, B) and a *k*-dimensional (*k* is odd) real vector bundle $(\mathbb{R}^k, E', \pi', B)$, where X_n is a space of cohomology type $(0, 0)$.

2. Preliminaries

A finitistic space X_n $(n > 1$ is a natural number) is said to have cohomology type (a, b) if $H^j(X_n; \mathbb{Z}) \cong \mathbb{Z}$ for $j = 0, n, 2n$ and 3n only, and the generators $x \in H^n(X_n; \mathbb{Z})$, $y \in H^{2n}(X_n; \mathbb{Z})$ and $z \in H^{3n}(X_n; \mathbb{Z})$ satisfies $x^2 = ay$ and $xy = bz$, where a and b are integers. For example, $S^n \vee S^{2n} \vee S^{3n}$ and $S^{2n} \cup_{S^{n-1}} S^{3n}$ which is obtained by attaching the spheres S^{2n} and S^{3n} along \mathbb{S}^{n-1} are spaces of type $(0,0)$. The 3-dimensional projective spaces $\mathbb{F}P^3$, where $\mathbb{F} = \mathbb{C}$, H are spaces of type $(1, 1)$. Note that if there exists a space of type (a, b) then there are spaces (ma, nb) for all integers m and n. Such spaces were first investigated by James [6] and Toda [12].

We recall some definitions and results which were used to prove our main theorem.

DEFINITION 2.1 (4). Let X, Y be spaces and let μ be a multivalued map from X to Y, i.e., a function which assigns to each $x \in X$ a nonempty subset $\mu(x)$ of Y. We say that μ is upper semicontinuous (u.s.c.), if each $\mu(x)$ is compact and if the following condition holds: For every open subset V of Y containing $\mu(x)$ there exists an open subset U of X containing x such that for each $x' \in U$, $\mu(x') \subset V$.

For instance, if X and Y are compact then μ is upper semicontinuous iff its graph is closed in $X \times Y$.

DEFINITION 2.2 ([4]). An u.s.c. map μ from X to Y is said to be \mathbb{Z}_p admissible (briefly admissible), if there exist a space Γ and two single valued continuous maps $\alpha: \Gamma \to X$ and $\beta: \Gamma \to Y$ such that

- (i) α is a Vietoris map, i.e., it is surjective, proper and each set $\alpha^{-1}(x)$ is \mathbb{Z}_n -acyclic,
- (ii) for each $x \in X$, the set $\beta(\alpha^{-1}(x))$ is contained in $\mu(x)$.

We will say that the pair (α, β) is a "selected pair" for μ .

For instance, if each $\mu(x)$ is acyclic (and if μ is u.s.c.) then μ is admissible.

Note that an example of free action of $G = \mathbb{Z}_p$, where p is an odd prime, on spaces of cohomology type $(0,0)$ has been constructed in [2] and the cohomological structure of the orbit space has been discussed in [3].

PROPOSITION 2.1 ([3]). Let $G = \mathbb{Z}_p$, p an odd prime, act freely on a space X_n (n is an odd) of cohomology type $(0,0)$. Then, as a graded commutative algebra

$$
H^*(X_n/G) = \mathbb{Z}_p[u, v, w]/\langle u^2, w^2, w^{(n+1)/2}, v^{(3n+1)/2}\rangle,
$$

where deg $u = 1$, deg $v = 2$, deg $w = n$ and $v = \beta_n(u)$ (β_n being the mod-p Bockstein).

3. A lower bound of the cohomological dimension of zero set and coincidence set

Let $G = \mathbb{Z}_p$ (p an odd prime) be a group and X_n (n an odd natural number) be a space of cohomology type $(0,0)$. Let $f : E \to E'$ be a fibre preserving G-equivariant map, where (X_n, E, π, B) is a fibre bundle equipped with fibre preserving free G-action such that the quotient bundle $(X_n/G, \hat{E}, \hat{\pi}, B)$ has the cohomology extension property and $\pi' : E' \to B$ is a k-dimensional real vector bundle equipped with fibrewise free G-action on $E'-\{0\}$, where $\{0\}$ is the zero section of the vector bundle. We denote the zero set $f^{-1}(\{0\})$ by E_f . First, we obtain the characteristic polynomials associated to the fibre bundle and vector bundle, respectively.

The characteristic polynomials associated to the fibre bundle (X_n, E, π, B) . Recall that graded algebra of $H^*(X_n/G)$ is generated by the elements

$$
v^i, uv^i, uv^j, uv^jw \qquad \text{where } 0 \le j \le \frac{n-1}{2} \text{ and } 0 \le i \le \frac{3n-1}{2}
$$

subject to the relations $u^2 = v^{(3n+1)/2} = v^{(n+1)/2}w = w^2 = 0$, where $u \in H^1(X_n/G)$, $v \in H^2(X_n/G)$, $w \in H^n(X_n/G)$. As the quotient bundle $(X_n/G, \hat{E}, \hat{\pi}, B)$ has the cohomology extension property, so by the Leray-Hirsch theorem, there exist elements $a \in H^1(\hat{E})$, $b \in H^2(\hat{E})$ and $c \in H^n(\hat{E})$ such that the natural homomorphism $j^*: H^*(\hat{E}) \to H^*(X_n/G)$ maps $(a, b, c) \mapsto (u, v, w)$. We observe that $H^*(\hat{E})$ is an $H^*(B)$ -module, via, the homomorphism $\hat{\pi}^*$ and generated by the basis

$$
b^i, ab^i, cb^j, ab^j c
$$
 where $0 \le j \le \frac{n-1}{2}$ and $0 \le i \le \frac{3n-1}{2}$.

Thus the elements $a^2 \in H^2(\hat{E})$, $b^{(3n+1)/2} \in H^{3n+1}(\hat{E})$, $c^2 \in H^{2n}(\hat{E})$, $b^{(n+1)/2}c \in$ $H^{2n+1}(\hat{E})$ can be expressed as a linear combination of generating elements with coefficients in $H^*(B)$. Thus, there exist unique elements γ_i^j , μ_i^j and $\eta_i^j \in H^i(B)$, where $j = 1, 2$, such that

$$
a^{2} = 0,
$$
\n
$$
b^{(3n+1)/2} = \sum_{i=1}^{(3n+1)/2} \mu_{2i}^{1} b^{(3n+1)/2-i} + \sum_{i=1}^{(3n+1)/2} \mu_{2i-1}^{1} ab^{(3n+1)/2-i} + \sum_{i=1}^{n+1} \mu_{2i-1}^{2} cb^{n+1-i}
$$
\n
$$
+ \sum_{i=1}^{n+1} \mu_{2i-2}^{2} ab^{n+1-i} c,
$$
\n
$$
c^{2} = \sum_{i=0}^{n} \eta_{2i}^{1} b^{n-i} + \sum_{i=1}^{n} \eta_{2i-1}^{1} ab^{n-i} + \sum_{i=0}^{(n-1)/2} \eta_{2i+1}^{2} cb^{(n-1)/2-i}
$$
\n
$$
+ \sum_{i=0}^{(n-1)/2} \eta_{2i}^{2} acb^{(n-1)/2-i},
$$
\n
$$
b^{(n+1)/2}c = \sum_{i=0}^{n} \gamma_{2i+1}^{1} b^{n-i} + \sum_{i=0}^{n} \gamma_{2i}^{1} ab^{n-i} + \sum_{i=0}^{(n-1)/2} \gamma_{2i+2}^{2} cb^{(n-1)/2-i}
$$
\n
$$
+ \sum_{i=0}^{(n-1)/2} \gamma_{2i+1}^{2} acb^{(n-1)/2-i}.
$$

The characteristic polynomials associated to the fibre bundle (X_n, E, π, B) in the indeterminates x, y and z of degrees 1, 2 and n, respectively, are x^2 , $W_1(x, y, z)$, $W_2(x, y, z)$ and $W_3(x, y, z)$, where

$$
W_1(x, y, z) = \sum_{i=1}^{(3n+1)/2} \mu_{2i}^1 y^{(3n+1)/2-i} + \sum_{i=1}^{(3n+1)/2} \mu_{2i-1}^1 xy^{(3n+1)/2-i} + \sum_{i=1}^{n+1} \mu_{2i-1}^2 z y^{n+1-i}
$$

+
$$
\sum_{i=1}^{n+1} \mu_{2i-2}^2 xy^{n+1-i} z - y^{(3n+1)/2},
$$

$$
W_2(x, y, z) = \sum_{i=0}^n \eta_{2i}^1 y^{n-i} + \sum_{i=1}^n \eta_{2i-1}^1 xy^{n-i} + \sum_{i=0}^{(n-1)/2} \eta_{2i+1}^2 z y^{(n-1)/2-i} + \sum_{i=0}^{(n-1)/2} \eta_{2i}^2 x z y^{(n-1)/2-i} - z^2,
$$

$$
W_3(x, y, z) = \sum_{i=0}^n \gamma_{2i+1}^1 y^{n-i} + \sum_{i=0}^n \gamma_{2i}^1 xy^{n-i} + \sum_{i=0}^{(n-1)/2} \gamma_{2i+2}^2 z y^{(n-1)/2-i} + \sum_{i=0}^{(n-1)/2} \gamma_{2i+1}^2 x z y^{(n-1)/2-i} - y^{(n+1)/2} z.
$$

The map $\sigma : H^*(B)[x, y, z] \to H^*(\hat{E})$ defined by $(x, y, z) \mapsto (a, b, c)$ is a homomorphism of $H^*(B)$ -algebras. Clearly, ker σ is generated by the characteristic polynomials x^2 , $W_1(x, y, z)$, $W_2(x, y, z)$ and $W_3(x, y, z)$. So, we have

$$
H^*(B)[x, y, z]/\langle x^2, W_1(x, y, z), W_2(x, y, z), W_3(x, y, z)\rangle \cong H^*(\hat{E}).
$$

The characteristic polynomials associated to $(\mathbb{R}^k, E', \pi', B)$. Let $(\mathbb{R}^k, E', \pi', B)$ be a real vector bundle and $G = \mathbb{Z}_p$ acts fibrewise and freely on $E' - \{0\}.$ Suppose that SE' is the total space of the sphere bundle associated to $(\mathbb{R}^k, E', \mathbb{R}^k)$ π ', B). Note that the quotient bundle of the vector bundle $(\mathbb{R}^k, E', \pi', B)$ is $(k-1)$ -dimensional lens space bundle $(L_p^{k-1}, \hat{\pi}', S\hat{E}', B)$. Let $h : L_p^{k-1} \to B_G$ and $i: \widehat{SE'} \to B_G$ be classifying maps of the principal G-bundles $\mathbb{S}^{k-1} \to L_p^{k-1}$ and $SE' \rightarrow \widehat{SE}'$, respectively. We denote $a' = h^*(s)$, $a' = i^*(s)$, $b' = h^*(t)$ and $\mathbf{b}' = i^*(t)$, where $s \in H^1(B_G)$ and $t = \beta_p(s) \in H^2(B_G)$. Consequently, we have $\beta_p(a') = b'$ and $\beta_p(a') = b'$. Then, we get

$$
H^*(L_p^{k-1}) = \mathbb{Z}_p[a',b'] / \langle a'^2, b'^{(k/2)} \rangle.
$$

Define a map $\theta: H^*(L^{k-1}_p) \to H^*(\widehat{\mathbf{SE}}')$ by $a' \mapsto \mathbf{a}'$ and $b' \mapsto \mathbf{b}'$. Then θ is a G-module homomorphism and cohomology extension of the fibre bundle $(L_p^{k-1}, \hat{\pi}', \widehat{SE}', B)$. We know that $H^*(\widehat{SE}')$ is an $H^*(B)$ -module. By the Leray-Hirsch Theorem, $H^*(\widehat{SE}')$ is generated by the elements

$$
\mathbf{b}^{ij} \text{ and } \mathbf{a} \mathbf{b}^{ij}, \qquad \text{where } 0 \le j \le \frac{k-2}{2}.
$$

We can express $\mathbf{b}'^{(k/2)} \in H^k(\widehat{SE}')$ as

$$
\mathbf{b}'^{(k/2)} = \tau_k + \tau_{k-1} \mathbf{a}' + \tau_{k-2} \mathbf{b}' + \cdots + \tau_2 \mathbf{b}'^{((k-2)/2)} + \tau_1 \mathbf{a}' \mathbf{b}'^{((k-2)/2)},
$$

where τ_i are the unique elements of $H^i(B)$. Clearly, $\mathbf{a}^2 = 0$. Thus, the characteristic polynomials associated to $(\mathbb{R}^k, E', \pi', B)$ are x^2 and $W'(x, y) = \tau_k +$

 $\tau_{k-1}x + \tau_{k-2}y + \cdots + \tau_2 y^{(k-2)/2} + \tau_1 xy^{(k-2)/2} - y^{k/2}$, where the degrees of x and ν are 1 and 2, respectively. Clearly, we have

$$
H^*(B)[x, y]/\langle x^2, W'(x, y) \rangle \cong H^*(\widehat{SE}').
$$

Now, we see that each element $q(x, y, z) \in H^*(B)[x, y, z]$ determines an element of $H^*(E)$, denote by $q(x, y, z)|_{\hat{E}}$. The image of $q(x, y, z)|_{\hat{E}}$ by the $H^*(B)$ homomorphism $i_1^*: H^*(\hat{E}) \to H^*(\hat{E}_f)$ is denoted by $q(x, y, z)|_{\hat{E}_f}$, where i_1^* is induced by the natural inclusion $i_1 : \hat{E}_f \hookrightarrow \hat{E}$. With these conditions and notations, we have the following lemmas.

LEMMA 3.1. Let X_n (n an odd natural number) be a space of cohomology type $(0,0)$ and let $q(x, y, z) \in H^*(B)[x, y, z]$ be a polynomial such that $q(x, y, z)|_{\hat{E}_s} = 0$. Then there exist polynomials $r_i(x, y, z) \in H^*(B)[x, y, z]$ $(i = 1,$ $(2, 3, 4)$ such that

$$
q(x, y, z)W'(x, y) = r_1(x, y, z)W_1(x, y, z) + r_2(x, y, z)W_2(x, y, z) + r_3(x, y, z)W_3(x, y, z) + r_4(x, y, z)x^2,
$$

where W_i 's and W' are characteristic polynomials defined above.

PROOF. We have a polynomial $q(x, y, z)$ in $H^*(B)[x, y, z]$ such that $q(x, y, z)|_{\hat{E}_c} = 0$. Thus, the continuity property of Cech cohomology, implies that there exist an open subset $V \subset \hat{E}$ such that $\hat{E}_f \subset V$ and $q(x, y, z)|_V = 0$. From the cohomology exact sequence

$$
\cdots \to H^*(\hat{E}, V) \stackrel{j_1^*}{\to} H^*(\hat{E}) \to H^*(V) \to H^{*+1}(\hat{E}, V) \to \cdots
$$

of the pair (\hat{E}, V) , there exists $\zeta \in H^*(\hat{E}, V)$ such that $j_1^*(\zeta) = q(x, y, z)|_{\hat{E}},$ where $j_1 : \hat{E} \hookrightarrow (\hat{E}, V)$ is the natural inclusion. The G-equivariant map $f : E \to E'$ gives the map $\hat{f} : \hat{E} - \hat{E}_f \to \hat{E}' - \{0\}$ which induces $H^*(B)$ homomorphism. We know that \widehat{SE} is homotopically equivalent to $E'-\{0\}$, so we get $\hat{f}^*(\mathbf{a}') = i_2^*(u)$ and $\hat{f}^*(\mathbf{b}') = i_2^*(v)$, where $i_2 : \hat{E} - \hat{E}_f \hookrightarrow \hat{E}$ is the natural inclusion map and $W'(\mathbf{a}', \mathbf{b}') = 0$. Therefore,

$$
W'(x, y)|_{\hat{E}-\hat{E}_f} = W'(i_2^*(u), i_2^*(v)) = W'(\hat{f}^*(\mathbf{a}'), \hat{f}^*(\mathbf{b}')) = \hat{f}^*(W'(\mathbf{a}', \mathbf{b}')) = 0.
$$

Next, we consider the long exact cohomology sequence

-

$$
\cdots \to H^*(\hat{E}, \hat{E} - \hat{E}_f) \stackrel{j_2^*}{\to} H^*(\hat{E}) \to H^*(\hat{E} - \hat{E}_f) \to \cdots
$$

for the pair $(\hat{E}, \hat{E} - \hat{E}_f)$. By the property of exactness, there exists $\xi \in$ $H^*(\hat{E}, \hat{E} - \hat{E}_f)$ such that $j_2^*(\xi) = W'(x, y)|_{\hat{E}}$, where $j_2 : \hat{E} \hookrightarrow (\hat{E}, \hat{E} - \hat{E}_f)$ is the inclusion map. By the naturality of the cup product, we get

$$
q(x, y, z)W'|_{\hat{E}} = j_1^*(\varsigma) \cup j_2^*(\xi) = j^*(\varsigma \cup \xi),
$$

where $j : \hat{E} \hookrightarrow (\hat{E}, V \cup \hat{E} - \hat{E}_f)$ is the inclusion map. Note that

$$
\varsigma \cup \xi \in H^*(\hat{E}, V \cup (\hat{E} - \hat{E}_f)) = H^*(\hat{E}, \hat{E}),
$$

which gives $\zeta \cup \zeta = 0$. Therefore, $q(x, y, z)W' |_{\hat{E}} = 0$. $q(x, y, z)W'$ belongs to the kernel of σ . Therefore, there exist polynomials $r_i(x, y, z) \in H^*(B)[x, y, z]$ $(i = 1, 2, 3, 4)$ such that

$$
q(x, y, z)W'(x, y) = r_1(x, y, z)W_1(x, y, z) + r_2(x, y, z)W_2(x, y, z)
$$

$$
+ r_3(x, y, z)W_3(x, y, z) + r_4(x, y, z)x^2.
$$

To prove our main result, we show that Lemma 3.1 holds true for following more general conditions:

Suppose that Z is any space with a free $G = \mathbb{Z}_p$ (p an odd prime) action and $v : Z \to E$ is an equivariant Vietoris map. Let $\delta : Z \to E'$ be a single valued, equivariant map which makes the diagram

commutative. Note that the zero set $Z_{\delta} = \delta^{-1}(\{0\})$ is invariant under the action of G and $H^*(\hat{Z}_{\delta})$ is an $H^*(B)$ -module, via, the homomorphism $\hat{v}^*\hat{\pi}^*$: $H^*(B) \to H^*(\hat{Z}_\delta)$. As v is a Vietoris map, it is easy to see that $\hat{v} : \hat{Z} \to \hat{E}$ is also a Vietoris map. Then the homomorphism \hat{v}^* induced by the Vietoris map \hat{v} is an isomorphism. Let $q(x, y, z)|_{\hat{z}_\lambda}$ denote the image of $q(x, y, z)$ by the $H^*(B)$ -homomorphism $i_2^*: H^*(\hat{Z}) \to \hat{H}^*(\hat{Z}_\delta)$, where i_2^* is induced by the natural inclusion $i_2 : \mathbb{Z}_\delta \hookrightarrow \mathbb{Z}$. We have the following lemma.

LEMMA 3.2. Let X_n (n an odd natural number) be a space of cohomology type $(0,0)$ and let $q(x, y, z) \in H^*(B)[x, y, z]$ be polynomial such that $q(x, y, z)|_{\hat{z}_x}$ $= 0$. Then there exist polynomials $r_i(x, y, z) \in H^*(B)[x, y, z]$ $(i = 1, 2, 3, 4)$ such that

$$
q(x, y, z)W'(x, y) = r_1(x, y, z)W_1(x, y, z) + r_2(x, y, z)W_2(x, y, z) + r_3(x, y, z)W_3(x, y, z) + r_4(x, y, z)x^2,
$$

where W_i 's and W' are characteristic polynomials defined above.

Note that the proof of the above lemma follows from the fact that the homomorphism induced by the arrows $E' \stackrel{\delta}{\leftarrow} Z \stackrel{\nu}{\rightarrow} E$ works in the same way as it works for a single arrow $E \to E'$.

With above notations and lemma, we are interested in determining a lower bound of the cohomological dimension of the zero set Z_{δ} .

THEOREM 3.1. Let (X_n, E, π, B) be a fibre bundle equipped with a fiberwise free $G = \mathbb{Z}_p$ (p an odd prime) action such that the quotient bundle $(X_n/G, \mathcal{F})$ $(\hat{E}, \hat{\pi}, B)$ has the cohomology extension property. Let $(\mathbb{R}^k, E', \pi', B)$ be a k-dimensional real vector bundle and $\delta : Z \to E'$ be a G-equivariant map such that $\pi' \delta = \pi v$, where $v : Z \to E$ is a Vietoris map. Then, $cd_p(Z_\delta) \geq cd_p(B) +$ $3n + 1 - k$.

PROOF. Suppose deg $q(x, y, z) < 3n + 1 - k$, where $q(x, y, z) \in H^*(B)[x, y, z]$ is a nonzero polynomial. We observe that $q(x, y, z)|_{\hat{z}_s} \neq 0$. If $q(x, y, z)|_{\hat{z}_s} =$ 0 then by Lemma 3.2, we have

$$
q(x, y, z)W'(x, y) = r_1(x, y, z)W_1(x, y, z) + r_2(x, y, z)W_2(x, y, z) + r_3(x, y, z)W_3(x, y, z) + r_4(x, y, z)x^2,
$$

where deg $W_1(x, y, z) = 3n + 1$, deg $W_2(x, y, z) = 2n$ and deg $W_3(x, y, z) =$ $2n + 1$. Thus,

$$
\deg q(x, y, z) + k = \max_{1 \le i \le 3} \{ \deg r_i(x, y, z) + \deg W_i, \deg r_4(x, y, z) + 2 \}.
$$

Consequently, deg $q(x, y, z) + k \ge \deg r_1(x, y, z) + 3n + 1$. If $r_1(x, y, z) = 0$ then deg $q(x, y, z) \ge 3n + 1 - k$, a contradiction. Thus, $q(x, y, z)|_{\hat{z}_n} \ne 0$. Then the $H^*(B)$ -module homomorphism

$$
\bigoplus_{i=0}^{(3n+1-k)/2} H^*(B)y^i \to H^*(\hat{Z}_\delta)
$$

defined by $y^i \mapsto y^i|_{\hat{Z}_{\delta}}$ is a monomorphism. Thus, for $3n + 1 \ge k$, we obtain

$$
\mathrm{cd}_p(\hat{Z}_{\delta}) \geq \mathrm{cd}_p(B) + 3n + 1 - k.
$$

As defined above, we are interested in determining a lower bound of the cohomological dimension of the coincidence set $A(\delta)$ of δ , where δ is a map such that $\pi' \delta = \pi \nu$.

COROLLARY 3.1. Let (X_n, E, π, B) be a fibre bundle equipped with a fiberwise free $G = \mathbb{Z}_p$ (p an odd prime) action such that the quotient bundle $(X_n/G, \mathcal{E})$ $(\hat{E}, \hat{\pi}, B)$ has the cohomology extension property. Let $(\mathbb{R}^k, E', \pi', B)$ be a k-dimensional real vector bundle and $\delta: Z \to E'$ be a map such that $\pi' \delta = \pi v$, where $v : Z \to E$ is a Vietoris map. Let $A(\delta) = \{x \in Z \mid \delta(x) = \delta(gx) = \cdots = \delta(x)\}$ $\delta(g^{p-1}x)$, g is a generator of G}. Then, $\text{cd}_p(A(\delta)) \geq \text{cd}_p(B) + 3n + 1 - k$, where $3n + 1 \geq k$.

PROOF. Let $M = E' \oplus \cdots \oplus E'$ be the total space of Whitney sum of p-copies of the k-dimensional real vector bundle $\pi' : E' \to B$. A map $\psi : M \to$ M defined by $(e'_1, e'_2, \ldots, e'_p) \mapsto (e'_p, e'_1, \ldots, e'_{p-1})$ generates a fibre preserving G-action on M with fixed point set diagonal \triangle . It is easy to see that the orthogonal Δ^{\perp} is invariant under the action induced by ψ on M. This action is free outside the zero section $\{0\}$. A map $q: Z \to M$ defined by $q(x) =$ $(\delta(x), \delta(gx), \ldots, \delta(g^{p-1}x))$ is a fiber preserving G-equivariant map. Thus, the diagonal \triangle and its orthogonal \triangle^{\perp} are the total spaces of k-dimensional and $k(p-1)$ -dimensional sub-bundles of Whitey sum $\pi' \oplus \cdots \oplus \pi'$ (*p* copies). The linear projection $r : (M, M - \triangle) \rightarrow (\triangle^{\perp}, \triangle^{\perp} - \{0\})$ along the diagonal \triangle is also a fiber preserving map. This implies that r is a fibre preserving equivariant map. Therefore, the map $h: Z \to \Delta^{\perp}$ is fibre preserving G-equivariant map, where $h = rq$. Consequently, the zero set $Z_h = A(\delta)$. If $3n + 1 \ge k$ then by applying Theorem 3.1, we get $\text{cd}_p(A(\delta)) \geq \text{cd}_p(B) + 3n + 1 - k$. Hence, our claim holds.

Now, we prove our main result:

THEOREM 3.2. Let (X_n, E, π, B) be a fibre bundle equipped with a fiberwise free $G = \mathbb{Z}_p$ (p an odd prime) action such that the quotient bundle $(X_n/G, \mathcal{E})$ $(\hat{E}, \hat{\pi}, B)$ has the cohomology extension property. Let $(\mathbb{R}^k, E', \pi', B)$ be a k-dimensional real vector bundle and $\mu : E \to E'$ be an admissible multivalued fibre preserving map. Let $A_{\mu} = \{x \in E \mid \mu(x) \cap \mu(gx) \cdots \cap \mu(g^{p-1}x) \neq \phi, g \text{ is a }$ generator of G_i. Then, $\text{cd}_n(A_n) \geq \text{cd}_n(B) + 3n + 1 - k$, where $3n + 1 \geq k$.

PROOF. As $\mu : E \to E'$ is an admissible multivalued map, then there exists a space Γ and single valued maps $\alpha : \Gamma \to E$ and $\beta : \Gamma \to E'$ such that (α, β) is a selected pair for μ . Let $Z = \{(\gamma_1, \gamma_2, \dots, \gamma_p) \in \Gamma \times \Gamma \times \dots \times \Gamma \mid (p \text{ copies})\}\$ $\alpha(\gamma_1) = g\alpha(\gamma_2) = \cdots = g^{p-1}\alpha(\gamma_p)$. Now, we have the following commutative diagram:

where q is the first protection $(\gamma_1, \gamma_2, \dots, \gamma_p) \mapsto \gamma_1$ and $v = \alpha q$. Note that $v : Z \to E$ is a Vietoris map since for each $e \in E$, we have

$$
v^{-1}(e) = \alpha^{-1}(e) \times \alpha^{-1}(ge) \times \cdots \times \alpha^{-1}(g^{p-1}e)
$$

is acyclic being the cartesian product of acyclic sets. A map defined on Z by $(\gamma_1, \gamma_2, \ldots, \gamma_p) \mapsto (\gamma_p, \gamma_1, \ldots, \gamma_{p-1})$ induces a free G-action on Z and v is a G-equivariant map with respect to this action. Let $\delta = \beta q : Z \to E'$. Note

that if $\delta(\gamma_1, \gamma_2, \dots, \gamma_p) = \delta(\gamma_p, \gamma_1, \dots, \gamma_{p-1}) = \dots = \delta(\gamma_2, \gamma_3, \dots, \gamma_p, \gamma_1)$ for some $(\gamma_1, \gamma_2, \dots, \gamma_p) \in Z$ then $\mu(\alpha(\gamma_1)) \cap \mu(\alpha(\gamma_2)) \cap \dots \cap \mu(\alpha(\gamma_p)) \neq \phi$. Thus, $\nu(A(\delta)) \subset$ A_μ . Let $u' = \hat{i}_2^* h'^*(s)$ and $v' = \hat{i}_2^* h'^*(t)$, where $s \in H^1(B_G)$ and $t = \beta_p(s) \in$ $H^2(B_G)$, $h' : \hat{Z} \to B_G$ is a characteristic map of the principle G-bundle $Z \to \hat{Z}$ and $i_2 : A(\delta) \hookrightarrow Z$ is the inclusion map. Let $u'' = \hat{i}_4^*(a)$ and $v'' = \hat{i}_4^*(b)$, where a, b are characteristic classes of the principle G-bundle $E \rightarrow \hat{E}$ and $i_4 : A_\mu \hookrightarrow E$ is the inclusion map. As $v : A(\delta) \to A_\mu$ is a G-equivariant map, we have $\hat{v}^*(u'') = u'$ and $\hat{v}^*(v'') = v'$. Thus

$$
q(x, y)|_{\hat{A}(\delta)} = q(u', v') = q(\hat{v}^*(u''), \hat{v}^*(v'')) = \hat{v}^*(q(u'', v'')) = \hat{v}^*(q(x, y)|_{\hat{A}_{\mu}}).
$$

Thus, if $\hat{v}^*(q(x, y)|_{\hat{A}_{\mu}}) = 0$ then $q(x, y)|_{\hat{A}(\delta)} = 0$. Therefore, by Lemma 3.2 and Corollary 3.1, we have $\text{cd}_p(A_\mu) \geq \text{cd}_p(B) + 3n + 1 - k$.

Taking B as a singleton set in the previous theorem, we have

COROLLARY 3.2. Let $G = \mathbb{Z}_p$ (p an odd prime) act freely on a space X_n of cohomology type $(0,0)$. Let $\mu : X_n \to \mathbb{R}^k$ be an admissible multivalued map. Then, $\text{cd}_n(A_u) \geq 3n + 1 - k$, where $3n + 1 \geq k$.

Acknowledgement

We are thankful to the referee for careful reading of the manuscript and correcting typographical errors.

References

- [1] A. Dold, Parametrized Borsuk-Ulam theorems, Comment. Math. Helv., 63 (1988), 275– 285.
- [2] R. M. Dotzel and T. B. Singh, \mathbb{Z}_p actions on spaces of cohomology type $(a, 0)$, Proc. Amer. Math. Soc., 113 (1991), 875-878.
- [3] R. M. Dotzel and T. B. Singh, Cohomology ring of the orbit space of certain free \mathbb{Z}_p actions, Proc. Amer. Math. Soc., 123 (1995), 3581–3585.
- [4] M. Izydorek and J. Jaworowski, Parametrized Borsuk-Ulam theorems for multivalued maps, Proc. Amer. Math. Soc., 116 (1992), 273–278.
- [5] M. Izydorek and S. Rybicki, On parametrized Borsuk-Ulam theorem for free \mathbb{Z}_p -action, in Proc. Barcelona Conf. on Alg. Topology 1990, Lecture Notes in Math., 1509, Springer, 1992, 227–234.
- [6] I. M. James, Note on cup products, Proc. Amer. Math. Soc., 8 (1957), 374–383.
- [7] J. Jaworowski, Bundles with periodic maps and mod p Chern polynomials, Proc. Amer. Math. Soc., 132 (2004), 1223–1228.
- [8] D. de Mattos, P. L. Pergher and E. dos Santos, Borsuk-Ulam Theorems and their Parametrized versions for spaces of type (a, b) , Algebraic and Geometric Topology, 13 (2013), 2827–2843.
- [9] D. de Mattos and E. L. de Santos, A parametrized Borsuk-Ulam Theorem for a product of spheres with free \mathbb{Z}_p -action and free S¹-action, Algebraic and Geometric Topology, 7 (2007), 1791–1804.
- [10] M. Nakaoka, Parametrized Borsuk-Ulam theorems and characteristic polynomials, Topological fixed point theory and applications (Tianjin, 1988) (editor Boju Jiang), 155–170, Lecture Notes in Math., 1411, Springer, Berlin (1989).
- [11] S. K. Singh and H. K. Singh, Parametrized Borsuk-Ulam theorems for Free Involutions on $\mathbb{F}P^m \times \mathbb{S}^3$, Topol. Appl., 241 (2018), 20–37.
- [12] H. Toda, Note on cohomology ring of certain spaces, Proc. Amer. Math. Soc., 14 (1963), 89–95.

Hemant Kumar Singh Department of Mathematics University of Delhi Delhi 110007, India E-mail: hemantksingh@maths.du.ac.in

Konthoujam Somorjit Singh Department of Mathematics University of Delhi Delhi 110007, India E-mail: ksomorjitmaths@gmail.com