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On Gosper’s 11, and Lambert series identities
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ABSTRACT. In an interesting article entitled “Experiments and discoveries in
g-trigonometry”, R. W. Gosper conjectured few beautiful /7, and Lambert series
identities. Many people have attempted confirming some of those identities in the
Gosper’s list, mainly by using Gosper’s g-trigonometric identities. In this paper we
either prove or disprove all the I7, and Lambert series identities in the Gosper’s list
by mainly using S. Ramanujan’s theta function identities and W. N. Bailey’s summation
formula. In the process, we obtain three new Gosper kind of identities.

1. Introduction

Throughout the paper, let ¢ = ¢™* with = > 0. As usual for any complex
number a, define

0

(@:9),, = [J(1 — ag").

n=0

In Chapter 16 of his second notebook [15, p. 197], Ramanujan defined his
general theta function f(a,b) by

fla,b)y =Y a"" V2=V = (—g;ab)  (~b;ab),, (ab;ab),,,  |ab| < 1.

n=—aoo

Further, Ramanujan defines
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o(q) = Z 9" = (~0:4")% (% ).,
— f 3y — < n(n+1)/2 _ (q2;q2)oo
¥(q) = f(q,q97) n:Oq G,

[=9) = f(=4;=¢") = > (=1)"¢"" V2 = (g:9).,,

n=—o0
and

2@) = (—4:4)

For convenience, we set f, := f(—¢") = (¢";q"),, for any positive integer n
and it is easy to see that

_f _f =1 _g = ifs
</)(q)—i2427 va) =72 oo =2 =g =T,
_h o _f

In an interesting article entitled “Experiments and discoveries in
g-trigonometry” by R. W. Gosper [9], introduced a function

H . 1/4H I_Z 1 1/4lﬁ()

n>1

Gosper [9] conjectured following 17 11, identities:

m: I
¢y, (1.2)

quHq4 Hq4
1% + 200 o 11 o = IT,01 5 + 311, (1.3)
HpIly e — 1y (14)

Hq6H§7Hq2+3Hqs’ ’
g (IT; = 300 0) = [ 11 s (I, + 31T ), (1.5)
H 0T = Iy (I — I o)> (I 2 + 301 5), (1.6)
3

I oIl = I (I 2 — I o) (I 2 + 30 6)°, (1.7)
I (IT] + 411%) = (I, F 11,:) (1, + 311 ,)° (1.8)
M (T} + AIT3)° = M (I, F ) (1, + 301 ,:), (1.9)



and
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(I + 18117 3 — 2711 :) = 11,015 (IT; + 1611,,),
12y — 6111175 — 3113,) = I1,11 5 (IT); + 161746),
I+ 30,01 s = \ [T, s (I, + 311,

e

1 11161 — = 1130[5H g0 — M ][I > — 1T 200,

q>

oIl [161T;, — H;‘] = ITL[5I po — I ][I 2 — I o],

q

I s(161T 5, — ITJ)* = I h[S5H ;s — I, [1 s — 11,],

M s[V61T 0 — I35 = I3 (501 s — IT)[I1 s — IT,]°,

2010 s — I1,)[51 s —

1, = [, — 1,5

115

(1.10)
(1.11)
(1.12)

(1.13)

1.14
1.15
1.

[

(1.14)
(L.15)
(1.16)
(1.17)

1.17

(1.18)

In [7], M. E. Bachraoui, partially proved the identity (1.4) and showed
the equivalence of (1.5) and (1.6) by employing the Z. G. Liu identities on

classical theta functions.
of his g-trigonometric identities.

In [9], Gosper himself confirmed (1.2) through some
B. He and H. Zhai [12], have proved (1.12)

and the first equality of (1.13) by using existing g-trigonometric identities of

Gosper.

In [9], Gosper also stated the following 13 Lambert series identities without

proof:

I T\ 2
S W\m )3T

ZOC: q" g I +30%)° |
H(—gn? T(1-gn)? 121 12

i: qn 4 q4n :1 Hg :
(1—gn?> (1—g¢*)* 8\

n=1
0 " " 3 3
N G
H(—g¥)? (1—gin)? M, 3\Hp )
2n—1 0 4n—2 0 2n—1
q q 2 _~(2n—1)gq
(l7q2n71)2_2;(17q4n—2)2_nflz _; | — g2

3

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
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1 0 2n—1 6n—3 I
(S )
7% (1 _ q2n71) (1 _ q6n73) 11

q- n=1 n=1

1 o ! 5 o LIS - 17510 +16 HI;S
112, Z(l —gn)? > (1— g5y ) 11 My

n=1 n=1

. _ 5 _ 3 2
1 z’ﬁ: q2n 1 B 52@: qIOn 5 _ Hq 5 Hq 5 Hq
Jrg (1— anfl)z (1— q10n75)2 113, Jig2 I’

q n=1 n=1

1 ) q2n71 ) q18nf9
i Z (1—g>1)2 92 (1 — g!81-9)?

n=1 n=1

I I 3/2 I I 1/2
(e W) () ()
, , , ,

n=1 n=I

Hq I 5) © q2n—1 © qIOn—S
= +2+5-—"L —s -5 ——,
(17 5 11, (Z (1 — g2 1)? Z (1 — glon=5)?

n=1 n=1

I7 I 0 2n—1 0 18n—9
- Hq+3 Hq9 Z q212_9z qls 9\2 |’
q° q (1—g>1) (1 —q'¥9)

I, — 30 ,)*
= (I, + 301 )3T, +Hj3)2 +( 1 2) ,
411 ;5
and

0 4n—2 0 2n—1 0 3 n

q q n'q
=6 e - = .

! nz:; (1 - q2n71)4 nzz:l (1 - q2n71)2 n=1 1- qzn

Bachraoui proved (1.19)—(1.22), (1.24) and (1.29) in [8] by using

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

certain

g-trigonometric identities (of Gosper’s kind) except for (1.19) which he obtains
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using some identities satisfied by the divisor function. In [11], He verifies (1.25)
and (1.26) by using the theory of modular equations, for which the identities
should be known in advance.

Much of what Gosper has conjectured have appeared in the literature
in different forms. In this paper, one of our aims is to bring forth those
identities existing in the literature from which many of Gopser’s identities
follow easily. Apart from this, we also prove some Gosper’s 1, identities
and Lambert series identities through classical techniques using Ramanujan’s
theta function identities. In the process, we obtain one new Gosper kind of
11, identity and two new Gosper kind of Lambert series identities. Follow-
ing are they:

(qu + 3Hq18)2H C 31733 +H33

Sy ¢ ", My’
1 0 q2n—l 0 qIOn—S
S S 1 W S
H2 (Z (1 _ qzn_1)2 Z (1 _ qIOn—5)2

n=1

m?, (/M. 2 Ji g Jig
— 4 ] 2( =2 1) - 1.
st ((nqlo > + <Hq10 > <Hq5 > 8) ( 33)

(1.32)

and

x| 1 (”LS_ )2 1('177:5_1)2, (1.34)

The rest of the paper is structured as follows: In the next section we list
out the existing identities and results which are required to prove (1.2)—(1.31),
except (1.30), which we show to be wrong, in Section 3. In Section 3, we prove
(1.2)—(1.18) and in Section 4, we prove (1.19)—(1.31).

2. Preliminary results

In Chapter 16 of his second notebook [4, p. 40][15, p. 198], Ramanujan
recorded following very interesting theta function identities:

0> (q) — 9*(—q) = 8qy*(q*), (2.1)
0> (q) + 07 (—q) = 20°(¢°), (2.2)
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and
0*(q) — 0" (—q) = 16qy*(¢*). (2.3)

Adding (2.1) and (2.2), and then employing the fact that p(q)y(¢?) = ¥>(q), we
obtain (1.2), which we rewrite for further convenience as

21T .
Héz +4H§4 - ;]2(1 (2.4)
q
Changing ¢ to —¢ in the above, we obtain
40 N20 4
—4H;4:q‘p ( Q)lp (q) (25)

v (q?)
Also by using ¢(q)¥(¢?) =y*(¢) in (2.3) and employing (1.1), we find
that

8
— 16117, = q(%> : (2.6)
N. D. Baruah and R. Barman [3] deduced,
M+ My 1/2‘“ 99’ (— 43)‘//2@6)' 27
" o= (~4°) 27

Changing ¢ to —¢ in the above, we obtain
1/2 ¥(9)p’ (g )‘ﬁz(‘]6) .
oV’ (4%)

K. R. Vasuki, G. Sharath and K. R. Rajanna [18] have deduced the following
identity:

Hp—1es=q

(2.8)

o= 3H 1/2 (ﬂ( )W(_qzlp(_qg) ) (29)

Changing ¢ to —q in the above, we find that

My +306 =q'? —(P(‘])‘Zggz‘f(ﬂ . (2.10)

Multiplying (2.7) and (2.9) and then changing ¢ to —¢, and then dividing both
sides by ¥(¢*)¥(¢®), we obtain

UAURENUACY

R = $)d(q’) = 2q¥ ()W (4®), (2.11)
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where we use the relation ¢(q)¥(¢%) = ¥*(¢). Ramanujan [4, p. 223, 226] has
recorded the following series identities,

0 q6n+1 0 q6n+5
Z 1 — g'2nt2 Z 1 — g'2nt10” (2.12)
n=0 n=0
3 0 q3n+1 0 q3n+2
o Qo) =1+2|) ———=5-D . — 5
; 1+ (—q)™""! ; 1+ (—q)™"
0 qn
_ ., (2.13)
n:zoc 1 + (761)3
and
lp3 o q6n+l e q6n+5 ]
=1+3 — — |- (2.14)
v(q ;1 ¢+ ;1 — gon+s
Also from [17, p. 30],
o0 0 3n+1

Z 1 — q6n+2 Z 1— 6n+4 . (215)

The above four identities can also be deduced as particular cases of Ramanujan
1Yy, summation formula,

Y ! = flf( ’az)
Z l—aq”_f(—z,—Z)f( a’_g)' (2.16)

n=—0o0 4 a

From (2.12)-(2.15), it easily follows that

3 3/ .3
i(g i 3‘%%) = 0(@)o(q”) + 4 ()Y (4°) (2.17)

and

o(q)p(g"?) + 44" (* W (™) = 0(@)e(d®) — 2q¥(a*)W(q®).  (2.18)

We found from the works of Ramanujan that [4, p. 263]:

s =gV 0> (—4°)
My—lly=a x(=x(=4°)’ @19)
M, — 50, = q'*f? ;‘((__;5)) , (2.20)
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and

1350

Nfa
For a simple proof of (2.19) and (2.20), see [5] and [14]. A proof of (2.21) was
given by L. C. Shen [16].

The following theta function identities have been recorded by Ramanujan
[4, p. 345

0(q) — 9’ (¢°) = 44 (2.21)

aW(q®) Hq9:1+qx(_q3)’ (2.22)
4, 3 1723 9, 9
qlfk“((qq% :Hfjg N q)a(xg(_qq)z)v (2.23)
R = : (2.24)
and
—qgl/3 4 1/3
1+%:<1+%> : (225)

For proving these Berndt utilizes Entry 31 of Chapter 16 of Ramanujan’s
second notebook.

We also make use of the following identity due to W. N. Bailey in our
proofs:

i ag"  bq"

n=—oo (1 - aq”)Z (1 - bqn)2

f(—(lb, _q/ab)f(_b/a7 _aq/b)
fz(_av _q/a)fz(_b7 _q/b)

Bailey proved the above identity by making use of the elliptic function theory.

It can also be deduced from his ¢ well-poised summation formula [2].
The following identity is due to C. Adiga et al. [1]:

= af°(~q)

(2.26)

fab)f(e,d)f (an, i) f<cn’ Z)

— f(=a,~b)f(—c,—d)f (—an, - Z) ! (_Cn’ a %)

= 2af (Z,ad)f (;i,acn) f(m‘;b) f(m‘f)lp(ab). (2.27)
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The Eisenstein series P,(¢q) is defined as

0 kan
Pn(Q):1_24;1 — gk

For convenience, we set P, for P,(q). The following relation between
Eisenstein series and theta functions holds:

—Py +2P, = 16qy*(4%) + ¢*(q)- (2.28)

The above identity can be easily obtained from Bailey formula (2.26), as done
in [19]. From ;y; summation formula, following can be easily obtained:

© 2k

¢2(Q):1+4Z(—1)k#) (2.29)
1
202 < qk
vg) = 20:—1 AT (2.30)
Zw: " fl=az —4"(a2) ") (g":4")}, (231)
A T ag = [z~ =) f (~a.—gka )’ '
and
0 kn.n k ko—1
N V) - S(q"x,q"x7")
2n;£ T g% = 7 ) 7o —gor 1) (232)

Expanding (2.29) in base 5, subtracting ¢*(¢°) terms, interchanging the order
of summation of each series and then employing (2.32) after obtaining two
bilateral series, we arrive at

() -0’ (@) [flg.4°) fla,q")

20°(=¢") f(~¢.-&) f(~*~q")’ (239
In the same way, from (2.30) and (2.31), we arrive at
VA - 6") et f(ePdY) (2.34)

Y2 (—¢%) a.-¢") 7 =)
Using the product representation of f(a,b) and using (1.1), (2.19) and
(2.21), we easily obtain the following identities:

20N 205
fla.4°)f(d,q7) :M7 (2.35)

F(@ 1" 4 = v (d*) — ¥ (q"), (2.36)
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3
V) - ) =17 237
! V@) -’ @)
- —a) W) (2.38)
and
¢2(q) — (02(q5) _ 4qw2(q5) lﬁz(‘l) — q!//Z(qS) (2.39)

V2 (q?) — q2y*(q'0)

3. Proofs of /1, identities

In this section we confirm (1.3)—(1.18). It is to be noted in the beginning
itself that, (1.10) and (1.11) are not proved in the same spirit as that of the
rest. We just verify these two at the end of this section.

Proof of (1.4). Dividing (2.8) by (2.10) and using ¢(q) :%, we obtain
(1.4).

Proof of (1.5). The identity obtained after replacing ¢ by ¢* in (1.5) is equiv-
alent to (2.18) which is evident from (2.17) and (2.11).

Proof of (1.6) and (1.7). Multiplying (2.10) and the identity obtained after

cubing (2.8), and then using ¢(g) = ‘f;(;‘{;, we obtain
; py e
(qu—qu) (Hq2+3]7(16)= Hqs ,

which is nothing but (1.6). Proof of (1.7) is similar to that of (1.6).
Proof of (1.3). Multiplying (1.6) and (1.7), we obtain

(2 — M) (M + 301 6)* = ITHIT).
Assuming 0 < g < 1, we obtain

(I — M) (I 2 + 31 ) = + 1T 311,

Dividing both sides by ¢ and then setting ¢ = 0, we observe that the left hand
side of the above equation is greater than 0. This forces us to choose + sign,
which implies

(qu — Hqé)(qu + 3Hq6) = Hq.an.

By analytic continuation, this holds good for all |¢| < 1. Hence the proof of
(1.3).
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Proof of (1.8). From (2.5), (2.7) and (2.9), it follows that
(I + M) —3)° el

(1% —4112%)? 1,

Changing ¢ to —¢ in the above equation, we obtain

3
(qu—Hq6)(Hq2+3Hqﬁ) Hqﬁnqz

(112 +411%,)° -

Then changing ¢ to ¢'/> in the above two equations, we obtain (1.8).
Proof of (1.9). From (2.4) and (1.6), it follows that
(ng +4H§4)2 H;ll

Hq6)3(17qz+317q6) HqZHq"

(I, —

Changing ¢ to —¢ in the above equation, we obtain

(1% —411%)? L

(qu + qu)B(qu — 3Hq6) B qunq“

By changing ¢ to ¢'/? in the above equations, we obtain (1.9).
Proof of (1.12). Eliminatin

that
2 3/2 1/2
Hq3_3 m,\ _ (1, /+3 1.\
s I I Hp) -

Multiplying throughout by H;g, we complete the proof of (1.12).

(2.22) and (2.23), it is easy to see

Proof of (1.13). The first equality of (1.13) directly follows from (2.22) and
(2.23). However, the second equality of (1.13),

11,
i, 1+./9H T
I, 3

is wrong. This is because

i
lim (— =
q—>l’

o) 1 v

li -
s 3 3

)

whereas
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For finding limit as ¢ — 1~ of the expressions involving theta functions, one

can refer [10]. The correct way of putting what Gosper intended might be the
following, which is again due to Ramanujan:

o

Proof of (1.14). From (2.19), (2.20) and (2.6) it follows that

el () ()

From (1.1), it follows that

q
(1617;1][) _H;lj) H;w

(S0 — M p) (e — M) eI

This completes the proof of (1.14).
Proof of (1.15). From (2.19), (2.20) and (2.6), it follows that

(Squ— )5( 2_Hq“’) 2f1216 f2 f20
(161732—17;‘) RN

where we have used (1.1). Again employing (1.1) to the right-hand side, we
obtain

(S0 — 1,p) (I — M) M pI0s

(16113, — IIy) oI

)

which completes the proof of (1.15).
Proof of (1.16). From (1.15), we have
(16173, — 114, (16178 — ITh)* 11},

(50 — M)’ (2 — Hypo) (16010 — IT) IT,0ll,

9

From (2.6), we have

(65 — 113)" (fzfs) (fz )8
(emy, —my) "\ fa ) \Nf)"

On using (1.1), we observe that

o(EEY (L) =Tl
fi) \hf) 1k
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Using this in the above, we obtain
(16112 — IT)? I,
(anlo —qu)S(qu —quo) qunqlo

Changing ¢ to ¢'/?>, we obtain (1.16).
Proof of (1.17). From (1.14), we observe that

(16T, — IT})° (16T — 1T 50)?
(5H 0 — M) (Mo — 1,2)° (1610 — IT3) o 0T
From the proof of (1.16) above, we have
(16113 — 1T}, )2 B 30T
(1617} — IT}) My
From the above two identities, we find that
(16T — IT})° Tpet

(anlo - qu)(quo — qu)s B qunqlo .
Changing ¢ to ¢'/?, we obtain (1.17).

We now introduce some terminologies related to modular equations and
list few related results which will be used in the verification of (1.10) and
(1.11).

If 0 <a,f <1, and the equality

2153311 =2)  oFi(5i33 151 f)
2F1 (3,35 159) 2F1 (3,35 1:5)
holds, then any relationship between o and f induced by the above equation is
called a modular equation of degree n. In such equations, we say that f is of
degree n over a. We define the multiplier m connecting o and f by

2R (3.5 58)

Following theorem due to Ramanujan serves as a bridge between the theory
of modular equations and the theory of theta functions:
zFl(%,%;lqlfo()

THEOREM 3.1. Suppose 0 <a <1, y=n=n
2F1 (3,35 1;0) =z, where z = ¢*(q).

, and q=e then

For a proof of the above, see [4, p. 101]. We require following theorems,
which are due to Ramanujan:
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THEOREM 3.2 ([4, p. 123])). If o, q and z are as defined in Theorem 3.1,
then

1) wia) =/=(2) ",
1/4
@ v =1vi(2)"

THEOREM 3.3 ([4, p. 232]). If S is of degree 3 over o, and m is the
multiplier connecting o and [, then

N 1/8
m () =t
18
@ (5) =%
Now, we will move to the verification of (1.10) and (1.11).

Verification of (1.10). From Theorem 3.2 and Theorem 3.3, it is easy to see
that

‘(90 _ m(3B+m)
g3 m—1 7

U
qy

Hence, we have

VD) gy (@) _ 24m? £ m o 18m? 27 -
(g Va) | mm- D@ m) &
From Theorem 3.2, we have
yig) _ 16
wW(q?) o
Also from Theorem 3.1 and 3.2, we have
_B+mim-1) . Vi) B4m)’
T e ™ Pt o
Thus
V(4% ( v (q) ) (3+m)> 16m?
+16 | = +1],
V() (@) \av'(¢?) mo B +m)’(m—1)
which on simplification yields
V) (W) ) 24w tmt o 18m? — 27 s
V() <qw8<q2> )T T DG m) 32)

From (3.1) and (3.2), the verification of (1.10) is completed.
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Verification of (1.11). From Theorem 3.2 and Theorem 3.3, it is easy to see
the following identities

V) m3am)
@t}  m—1

We have
V@) gy @le) _mBm)  m—l
P R E s B cRu
Which on simplification yields
v (q) 3 (g ) m* —6m? +24m — 3 (33)
v (4?) Uiq)  mlm—=1)(3+m)
From Theorem 3.2, we obtain
g 16
RO
Also from Theorem 3.1 and 3.2, we have
_(m=1)’G+m) Vg (m—1)°
= em P e
Hence
AU AR 16) _(m— 1>2< 16m 1)
V(v () (tflﬁg(qﬁ) i m \m-0)Gim )
which on simplification yields
Ve’ (V) o) _mt = bm®+24m =3 34
v <q3< o )T e, O

From (3.3) and (3.4), verification of (1.11) is completed.

4. Proofs of Lambert series identities
Proof of (1.19). It is easy to observe from the definition of P;’s that

Dy e TR ETIBS
n=1 -

24( 1+2P, — Py).

(1.19) now follows easily from (2.28) and the fact that ¢(q) = vla)”
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Proof of (1.20). Ramanujan has recorded in [4, p. 460],

- kq - @)+ 30t @)
Lr12) 23 { O }’

1

This is equivalent to (1.20).

Proof of (1.21). In [4, p. 114], Ramanujan has recorded the following
identity:

oilg) =148 L
o1+ (—Q)k
which is same as
4 1
9 (q) = g( Py +4Py).
By the definition of Pj, we have
1
2(7—42 per 4(1—Pl 4+ 4Py)
—i«s+3%»
~ 24 ¢\

1(%@)_0
8\v'e) )

where we have used ¢(gq) = ";2322 Which completes the proof of (1.21).

Proof of (1.23). Changing ¢ to ¢*, followed by setting a = ¢ and b = ¢>
(2.26), and then expanding the bilateral series, we obtain

2n—1

o0

-2 = IT%,

nz:; g1 ; 1 — gn-2) 9’
6

where we have used, ﬁ =y*(¢?). Now using the fact that

i qn _ 0 nqn
(1 - qn)2 n=1 - qn

n=1

we observe that
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0 2n—1 0 4n—-2 0 n 0 2n

4q q ng nq
Z—,—2ZTﬁ)z:;1_qn—;1_qzn

n=1 (1 - q2n 1)2 n=1 (1

Now using the facts that

) n 0 2n 0 n—1 2n—1
Zlnj _zzliﬁ] zﬁZ%

n
n=1 q n=1 q n=1

and

q a9 &

l—¢q> 1—q 1-¢%

in the above equation, we obtain

2}1—1 2n—1
4n

2n—1 0 4n72 0
2 )

Z 2n 1 22(1—(]4" 2

n:l n=1

which completes the proof of (1.23).
Before going to the proof of (1.25) and (1.26) we shall first establish the
following equality

l+16 410
T Ty My 0, 1)
poat Ny |

From (1.17) and the formula (a+ b)* = (a — b)> + 4ab it follows that,

[V61T} — IT}]* =

, H C{(5H s — 11,)[T s — 11,)°} + 41T} IT 1.

Expanding the right hand side and then factoring it yields,

2 2\?2 6 4 2

4 a2 I _Hqs 1, 1 b
(16Hq10 Hq5) - 2 4 2 6 4 + 2 )"

Hqs Hq HqS Hqs Hq5

Proof of (1.26). Changing ¢ to ¢'° in (2.26) and setting b = ¢°, we observe

that
Pl 5)

Ao

0 10n 10n+5
] RETAICL
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Setting a = ¢ first and then a =¢> in the above equation, and adding the
resultant identities, we obtain

f: q2n—l B 5200: q10n—5
H (=g 1) (1 - g5y’
2
_ g (fz(—q“,—qG) +qu2(—q2,—q8)>. (42)
2\ f2(=4,—¢°) 12(=4* —4q7)

Setting a =b=c=d =¢> and n= —¢q in (2.27), we see that
0> ()11 (=4 —4%) = /(4" 4°)0*(=a°) = —44" V(") /* (=4, —4),
where we have used f(1,q) =2y/(g). This implies
(4% 4" :(022(—415) SUGhE) V)
0*(q°) [H(=4,—¢°) 9*(¢°)
Similarly by setting a =b=c=d =¢°> and n= —¢> in (2.27), we obtain
PR G R O DU D U I O Ui
=4 =) 0*(¢°) /(=4 —q7) 9*(q°)
Adding the above two, and using (4.2), we obtain

1 o0 q2n—l 0 q10n75
1% > (1— g 12 52 (1 — glon=5)?

q n=1 n=1

_ ¢2(—q5){ ACRT DR Ut } gyt V2(q"))
P\ 0 (@®) L2 (=4.—¢°) " fH-4*,—q") 0*(q°)

Now using (2.34), (2.36) and the identity a® + b2 = (a — b)? + 2ab, we observe

that

1 o ¢! @ '3
-5
173 Z (1 — g¥1)? Z (1 — glon=5)?

q

77 (g5 V(=g
W2 (d*) = (@)D @) -’ @) | o sp¥ ")
2 02 (=)’ (9) } o

Now simplifying the above using y(¢?)p*(q) = ¥*(¢), it reduces to
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which is nothing but

1 © q2n71 o) q10n75
1 @ 5N _ 1
w2\ gy

q n=1 n=

I (M, 2 1, I
_ q q- 9~ 9 _ _
T ((qu 1) +2(nqm )(nqs 1> 8- (43)

Now, by setting a =b=c=d =¢> and n= —¢* in (2.27), we obtain

SO0 ) | 0Ce) e
=4 =q") &) 4P(g") SA(=4P —4")

The above is nothing but (1.33).
Similarly by setting a=b=c=d=¢> and n=—¢* in (2.27), we
obtain

L) ) ) S2aq)
f*(=4,—¢°) 4x//2(q10) 4¢2(q10) [ =q,—¢°)

Adding the above two equation and substituting the resultant one in (4.2), we
see that

1 o0 (]2”71 © q10n75
_t @ 5 -t
172 Z (1—g¥1)? Z (1— qlon—S)Z

q5 n=1 n=1

_ L] e +¢2(q5)< SMad) e d) )
P 4P w0 \ (-} —4) T [H—4,—4%)) [

Now using (2.33), (2.35), (2.39) and the formula ¢ + b2 = (a — b)* + 2ab in the
above equation, we obtain
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1 © q2n—1 0 q10n—5
S S 0 S SE—
st Z(l _ q2n71)2 Z(l _ q10n75)2

n=1

9 (q°) 0*(—q°)
‘IM (¢') ‘14111 (¢')

x<4q%p (@) Pl -’ @)’ |, ) -’ )
0 (=a") (W7(d*) = a7 (@)? (=)W (e?) — ¢ (g'))

Simplifying the above equation using ¢(q)¥(¢?)

(i 2n—1 i q10n—5 )
5 -+
—( g —~(] - qIOn—5)2

V@ Y V@ Y
_ _ l//4(615) n ‘P4(‘]5) 4 (Wz(fﬁ) 1) +2 (Wz(fﬁ) 1)

q 2 4/ .10 4 4/ .10 Wz(qz) 2 lﬁz((lz) B ’
v (g') i) (qzlpZ(qm)_l) (qszz(q“‘) )

¥ (q), we obtain

which upon conversion to [1,’s becomes,

1 0 qznfl 0 q10n75
1% > (1— g2 12 5 — glon=5)?

q n=1 n:l(l
m (1 (=) 2 @)
:Hglz _f(,’j—;]j]—l)ﬁz(%—l) : (4.4)

The above is nothing but (1.34). From [13, p. 33], we have

P’Q —4P0+50—- P> - 0> =0,

where P = 1177 i and Q= "2 . This implies
q

410

(P —4P+5) + /(P> — 4P+ 5)* — 4P2
: .

Since ¢>Q(q) at ¢ =0 takes the value 1, we must choose positive sign in the
above equation. Also, it is easy to see that

(P274P+3)+\/(P274P+5)274P2

0-1= 5 (4.5)
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and

Po1 (PP—4P+3)— /(P> —4P+5) —4P>

Q—lz A . (4.6)
Hence, we have
1 o g © '3 )
-5
135 <n—1 (1—g>1)? ;(1 — q10m5)?
Hjlo 2
= Q- D7 +2(0-D(P—1) -8}, (4.7)
q5
and
1 o0 q2n—l oo qIOn—S
7 N9 0
1 (ga T i gy
oy (1 (P-1)% 1(P-1)>
q
= —— 4 + = . 4.8
Hjm{ 2 (0-1? 2(0-1) (“8)

Using (4.5) and (4.6) in (4.7) and (4.8) and then multiplying the resulting
equations, we obtain (1.26).

Proofs of (1.24) and (1.27). The following identity can be found in [6,
p. 197]:

— Py + Py + 3P — 3Pg = 24qy > (q)¥*(4°). (4.9)

This can be proved from (2.26) as done in [20, p. 88]. By the definition of P,
the above can be written as

0 2n—1 0 6n—3

P e =y ) )

n=1 (1 - q2n71)2 n=1 (1 - q6n73)2

which is nothing but (1.24). Changing ¢ to ¢° in the above equation and then
adding 3 times of the resulting equation to it, we obtain

—P1+ Py +9Py — 9P = 24(qy* (9 (@) + 347 (@)W (@)
By the definition of P,, the above equation is same as
2n—1 0 18n—9

z_;(quTl)z - 92_;(111T9)2 = (V@) + 380 () ()
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Hence

1 0 18}19 Hq3 Hq
i (Za O )Zm(m”)' (410

q n=1 n= 1 q q

Eliminating % £ ) ) between (2.22) and (2.23), it is easy to see that

ax(—q
s [\ 1, m,\"?
—/(=L) -3 +3 . (4.11)
1, 1, 1, 1,

Using this in the above, we obtain (1.27).

Proof of (1.22). The following can be found in [4, p. 475]:

0 qu 0 kq9k
1+3];1 _(],(—27162171 ~
(V@) 3wt @) ) W)
Ha)bia’) Hbia) |

Using the fact that /7, = ql/4lp2(q), above equation can be rewritten as

“~ kq* kg1 5 , Iy
kzl_ k—9;1_q9k—§ (IT}s + 301,11 5) 7(174%9)3/2—1 .

From the above and (4.10), we have
2% © g8k 1

~ kq 2 2 q
(A 4300 —— ]
;1 q* Z;l—q“*" 3<( o T3 p) (IT,01,)""

—an(Hq+3Hq9).

Now employing (1.12), the above can be written as

0 k 2k 0 k 18k 1 11 5
L :g((n;+3nqnq9)(nq+3nqg)—qg)—1)
q
7Hq3(Hq+3qu).

Simplifying the above, we obtain (1.22). Now, from (4.12), (1.21) and (1.11),
the identity (1.32) follows.
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Proof of (1.28). Ramanujan has recorded the following [4, p. 463]:

< kgt S kgF ) 2 @WAe) + S ()
463 e 0w = VW)

< U4 (a) = 20> (@65 + SV (6).
Employing (1.26) along with the fact that I7, = ¢'/*y*(q), we obtain (1.28).

Proof of (1.29). Using the fact that I7, = ¢'/*y*(g), (4.12) can be rewritten
as

K - = :
ol-a k:ll ¢\ H/2 My \ Iy

2
o k w 9% 2, 3/2
T S N (” R LA 7
q

2

i,
Now using (4.11) for the term 172
1,

H"9 outside the square in the above equation and then simplifying the resulting

equation, we obtain (1.29).

> inside the square and using (4.10) for the term

Disproving (1.30). Setting ¢ = 0 in (4.12) yields 1, while at ¢ = 0, right hand
side expression of (1.30) is not defined, which shows that (1.30) must be wrong.
We are unable to guess what Gosper might have intended with respect to

(1.30).

Proof of (1.31). Ramanujan has recorded the following [4, p. 139]:

(4.13)

Using the facts that

i 7’13(]” _i n+4q2n+q3n

=1 | q")
and
¢ 9 g
1 _ q2n 1 qn 1 q2n
we find that




136 Yathirajsharma MUDUMBAI VARADA et al.
But,
q2n—1 +4q4n—2 +q6n—3 _ q2n—1(1 2n l) + 6q4n 2.
This implies,
0 0 2n—1

q
Zl_an_éz prr 4+Z(1_q2n71)2. (4.14)

n=1 n=1 n=1

(4.13) and (4.14) together imply (1.31).
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