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Abstract. In this paper, we study Ga-actions on the a‰ne spaces over a commuta-

tive ring of characteristic pe, where p is a prime number and eb 2. We say that a

Ga-action is red-nontrivial (resp. red-trivial ) if it is nontrivial (resp. trivial) modulo p.

We give a structure theorem for red-nontrivial Ga-actions on the a‰ne lines under some

mild assumptions. Interestingly, the invariant ring for such an action is either the ring

of constants or non-finitely generated. We show that every red-trivial Ga-action on the

a‰ne space over a certain class of commutative rings is uniquely determined by two

derivations, whose invariant ring is finitely generated if the base ring is noetherian. By

combining these results, we completely determine the Ga-actions on the a‰ne lines over

a certain class of commutative rings of positive characteristic, including Z=mZ for any

mb 2.

1. Introduction

Throughout this paper, a ring means a commutative ring with nonzero

identity. For a ring R, an R-algebra means a commutative ring containing

R as a subring. Let A be an R-algebra, T and U indeterminates over A,

and s : A ! A½T � a homomorphism of R-algebras. We define R-linear maps

dsi : A ! A for ib 0 by sðaÞ ¼
P

ib0 d
s
i ðaÞT i for each a A A. Recall that s

defines an action of the additive group Ga ¼ Spec R½T � on Spec A if and only

if the following conditions hold.

(A1) ds0 ¼ idA.

(A2)
P

ib0 sðd
s
i ðaÞÞU i ¼

P
ib0 d

s
i ðaÞðT þUÞ i for each a A A.

When this is the case, we call s a Ga-action on A (over R). We say that s

is trivial if the invariant ring As :¼
T

ib1 ker dsi ¼ fa A A j sðaÞ ¼ ag is equal to

A, that is, s is the inclusion map A ,! A½T �. We denote the trivial Ga-action

by i. For any Ga-action s on A and b A AsnA�, a Ga-action on A=bA is

naturally induced from s.
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One of the important problems in A‰ne Algebraic Geometry is to deter-

mine all the Ga-actions on the polynomial ring R½x� ¼ R½x1; . . . ; xn� in n vari-

ables over R. When n ¼ 1, we write R½x� ¼ R½x�. In the case R is an

integral domain, it is well known that a homomorphism s : R½x� ! R½x�½T �
of R-algebras is a Ga-action if and only if sðxÞ A xþ RT when char R ¼ 0, and

sðxÞ A xþ
P

ib0 RT
pi

when p :¼ char R > 0 (cf. Lemma 5).

Assume that R ¼ K is a field, and let s be a Ga-action on K ½x�. When

n ¼ 2, there exist y1; y2 A K ½x� such that K ½x� ¼ K ½y1; y2� and y1 A K½x�s by

Rentschler [11] if p ¼ 0, and by Miyanishi [9] if p > 0 (see also [5], [6]). If

this is the case, s is a Ga-action on K ½y1�½y2� over K½y1�. Hence, we are

reduced to the one variable case. For nb 3, Freudenburg [3] constructed

Ga-actions s on K ½x� for which there do not exist y1; . . . ; yn A K ½x� such that

K ½x� ¼ K ½y1; . . . ; yn� and y1 A K ½x�s. This type of Ga-action is di‰cult to

understand. It is an open problem to determine all the Ga-actions on K ½x� for
nb 3.

We mention that K ½x1; x2; x3�s FR½x1; x2� if p ¼ 0 by Miyanishi [8].

On the other hand, the K-algebra K ½x�s is not always finitely generated if

p ¼ 0 and nb 5 by Daigle-Freudenburg [2]. The problem of finite genera-

tion of K ½x�s is a special case of Hilbert’s fourteenth problem, and is of great

interest.

When R is not an integral domain, Ga-actions on R½x� are not studied well,

even in the low-dimensional cases. If R is reduced, then we can explicitely

describe all the Ga-actions on R½x� (see Section 9). However, the situation is

far di¤erent when R is non-reduced. The di‰culty comes from a lack of e¤ec-

tive tools, such as the slice theorem. As far as we know, even for R ¼ Z=mZ

with mb 2 not square-free, the Ga-actions on R½x� are not completely deter-

mined previously.

Now, assume that m :¼ char R > 0, and write m ¼ pe1
1 � � � pet

t , where

p1; . . . ; pt are distinct prime numbers and e1; . . . ; et b 1. Then, the ring A ¼
A=mA is isomorphic to 0 t

i¼1
ðA=pei

i AÞ by the Chinese Remainder Theorem.

Moreover, every Ga-action s on A over R induces a Ga-action on A=pei
i A over

Ri for i ¼ 1; . . . ; t, where Ri is the image of R in A=pei
i A. Conversely, for any

given Ga-actions si on A=pei
i A over Ri for i ¼ 1; . . . ; t, the map

AF0
t

i¼1

ðA=pei
i AÞ C ðaiÞ ti¼1 7! ðsiðaiÞÞ ti¼1 A 0

t

i¼1

ðA=pei
i AÞ½T �FA½T �

is a Ga-action on A over R. Therefore, it su‰ces to consider the case t ¼ 1.

Throughout this paper, let p be a prime number and eb 2 unless other-

wise specified. We study a Ga-action s on A when char R ¼ pe. We say that

s is red-trivial (resp. red-nontrivial ) if the Ga-action on A=pA induced from s
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is trivial (resp. nontrivial). Equivalently, s is red-trivial (resp. red-nontrivial) if

sðaÞ � a A pA½T � for each a A A (resp. sðaÞ � a B pA½T � for some a A A).

We have the following results for red-nontrivial Ga-actions on A ¼ R½x�.

Theorem 1. Let R be a ring with char R ¼ pe such that pR is a prime

ideal of R and ðp2R : pRÞ ¼ pR. Then, for every red-nontrivial Ga-action s on

R½x�, the following assertions hold.

( i ) There exists a A RnpR such that sðxÞ A xþ aT þ pTR½x�½T �.
( ii ) There exists y A Ra½x� such that Ra½x� ¼ Ra½y� and sðyÞ ¼ yþ T, where

Ra is the localization of R by the multiplicatively closed set fai j ib 0g.
(iii) If a is not a zero-divisor of R, then we have R½x�s ¼ R.

(iv) If R½x�s 0R, then the R-algebra R½x�s is not finitely generated.

Here are some remarks. We have ðp2R : pRÞ ¼ pR if and only if pr B p2R

for any r A RnpR. Since p is a nilpotent element of R, and pR is a prime ideal

of R, we see that pR is the nilradical of R. Since a in (i) is not nilpotent, we

have Ra 0 f0g. If a is not a zero-divisor of R, then Ra½x� contains R½x�.
Since the invariant ring for the Ga-action on Ra½x� ¼ Ra½y� over Ra defined by

y 7! yþ T is equal to Ra, (iii) follows from (ii) (see also Lemma 3). (iv) is a

consequence of a more general result (Theorem 3).

The following is a corollary to Theorem 1.

Corollary 1. Let R be a ring such that char R ¼ pe and pR is a maxi-

mal ideal of R. Then, for every red-nontrivial Ga-action s on R½x�, the following

assertions hold.

( i ) There exists y A R½x� such that R½x� ¼ R½y� and sðyÞ ¼ yþ T.

(ii) We have R½x�s ¼ R.

In fact, if char R ¼ pe and pR is a maximal ideal of R, then R is a zero-

dimensional noetherian local ring satisfying ðp2R : pRÞ ¼ pR (Lemma 7).

For example, Corollary 1 says that, up to a change of variables, every

red-nontrivial Ga-action on ðZ=peZÞ½x� is equal to the Ga-action defined by

x 7! xþ T .

To discuss red-trivial Ga-actions, it is convenient to extend the notion

of Ga-actions as follows. Note that we can also consider the conditions

(A1) and (A2) for a homomorphism s : A ! A½½T �� of R-algebras, where

A½½T �� is the formal power series ring in T over A. We call s an analytic

Ga-action on A (over R) if (A1) and (A2) hold, or equivalently ðdsi Þ
y
i¼0 is a

so-called iterative higher R-derivation of A (cf. [10, § 27]). To avoid confu-

sion, we will sometimes call a Ga-action s : A ! A½T � an algebraic Ga-action

on A. We regard an algebraic Ga-action as an analytic Ga-action satisfying

sðAÞ � A½T �.
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When char R ¼ pe, we say that an analytic Ga-action s on A is red-

trivial if sðaÞ � a A pA½½T �� for each a A A. We mainly study such s in the case

A ¼ R½x� with R ¼ S=peS, where S is a subring of a Q-algebra with p B S �.

We note that a ring S is a subring of a Q-algebra if and only if char S ¼ 0

and no element of Znf0g � S is a zero-divisor of S. In this case, we have

char R ¼ pe. Actually, pe 0 B peS for any 1a e 0 < e, since p is not a zero-

divisor nor a unit of S. We construct a bijection between the set of red-trivial,

analytic Ga-actions s on R½x�, and the set of pairs ðd;DÞ of R-derivations

d : R½x� ! R½x� and D : R½x� ! R½x�½½T �� with certain conditions. Under this

correspondence, we have R½x�s ¼ ker d \ ker D (Corollary 3 (i)). We also

determine the set of pairs ðd;DÞ for which the corresponding analytic Ga-

actions on R½x� are algebraic in the following cases (cf. Corollaries 2 and 3 (ii),

and Theorem 6 (iii)).

(a) pb 3. (b) n ¼ 1, p ¼ 2 and
ffiffiffiffiffiffi
2S

p
¼ 2S.

Remark 1. Let ~RR ¼ S=ðpe1
1 � � � pet

t SÞ, where p1; . . . ; pt are distinct prime

numbers, S is a subring of a Q-algebra such that p1S; . . . ; ptS are maximal

ideals of S, and e1; . . . ; et b 1. Then, we have char ~RR ¼ pe1
1 � � � pet

t , and Ri :¼
~RR=pei

i
~RRFS=pei

i S for each i. Moreover, piRi is a maximal ideal of Ri,ffiffiffiffiffiffiffi
piS

p
¼ piS and pi B S �. Hence, if ei b 2, then we can use Corollary 1 and

the results for red-trivial Ga-actions mentioned above for R ¼ Ri. If ei ¼ 1,

then Ri is a field, and the Ga-actions of Ri½x� are already determined. There-

fore, we can determine all the Ga-actions on ~RR½x�.

For example, for R ¼ Z=mZ with mb 2, we can determine all the

Ga-actions s on R½x�. In this case, R½x�s is always finitely generated by the

following theorem.

Theorem 2. Let ~RR ¼ S=ðpe1
1 � � � pet

t SÞ, where p1; . . . ; pt are distinct prime

numbers, S is a subring of a Q-algebra such that p1S; . . . ; ptS are prime ideals

of S, and e1; . . . ; et b 1. Then, the ~RR-algebra ~RR½x�s is finitely generated for any

Ga-action s on ~RR½x�.

In the situation of Theorem 2, we can describe generators of ~RR½x�s
explicitely. We prove this theorem in Section 8.

This paper is organized as follows. In Section 2, we study finite gener-

ation of the invariant ring for a homomorphism R½x� ! R½x�½T � of R-algebras

with certain conditions, and prove Theorem 1 (iv) as a special case. We also

give some examples in which the invariant rings are not finitely generated.

The rest of Theorem 1, and Corollary 1 are proved in Section 3. In Section 4,

we overview the main results for red-trivial Ga-actions. We discuss the details

in Sections 5 through 8. In Section 9, we describe the Ga-actions on R½x� when
R is a reduced ring.
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2. Non-finitely generated invariant rings

The goal of this section is to prove the following theorem, which includes

Theorem 1 (iv) as a special case. For a ring R, we denote by nilðRÞ the nil-

radical of R. For a homomorphism s : R½x� ! R½x�½T � of R-algebras, we define
the invariant ring as R½x�s :¼ f f A R½x� j sð f Þ ¼ f g.

Theorem 3. Let R be a ring such that nilðRÞ is a prime ideal of R, and let

s : R½x� ! R½x�½T � be a homomorphism of R-algebras such that sðxÞ � x belongs

to TR½x�½T �, but does not belong to nilðR½x�½T �Þ. Then, we have either ð1Þ
R½x�s ¼ R, or ð2Þ the R-algebra R½x�s is not finitely generated.

Under the assumption of Theorem 1, the prime ideal pR is equal to nilðRÞ
as remarked. Hence, we have pR½x�½T � ¼ nilðR½x�½T �Þ, to which sðxÞ � x does

not belong by red-nontriviality. By (A1), sðxÞ � x belongs to TR½x�½T �.
Thus, the assumption of Theorem 3 is satisfied. Therefore, Theorem 1 (iv)

follows from Theorem 3.

Theorem 3 is proved by combining the following three lemmas. These

lemmas hold for any ring S.

Lemma 1. Let A be a finitely generated S-subalgebra of S þ nilðS½x�Þ.
Then, fdeg f j f A Anf0gg is bounded above.

Proof. Let f1; . . . ; ft A Anf0g be such that A ¼ S½ f1; . . . ; ft�. Since A �
S þ nilðS½x�Þ by assumption, we may take f1; . . . ; ft from nilðS½x�Þ. Take eb 1

so that f e
1 ¼ � � � ¼ f e

t ¼ 0. Then, deg f is less than et maxfdeg fi j i ¼ 1; . . . ; tg
for all f A S½ f1; . . . ; ft� ¼ A. r

Lemma 2. Let p A Spec S, and let s : S½x� ! S½x�½T � be a homomorphism

of S-algebras such that sðxÞ � x belongs to TS½x�½T �, but does not belong to

pS½x�½T �. Then, we have S½x�s � S þ pS½x�.

Proof. Suppose that there exists f ðxÞ A S½x�s not belonging to S þ pS½x�.
Then, the image of f ðxÞ in ðS=pÞ½x� is a polynomial of positive degree. Since

S=p is an integral domain, and F :¼ sðxÞ � x lies in TS½x�½T �npS½x�½T �, we see

that the image of sð f ðxÞÞ ¼ f ðxþ F Þ in ðS=pÞ½x�½T � is of positive degree in T ,

and thus is not equal to the image of f ðxÞ. This contradicts that f ðxþ FÞ ¼
sð f ðxÞÞ ¼ f ðxÞ in S½x�½T �. r

Lemma 3. Let s : S½x� ! S½x�½T � be a homomorphism of S-algebras with

F :¼ sðxÞ � x A TS½x�½T �nf0g. If S½x�s 0S, then there exists a A Snf0g such

that aF ¼ 0.

Proof. It su‰ces to show that F is a zero-divisor of S½x�½T � (cf.

[1, Chapter 1, Exercise 3]). Take any f ðxÞ A S½x�snS, and write f ðxþ TÞ ¼
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f ðxÞ þ
Pd

i¼1 fiT
i, where d :¼ deg f ðxÞ and fi A S½x�. Then, fd is nonzero,

since fd is the leading coe‰cient of f ðxÞ. Hence, I :¼ fi j fi 0 0g is not

empty. Let l :¼ min I . Then, we have f ðxÞ ¼ sð f ðxÞÞ ¼ f ðxþ FÞ ¼ f ðxÞ þPd
i¼l fiF

i. It follows that gðx;TÞF l ¼
Pd

i¼l fiF
i ¼ 0, where gðx;TÞ :¼Pd�l

i¼0 fiþlF
i. Since F A TS½x�½T � by assumption, we see that gðx; 0Þ ¼ fl 0 0.

Thus, we get gðx;TÞ0 0. Therefore, F is a zero-divisor of S½x�½T �. r

We remark that, in Lemma 3, axl belongs to S½x�s for each lb 1, since

aðxþ FÞ l ¼ axl . Hence, fdeg f j f A S½x�snf0gg is not bounded above.

Proof (of Theorem 3). Assume that (1) does not hold. Then, by the re-

mark above, fdeg f j f A R½x�snf0gg is not bounded above. Noting nilðRÞR½x�
¼ nilðR½x�Þ and nilðRÞR½x�½T � ¼ nilðR½x�½T �Þ, we have R½x�s � Rþ nilðR½x�Þ by

Lemma 2. Therefore, we get (2) by Lemma 1. r

Finally, we give some examples of Ga-actions whose invariant rings are not

finitely generated. In the following examples, a and b denote variables.

The first one is an example of Theorem 1.

Example 1. Set R :¼ Z½a; b�=ðpe; p2ab; p3bÞ, where p is a prime number,

and eb 3. First, we check that R satisfies the assumptions of Theorem 1.

It is easy to see that char R ¼ pe, and pR is a prime ideal of R. To show

ðp2R : pRÞ ¼ pR, it su‰ces to check that pr A p2R implies r A pR for r A R.

Take f A Z½a; b� such that f ¼ r. Since pr A p2R, there exists g A Z½a; b� such
that pf � p2g A ðpe; p2ab; p3bÞ. This implies f A pZ½a; b�, and so r ¼ f A pR.

Now, we define a Ga-action s on R½x� by sðxÞ ¼ xþ aT . Then, s is red-

nontrivial, and sðp2bxÞ ¼ p2bðxþ aTÞ ¼ p2bx. Hence, we have R½x�s 0R.

Therefore, the R-algebra R½x�s is not finitely generated by Theorem 1 (iv).

Next, we give an example of Theorem 3 in the case char R ¼ 0.

Example 2. Set R :¼ Z½a; b�=ða2; abÞ. Then, we have char R ¼ 0, and

nilðRÞ ¼ aR A Spec R. We define a Ga-action s on R½x� by sðxÞ ¼ xþ bT .

Since sðaxÞ ¼ aðxþ bÞ ¼ ax, we have R½x�s 0R. Therefore, R½x�s is not

finitely generated by Theorem 3.

In the following example, sðxÞ � x belongs to nilðR½x�½T �Þ.

Example 3. Let S be a subring of a Q-algebra. Then, R :¼ S½a�=ðaeÞ is

also a subring of a Q-algebra, where eb 2. We define a Ga-action s on R½x�
by sðxÞ ¼ xþ ae�1T . Then, we claim that R½x�s ¼ Rþ aR½x�. In fact, for

f ðxÞ A R½x�, we have f ðxþ ae�1TÞ ¼ f ðxÞ þ ae�1T df =dx, in which ae�1 df =dx

¼ 0 if and only if f ðxÞ A Rþ aR½x�. By Lemma 1, the R-algebra Rþ aR½x� is
not finitely generated.
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In Example 3, if we replace S with a ring with m :¼ char S > 0, then R½x�s
contains R½xm�, since dxm=dx ¼ 0. Hence, R½x� is integral over R½x�s. If R

is noetherian, this implies that the R-algebra R½x�s is finitely generated (cf.

[1, Proposition 7.8]).

3. Red-nontrivial Ga-actions on the a‰ne lines

In this section, we prove (i) and (ii) of Theorem 1, and Corollary 1.

Lemma 4. Let K be a field. Then, for any f ðTÞ A K ½T �nK, we have

K ½ f ðTÞ;U � \ K ½T ; f ðUÞ� ¼ K ½ f ðTÞ; f ðUÞ�:

Proof. Set d :¼ deg f ðTÞ and B :¼ K ½ f ðTÞ; f ðUÞ�. Since K is a field,

we may assume that f ðTÞ is monic. Then, A½T � ¼ 0d�1

i¼0
A½ f ðTÞ�T i holds

for any ring A. Hence, we have K ½T ; f ðUÞ� ¼ 0d�1

i¼0
BT i, K ½ f ðTÞ;U � ¼

0d�1

j¼0
BU j and

K ½T ;U � ¼ 0
d

i¼0

K½ f ðTÞ;U �T i ¼ 0
d

i¼0

0
d

j¼0

BT iU j:

This implies that K ½ f ðTÞ;U � \ K ½T ; f ðUÞ� ¼ B. r

Let R be any ring, and s a Ga-action on R½x�. Then, Fðx;TÞ :¼ sðxÞ � x

belongs to TR½x�½T � by (A1). By (A2), we have sðxÞ þ F ðsðxÞ;UÞ ¼ xþ
Fðx;T þUÞ, which is equivalent to

F ðxþ Fðx;TÞ;UÞ ¼ F ðx;T þUÞ � Fðx;TÞ: ð3:1Þ

The following lemma is well known.

Lemma 5. If R is an integral domain, then we have F ðx;TÞ A R½T �, and
so F ðx;T þUÞ ¼ Fðx;TÞ þ Fðx;UÞ by (3.1). This implies F ðx;TÞ A RT when

char R ¼ 0, and Fðx;TÞ A
P

ib0 RT
pi

when p :¼ char R > 0.

Proof. It su‰ces to verify F ðx;TÞ A R½T � (see Lemma 8 for the last

statement). Set d :¼ degT Fðx;TÞ. Then, as a polynomial in T and U , the

right-hand side of (3.1) is of total degree d. Suppose that F ðx;TÞ B R½T �. Let

lb 1 be such that the coe‰cient of T l in Fðx;TÞ is of x-degree mb 1. Then,

since R is an integral domain, the monomial xtT dmU l appears in the left-

hand side of (3.1) for some tb 0, which is absurd. r

Now, let R be as in Theorem 1, and assume that s is red-nontrivial.

Write Fðx;TÞ ¼
P

i; j ai; jx
iT j, where ai; j A R. Let I0, I1, and I2 be the sets

of ði; jÞ such that ai; j B pR, ai; j A pRnp2R, and ai; j A p2R, respectively.
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For l ¼ 0; 1; 2, take flðx;TÞ A TR½x�½T � so that
P

ði; jÞ A Il ai; jx
iT j ¼ plflðx;TÞ.

Then, we have Fðx;TÞ ¼
P2

l¼0 p
lflðx;TÞ. For l ¼ 0; 1, the coe‰cient of each

monomial appearing in flðx;TÞ does not belong to pRnf0g. Moreover, we

have f0ðx;TÞ0 0 by red-nontriviality.

Since R=pR is an integral domain of characteristic p, the image of F ðx;TÞ
in ðR=pRÞ½x�½T � belongs to

P
ib0ðR=pRÞT pi

by Lemma 5. Since ai; j B pR

for each ði; jÞ A I0, it follows that f0ðx;TÞ belongs to
P

ib0 RT
pi

. So, we

write

f ðTÞ :¼ f0ðx;TÞ ¼
Xd
i¼0

aiT
pi

; ð3:2Þ

where db 0, and a0; . . . ; ad A ðRnpRÞ [ f0g with ad 0 0.

Proof (of Theorem 1 (i)). Our goal is to show that d ¼ 0. By (3.1), we

have

Fðx;T þUÞ � F ðx;TÞ � F ðx;UÞ

¼ F ðxþ Fðx;TÞ;UÞ � F ðx;UÞ

1 pf1ðxþ f ðTÞ;UÞ � pf1ðx;UÞ ðmod p2R½x�½T ;U �Þ; ð3:3Þ

since f0ðx;TÞ is independent of x. Set ql :¼ ðT þUÞ l � T l �U l for each

lb 1. Then, ql belongs to pR½T ;U � whenever l is a power of p. Hence, we

have

f ðT þUÞ � f ðTÞ � f ðUÞ ¼
Xd
i¼0

aiqpi ¼ pgðT ;UÞ ð3:4Þ

for some symmetric polynomial gðT ;UÞ A R½T ;U �.
Now, suppose that db 1. If we regard qpd as an element of Z½T ;U �, then

the coe‰cient pd

pd�1

� �
of the monomial M :¼ T pd�1

U pd�pd�1

in qpd has the form

pu for some u A ZnpZ. Since the coe‰cient of M in (3.4) is puad , we may

take gðT ;UÞ so that the coe‰cient of M in gðT ;UÞ is uad . We note that uad
lies in RnpR, since u A ðZ=peZÞ� � R� and ad A RnpR. To obtain a contradic-

tion, we first investigate the structure of gðT ;UÞ.
By (3.4), the left-hand side of (3.3) is congruent to pðgðT ;UÞ þ

f1ðx;T þUÞ � f1ðx;TÞ � f1ðx;UÞÞ modulo p2R½x�½T ;U �. Since ðp2R : pRÞ ¼
pR by assumption, it follows that

gðT ;UÞ þ f1ðx;T þUÞ � f1ðx;TÞ � f1ðx;UÞ

1 f1ðxþ f ðTÞ;UÞ � f1ðx;UÞ ðmod pR½x�½T ;U �Þ: ð3:5Þ
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In the rest of the proof, f ðTÞ, gðT ;UÞ, f1ðx;TÞ and ql denote their images

in ðR=pRÞ½x�½T ;U �. Write

f1ðx;TÞ ¼
X
ib0

hiðTÞxi; where hiðTÞ A TðR=pRÞ½T �;

and set

hðT ;UÞ :¼ h0ðT þUÞ � h0ðTÞ � h0ðUÞ ¼ f1ð0;T þUÞ � f1ð0;TÞ � f1ð0;UÞ:

Then, from (3.5) with x ¼ 0, we get

P :¼ gðT ;UÞ þ hðT ;UÞ ¼ f1ð f ðTÞ;UÞ � f1ð0;UÞ ¼
X
ib1

hiðUÞ f ðTÞ i: ð3:6Þ

Let K be the field of fractions of R=pR. Then, P belongs to K ½ f ðTÞ;U �.
Since P ¼ gðT ;UÞ þ hðT ;UÞ is a symmetric polynomial, P also belongs to

K ½T ; f ðUÞ�. Thus, P belongs to K ½ f ðTÞ; f ðUÞ� by Lemma 4.

Set Pi :¼ f ðT þUÞ i � f ðTÞ i � f ðUÞ i for each ib 1. Since char K ¼ p,

we have f ðT þUÞ ¼ f ðTÞ þ f ðUÞ by (3.2) (cf. Section 4.1). Hence, Pi

belongs to K ½ f ðTÞ; f ðUÞ�. Since f ðTÞ i A ai
dT

ipd þ
P ip d�1

j¼i KT j by (3.2), we

also have Pi A ai
dqipd þ

P ipd�1
j¼i Kqj .

Now, choose P 0 A
P

ib1 KPi so that the total degree m of

P� P 0 ¼ gðT ;UÞ þ hðT ;UÞ � P 0 ð3:7Þ

is minimal. Note that P 0 lies in
P

ib1 Kqi and K ½ f ðTÞ; f ðUÞ�. We show that

ma pd by contradiction. Suppose that m > pd . Then, since deg gðT ;UÞa
deg f ðTÞ ¼ pd by (3.4), the highest homogeneous part H of P� P 0 is equal

to that of hðT ;UÞ � P 0. We claim that hðT ;UÞ � P 0 A
P

ib1 Kqi and P� P 0 A
K ½ f ðTÞ; f ðUÞ�, since hðT ;UÞ A

P
ib1 Kqi by construction, and P A K ½ f ðTÞ;

f ðUÞ� as mentioned. Because qi is either zero or a homogeneous polynomial

of degree i for each i, it follows that H ¼ sqm for some s A K �. Since f ðTÞ
and f ðUÞ are of degree pd , we can write m ¼ degðP� P 0Þ ¼ m 0pd , where

m 0 b 2. Then, sa
�m 0

d Pm 0 belongs to sqm þ
P

j<m Kqj ¼ H þ
P

j<m Kqj . Hence,

we get degðP� P 0 � sa
�m 0

d Pm 0 Þ < m. This contradicts the minimality of m, prov-

ing ma pd . Therefore, noting P� P 0 A K½ f ðTÞ; f ðUÞ�, we can write P� P 0 ¼
af ðTÞ þ bf ðUÞ þ g, where a; b; g A K . Then, (3.7) gives that

gðT ;UÞ ¼ af ðTÞ þ bf ðUÞ þ gþ P 0 � hðT ;UÞ: ð3:8Þ

As mentioned before, the monomial M appears in gðT ;UÞ with coe‰cient

uad A K �. Clearly, M does not appear in af ðTÞ þ bf ðUÞ þ g. Since qpd is

zero in K ½T ;U �, and no monomial of degree pd appears in pl for l0 pd , we
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see that M does not appear in P 0 � hðT ;UÞ A
P

lb1 Kql . Therefore, M does

not appear in the right-hand side of (3.8). This is a contradiction. r

Our next goal is to prove Theorem 1 (ii). Let S be any ring. Recall that

y ¼
P

ib0 bix
i A S½x� satisfies S½y� ¼ S½x� if and only if b1 A S � and bi A nilðSÞ

for all ib 2 (cf. Remark after Lemma 5 of [12]). Hence, if q is an element of

nilðSÞ, then S½y� ¼ S½x� holds for each y A S �xþ qS½x�.

Lemma 6. Let s be a Ga-action on S½x� such that sðxÞ A xþ T þ qS½x�½T �
for some q A nilðSÞ. Then, there exists y A xþ qS½x� such that sðyÞ ¼ yþ T.

Proof. Suppose that the assertion is false. Then, we can find the

greatest l A Z for which there exists y A xþ qS½x� such that sðyÞ A yþ T þ
qlS½x�½T �, since q A nilðSÞ. Since sðxÞ A xþ T þ qS½x�½T � by assumption, we

have lb 1. Take y A xþ qS½x� and g A S½x�½T � such that sðyÞ ¼ yþ T þ qlg.

We write g ¼ gðy;TÞ, since S½y� ¼ S½x� as remarked. Then, (A2) yields

sðyÞ þU þ qlgðsðyÞ;UÞ ¼ yþ ðT þUÞ þ qlgðy;T þUÞ: ð3:9Þ

Since lb 1, we have qlgðsðyÞ;UÞ1 qlgðyþ T ;UÞ modulo a :¼ qlþ1S½x�½T ;U �.
Hence, (3.9) gives that

qlgðy;TÞ þ qlgðyþ T ;UÞ1 qlgðy;T þUÞ ðmod aÞ:

Set g1ðyÞ :¼ gð0; yÞ. Then, this congruence, with U 7! T , T 7! y and y 7! 0,

gives that

qlg1ðyÞ þ qlgðy;TÞ1 qlg1ðyþ TÞ ðmod aÞ: ð3:10Þ

Now, set z :¼ y� qlg1ðyÞ A xþ qS½x�. Then, we have

sðzÞ ¼ sðyÞ � qlg1ðsðyÞÞ1 ðyþ T þ qlgðy;TÞÞ � qlg1ðyþ TÞ

1 yþ T � qlg1ðyÞ ¼ zþ T ðmod aÞ

by (3.10). Hence, sðzÞ � z� T belongs to a \ S½x�½T � ¼ qlþ1S½x�½T �. This

contradicts the maximality of l. r

Proof (of Theorem 1 (ii)). Let a A RnpR be as in Theorem 1 (i), and set

z :¼ a�1x A Ra½x�. Then, sðzÞ belongs to zþ T þ pRa½x�½T �. Since p A nilðRÞ,
we know by Lemma 6 that sðyÞ ¼ yþ T for some y A zþ pRa½z� � ðRaÞ�xþ
pRa½x�. This y satisfies Ra½y� ¼ Ra½x� as remarked above. r

Finally, we derive Corollary 1 from Theorem 1.

Lemma 7. If R is a ring such that char R ¼ pe with eb 2, and pR is

a maximal ideal of R, then R is a zero-dimensional noetherian local ring, and

ðp2R : pRÞ ¼ pR.
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Proof. Note that pR � nilðRÞ. Since pR is a maximal ideal of R by

assumption, and every prime ideal of R contains nilðRÞ, we see that pR is

the unique prime ideal of R. Hence, R is a zero-dimensional local ring. The

set of ideals of R is fpdR j 0a d < eg, since each r A Rnf0g has the form

r ¼ pds for some 0a d < e and s A RnpR ¼ R�. Hence, R is noetherian. If

ðp2R : pRÞ0 pR, then pr ¼ p2s holds for some r A RnpR ¼ R� and s A R.

Since r� ps A R� and pðr� psÞ ¼ pr� p2s ¼ 0, we get p ¼ 0. This contra-

dicts eb 2. r

Proof (of Corollary 1). By Lemma 7, R satisfies the assumption of

Theorem 1. Moreover, since R is a local ring with maximal ideal pR, we have

Ra ¼ R for every a A RnpR ¼ R�. Therefore, the assertion follows from (ii)

and (iii) of Theorem 1. r

4. Theory of red-trivial Ga-actions

Sections 4 through 8 are devoted to the study of red-trivial Ga-actions. In

this section, we overview our main results.

Let R be any ring, and A any R-algebra. For an A-module M, an

R-linear map D : A ! M is called an R-derivation if DðabÞ ¼ bDðaÞ þ aDðbÞ
holds for each a; b A A. The A-module consisting of all R-derivations A ! M

is denoted by DerRðA;MÞ. For each A-submodule M 0 of M, we regard

DerRðA;M 0Þ as an A-submodule of DerRðA;MÞ in a natural way. We write

DerR A :¼ DerRðA;AÞ, where the scalar multiplication of M ¼ A is the ring

multiplication, and call D A DerR A an R-derivation of A. We remark that

ds1 is an R-derivation of A for any analytic Ga-action s on A, since

ðabþ ds1 ðabÞT þ � � �Þ ¼ ðaþ ds1 ðaÞT þ � � �Þðbþ ds1 ðbÞT þ � � �Þ for each a; b A A.

Now, assume that char R ¼ pe. Let RTRðAÞ (resp. RT 0
RðAÞ) be the set

of red-trivial, algebraic (resp. analytic) Ga-actions on A over R. We define an

equivalence relation on RTRðAÞ (resp. RT 0
RðAÞ) by s@ t if ds1 ¼ dt1 for s; t A

RTRðAÞ (resp. s; t A RT 0
RðAÞ), and denote by ½s� (resp. ½s� 0) the equivalence

class of s A RTRðAÞ (resp. s A RT 0
RðAÞ). Note that

RTRðAÞ1 :¼ fds1 j s A RTRðAÞg and RT 0
RðAÞ1 :¼ fds1 j s A RT 0

RðAÞg

are subsets of DerRðA; pAÞ, which are regarded as the quotient spaces of

RTRðAÞ and RT 0
RðAÞ, respectively. Our first task is to describe ½s� and ½t� 0 for

s A RTRðAÞ and t A RT 0
RðAÞ. By definition, we have ½s� ¼ ½s� 0 \RTRðAÞ for

each s A RTRðAÞ.

4.1. Additive polynomials and power series. Let f ðTÞ ¼
P

ib0 aiT
i A A½½T ��,

where ai A A. We say that f ðTÞ is additive if f ðT þUÞ ¼ f ðTÞ þ f ðUÞ, or
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equivalently aiðT þUÞ i ¼ aiT
i þ aiU

i for all ib 0. Clearly, aT is additive

for any a A A. If char A ¼ p, then aT pk

is also additive for any a A A and

kb 0. In fact, the following lemma holds for any ring A (cf. [7, Lemma

2.3]).

Lemma 8. For an integer lb 2 and a A Anf0g, we have aðT þUÞ l ¼
aðT l þU lÞ if and only if there exist db 1 and a prime number q such that

l ¼ qd and fm A Z jma ¼ 0g ¼ qZ.

Note that, for a prime number q and a A Anf0g, we have fm A Z j
ma ¼ 0g ¼ qZ if and only if qa ¼ 0, since fm A Z jma ¼ 0g is a proper ideal

of Z.

We denote by A½½T ��ðpÞ (resp. A½½T ��ðpÞþ ) the set of f A A½½T �� of the form

f ¼
P

ib0 biT
pi

(resp. f ¼
P

ib1 biT
pi

) for some bi A A. We set A½T �ðpÞ :¼
A½½T ��ðpÞ \ A½T � and A½T �ðpÞþ :¼ A½½T ��ðpÞþ \ A½T �. Elements of A½T �ðpÞ are often

called p-polynomials.

Let M be an A-module, and m A M. Then, for each D A DerR A, the

map Dm : A C a 7! DðaÞm A M is an R-derivation. If D is an A-submodule of

DerR A, then Dm :¼ fDm jD ADg is an A-submodule of DerRðA;MÞ. In this

notation, for each a A A, the A-module DerRðA; aA½½T ��ðpÞÞ is the direct product

of DerRðA; aAÞT pi

for ib 0. If the R-algebra A is finitely generated, then

DerRðA; aA½T �ðpÞÞ is the direct sum of DerRðA; aAÞT pi

for ib 0.

4.2. Equivalence classes. Let R be any ring with char R ¼ pe, and A any

R-algebra. Let M be the set of D A DerRðA;A½½T ��Þ such that pD ¼ 0. We

define

D 0 :¼ DerRðA; pA½½T ��ðpÞÞ \M ; D 0
þ :¼ DerRðA; pA½½T ��ðpÞþ Þ \M ;

D :¼ DerRðA; pA½T �ðpÞÞ \M ; Dþ :¼ DerRðA; pA½T �ðpÞþ Þ \M :

Remark 2. (i) For each D A D 0 and a A A, we have pDðaÞ ¼ 0 and

DðaÞ A A½½T ��ðpÞ. Hence, DðaÞ is additive by Lemma 8.

(ii) Since char R ¼ pe and eb 2, we see that D 0 � DerRðA;
pe�1A½½T ��ð pÞÞ. If e ¼ 2, then we have D 0 ¼ DerRðA; pA½½T ��ðpÞÞ. Similar

statements hold for D 0
þ, D and Dþ.

Let HomRðA;A½½T ��Þ be the R-module consisting of all R-linear maps A !
A½½T ��. Then, RT 0

RðAÞ and DerRðA;A½½T ��Þ are contained in HomRðA;A½½T ��Þ.
For each S ;S 0 � HomRðA;A½½T ��Þ and c A HomRðA;A½½T ��Þ, we define

S þ S 0 :¼ ffþ f 0 j f A S ; f 0 A S 0g and cþ S :¼ fcþ f j f A Sg:

We prove the following theorem in Section 5.
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Theorem 4. Let R be any ring with char R ¼ pe, and A any R-algebra

with AnnAðpÞ ¼ AnnRðpÞA. Then, the following assertions hold.

( i ) We have RT 0
RðAÞ þD 0 � RT 0

RðAÞ and RTRðAÞ þD � RTRðAÞ.
( ii ) We have ½s� 0 ¼ sþD 0

þ for each s A RT 0
RðAÞ.

(iii) We have ½s� ¼ sþDþ for each s A RTRðAÞ.

The following corollary is a consequence of Theorem 4, where i is the

trivial Ga-action on A.

Corollary 2. Let R and A be as in Theorem 4. If e ¼ 2, then we have

RT 0
RðAÞ1 ¼ RTRðAÞ1 ¼ DerRðA; pAÞ, RT 0

RðAÞ ¼ iþD 0 and RTRðAÞ ¼ iþD.

Proof. By Theorem 4 (i), we have iþD 0 � RT 0
RðAÞ and iþD �

RTRðAÞ. Moreover, since e ¼ 2, we know by Remark 2 (ii) that

D 0 ¼ DerRðA; pAÞT þD 0
þ and D ¼ DerRðA; pAÞT þDþ:

Hence, we get RT 0
RðAÞ1 ¼ RTRðAÞ1 ¼ DerRðA; pAÞ. Thus, iþD 0 and iþD

contain systems of representatives for the equivalence relations on RT 0
RðAÞ and

RTRðAÞ, respectively. Thanks to (ii) and (iii) of Theorem 4, this implies that

RT 0
RðAÞ ¼ iþD 0 and RTRðAÞ ¼ iþD. r

In the following, we consider the case where A is the polynomial ring

R½x� ¼ R½x1; . . . ; xn�.

Remark 3. (i) AnnR½x�ðsÞ ¼ AnnRðsÞR½x� holds for each s A R, since

f A R½x� satisfies sf ¼ 0 if and only if all the coe‰cients of f belongs to

AnnRðsÞ. Therefore, the conclusion of Theorem 4 holds for A ¼ R½x�.
(ii) For each a A R½x�, we have a DerR R½x� � DerRðR½x�; aR½x�Þ. If d is

in DerRðR½x�; aR½x�Þ, then d ¼
Pn

i¼1 dðxiÞq=qxi ¼ a
Pn

i¼1 fiq=qxi A a DerR R½x�,
where we write dðxiÞ ¼ afi with fi A R½x�. Hence, we get DerRðR½x�; aR½x�Þ ¼
a DerR R½x�.

(iii) We have

RTRðR½x�Þ1 � RT 0
RðR½x�Þ1 � DerRðR½x�; pR½x�Þ ¼ p DerR R½x�:

4.3. Lifts and restrictions. Let S be a ring in which p is not a zero-divisor

nor a unit. Then, S is of characteristic zero, and R :¼ S=peS is of charac-

teristic pe. For each f A S½x�, we denote by f the image of f in R½x�.

Lemma 9. Let R ¼ S=peS be as above, and let 1a v < ua e. Then,

pva A puR implies a A pu�vR for a A R. Hence, we have ðpuR : pvRÞ ¼ pu�vR.

Proof. Take a A S with a ¼ a. If pva A puR, then pva� pub A peS for

some b A S. Since 1a v < ua e, and p is not a zero-divisor of S, it follows

that a A pu�vb þ pe�vS � pu�vS. Therefore, we have a A pu�vR. r
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Using Lemma 9 for u ¼ e and v ¼ 1, we get AnnRðpÞ ¼ pe�1R. This

implies that AnnR½x�½½T ��ðpÞ ¼ pe�1R½x�½½T ��. Since D A DerRðR½x�;R½x�½½T ��Þ sat-

isfies pD ¼ 0 if and only if DðR½x�Þ � AnnR½x�½½T ��ðpÞ, we know that M ¼
DerRðR½x�; pe�1R½x�½½T ��Þ. Then, the following proposition is readily verified.

Proposition 1. Let R ¼ S=peS be as above and A ¼ R½x�. Then, we have

D 0 ¼ DerRðR½x�; pe�1R½x�½½T ��ð pÞÞ; D 0
þ ¼ DerRðR½x�; pe�1R½x�½½T ��ðpÞþ Þ;

D ¼ DerRðR½x�; pe�1R½x�½T �ðpÞÞ; Dþ ¼ DerRðR½x�; pe�1R½x�½T �ð pÞþ Þ:

For each d A DerR R½x�, there exist g1; . . . ; gn A S½x� such that gi ¼ dðxiÞ
for i ¼ 1; . . . ; n. Then, D :¼

Pn
i¼1 giq=qxi A DerS S½x� satisfies Dð f Þ ¼ dð f Þ for

each f A S½x�. We call D a lift of d. Lifts of d are not uniquely determined

by d. However, if d lies in p DerR R½x�, then any lift of d lies in p DerS S½x�,
since f A pR½x� implies f A pS½x� for any f A S½x�.

In the rest of Section 4, we consider the case R ¼ S=peS, where

S is a subring of a Q-algebra with p B S �: ð4:1Þ

In this case, no element of Znf0g is a zero-divisor of S. Let SU 0
and SU 1

be the localizations of S by the multiplicatively closed sets U 0 :¼ Znf0g and

U 1 :¼ ZnpZ, respectively. Then, we have S � SU 1
� SU 0

and Q � SU 0
. Let

t be an analytic Ga-action on SU 0
½x� over SU 0

. We say that t restricts to

SU 1
½x� if tðSU 1

½x�Þ � SU 1
½x�½½T ��, or equivalently dtl ðxiÞ A SU 1

½x� for each lb 1

and i ¼ 1; . . . ; n. When this is the case, t induces an analytic Ga-action s on

ðSU 1
=peSU 1

Þ½x�FR½x�.

Remark 4. For s and t as above, the following statements hold.

( i ) s is red-trivial if dtl ðxiÞ A pSU 1
½x� for all lb 1 and i ¼ 1; . . . ; n.

(ii) s is an algebraic Ga-action if there exists N > 0 as follows: For any

lbN and i ¼ 1; . . . ; n, we have dtl ðxiÞ A peSU 1
½x�.

4.4. Exponential actions. In the case Q � R, the following fact is well known

(cf. [10, § 27]): For each d A DerR A, an analytic Ga-action exp Td on A is

defined by

exp Td : A C a 7!
X
lb0

d lðaÞ
l!

T l A A½½T ��:

Conversely, every analytic Ga-action s on A is equal to exp Tds1 . Thus, s is

uniquely determined by ds1 , and As ¼ ker ds1 . We note that, for d A DerR R½x�,
the Ga-action exp Td is algebraic if and only if d is locally nilpotent, i.e., for

each a A A, there exists lb 0 such that d lðaÞ ¼ 0.
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Now, let R ¼ S=peS be as in (4.1). Since SU 0
contains Q, each D A

DerS S½x� induces the analytic Ga-action exp TD on SU 0
½x�, where we extend D

to an SU 0
-derivation of SU 0

½x� in a natural way.

We prove the following theorem in Section 6.

Theorem 5. Let R ¼ S=peS, where S is a subring of a Q-algebra with

p B S �. Then, the following assertions hold for each d A p DerR R½x�.
( i ) For any lift D A DerS S½x� of d, the analytic Ga-action exp TD on SU 0

½x�
restricts to SU 1

½x�, and induces a red-trivial, analytic Ga-action e on R½x�
such that de1 ¼ d.

( ii ) e is uniquely determined by d, and independent of the choice of the lift D

of d.

(iii) We have ker d ¼ R½x�e.
(iv) If one of the following holds, then e is an algebraic Ga-action on R½x�:

(a) pb 3.

(b) At least one of the lifts of d is locally nilpotent.

(c) p ¼ 2, and there exists r A
ffiffiffiffiffiffi
2S

p
such that d A 2r DerR R½x�.

(d) p ¼ 2 and d A 2DR.

Here, for a ring T , we define T ½x2� :¼ T ½x2
1 ; . . . ; x

2
n � and

DT :¼ fD A DerT T ½x� jDðxiÞ A T ½x2� þ 2T ½x� for i ¼ 1; . . . ; ng:

We note that fðT ½x2� þ 2T ½x�Þ ¼ T ½x2� þ 2T ½x� holds for any automorphism

f of the T-algebra T ½x�. Hence, the definition of DT is independent of the

system x1; . . . ; xn of variables of T ½x�.
We call the Ga-action e defined in Theorem 5 the exponential action of d,

and write exp Td :¼ e. By Theorem 5 (i), we have RT 0
RðR½x�Þ1 ¼ p DerR R½x�,

and fexp Td j d A p DerR R½x�g is a system of representatives for the equivalence

relation on RT 0
RðR½x�Þ. Thus, we know by Theorem 4 (ii) that

F : p DerR R½x� �D 0
þ C ðd;DÞ 7! exp Tdþ D A RT 0

RðR½x�Þ ð4:2Þ

is bijective. For each ðd;DÞ A p DerR R½x� �D 0
þ, we have Fððd;DÞÞ@ exp Td,

so we get d
Fððd;DÞÞ
1 ¼ d

exp Td
1 ¼ d by Theorem 5 (i).

We also have the following consequence of Theorems 4 and 5.

Corollary 3. Let R ¼ S=peS be as in (4.1).

( i ) Set s :¼ Fððd;DÞÞ for ðd;DÞ A p DerR R½x� �D 0
þ. Then, we have

R½x�s ¼ R½x�exp Td \ ker D ¼ ker d \ ker D: ð4:3Þ

If R is noetherian, then the R-algebra R½x�s is finitely generated.

( ii ) If pb 3, then we have Fðp DerR R½x� �DþÞ ¼ RTRðR½x�Þ.
(iii) If p ¼ 2, then we have Fð2DR �DþÞ � RTRðR½x�Þ.
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Proof. (i) First, we prove (4.3). Set e :¼ exp Td. Since s ¼ eþ D, we

see that f A R½x�e \ ker D implies sð f Þ ¼ eð f Þ þ Dð f Þ ¼ f , and so f A R½x�s.
For the reverse inclusion, note that ds1 ¼ d, and ker d ¼ R½x�e by Theorem 5

(iii). Hence, we have R½x�s ¼
T

ib1 ker dsi � ker ds1 ¼ R½x�e. Thus, f A R½x�s
implies sð f Þ ¼ f ¼ eð f Þ, and so Dð f Þ ¼ sð f Þ � eð f Þ ¼ 0. Therefore, R½x�s is

contained in R½x�e \ ker D, proving the first equality. Since R½x�e ¼ ker d, the

second equality is clear.

Since char R ¼ pe, and d and D are derivations, f pe

belongs to

ker d \ ker D ¼ R½x�s for each f A R½x�. Hence, R½x� is integral over R½x�s.
This implies the second statement (cf. [1, Proposition 7.8]).

(ii) If pb 3, then we have fexp Td j d A p DerR R½x�g � RTRðR½x�Þ by

(a) of Theorem 5 (iv). Hence, by Theorem 5 (i), we see that RTRðR½x�Þ1 ¼
p DerR R½x�, and fexp Td j d A p DerR R½x�g is a system of representatives for

the equivalence relation on RTRðR½x�Þ. Therefore, the assertion follows from

Theorem 4 (iii).

(iii) Take any d A 2DR. By (d) of Theorem 5 (iv), exp Td belongs

to RTRðR½x�Þ. Hence, we have Fðfdg �DþÞ ¼ exp TdþDþ ¼ ½exp Td� �
RTRðR½x�Þ by Theorem 4 (iii). r

We have determined the structure of RTRðR½x�Þ when e ¼ 2 or pb 3

(Corollaries 2 and 3 (ii)). When p ¼ 2, we have

2DR � RTRðR½x�Þ1 � 2 DerR R½x�:

We prove the following theorem in Section 7.

Theorem 6. Let R ¼ S=peS be as in (4.1). If p ¼ 2 and eb 3, then the

following assertions hold.

( i ) We have RTRðR½x�Þ1 0 2DerR R½x�.
( ii ) If nb 2 or

ffiffiffiffiffiffi
2S

p
0 2S, then we have 2DR 0RTRðR½x�Þ1.

(iii) If n ¼ 1 and
ffiffiffiffiffiffi
2S

p
¼ 2S, then we have 2DR ¼ RTRðR½x�Þ1, and so

Fð2DR �DþÞ ¼ RTRðR½x�Þ.

5. Structure of red-trivial Ga-actions

The goal of this section is to prove Theorem 4.

Proof (of Theorem 4 (i)). First, we prove RT 0
RðAÞ þD 0 � RT 0

RðAÞ.
Take any s A RT 0

RðAÞ and D A D 0, and set t :¼ sþ D. Then, t : A ! A½½T ��
is R-linear, and satisfies tð1Þ ¼ sð1Þ þ Dð1Þ ¼ sð1Þ ¼ 1. By the choice of D

and s, we have pDðaÞ ¼ 0 and DðaÞ; sðaÞ � a A pA½½T �� for each a A A. Hence,

for each a; b A A, we get
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tðaÞtðbÞ ¼ ðsðaÞ þ DðaÞÞðsðbÞ þ DðbÞÞ

¼ sðaÞsðbÞ þ ðaþ ðsðaÞ � aÞÞDðbÞ þ ðbþ ðsðbÞ � bÞÞDðaÞ

¼ sðaÞsðbÞ þ aDðbÞ þ bDðaÞ ¼ sðabÞ þ DðabÞ ¼ tðabÞ:

Therefore, t is a homomorphism of R-algebras.

Fix any a A A. Since sðaÞ � a A pTA½½T �� and DðaÞ A pA½½T ��ð pÞ �
pTA½½T ��, we have tðaÞ � a A pTA½½T ��. This proves (A1) and the red-triviality

for t. To check (A2), write f ðTÞ :¼ DðaÞ ¼
P

ib1 biT
i, where bi A pA. Then,

we have tðaÞ ¼ aþ
P

ib1 d
s
i ðaÞT i þ

P
ib1 biT

i. We would like to show that

tðaÞ þ
X
ib1

tðdsi ðaÞÞU i þ
X
lb1

tðbiÞU i ¼ aþ
X
ib1

dsi ðaÞðT þUÞ i þ f ðT þUÞ: ð5:1Þ

From pD ¼ 0, we see that the following statements hold.

(i) tðpbÞ ¼ ptðbÞ ¼ pðsðbÞ þ DðbÞÞ ¼ psðbÞ ¼ sðpbÞ for any b A A.

(ii) For each ib 1, we have bi A AnnAðpÞ. Since AnnAðpÞ ¼ AnnRðpÞA
by assumption, we can write bi ¼

P
k ri;kbi;k, where ri;k A AnnRðpÞ and bi;k A A.

Since s is red-trivial by assumption, dsl ðAÞ � pA holds for each lb 1.

Hence, we get dsl ðbiÞ ¼
P

k

P
lb1 ri;kd

s
l ðbi;kÞ ¼ 0. Therefore, we have

(iii) sðbiÞ ¼ bi þ
P

lb1 d
s
l ðbiÞT l ¼ bi for each ib 1.

Now, since dsi ðaÞ; bi A pA, we know by (i) and (iii) that tðdsi ðaÞÞ ¼ sðdsi ðaÞÞ
and tðbiÞ ¼ sðbiÞ ¼ bi for each i. Hence, the left-hand side of (5.1) is equal to

tðaÞ þ
X
ib1

sðdsi ðaÞÞU i þ
X
ib1

biU
i ¼ ðsðaÞ þ f ðTÞÞ þ

X
ib1

sðdsi ðaÞÞU i þ f ðUÞ

¼ aþ
X
ib1

dsi ðaÞðT þUÞ i þ f ðTÞ þ f ðUÞ;

where the last equality is due to (A2) for s. Since f ðTÞ is additive by Remark

2 (i), this is equal to the right-hand side of (5.1).

Since RTRðAÞ þD � RT 0
RðAÞ þD 0 � RT 0

RðAÞ as shown above, and

tðAÞ � A½T � for each t A RTRðAÞ þD, we see that RTRðAÞ þD � RTRðAÞ.
r

The following lemma holds for any ring R, and any R-algebra A.

Lemma 10. Let s and t be analytic Ga-actions on A, and Nb 1 an integer

such that dsi ¼ dti for all 0a i < N. Then, the following assertions hold.

( i ) d :¼ dsN � dtN belongs to DerR A.

( ii ) dðaÞðT þUÞN ¼ dðaÞTN þ dðaÞUN holds for each a A A.

(iii) If d0 0 and Nb 2, then there exist a prime number q and db 1 such that

N ¼ qd and qd ¼ 0.
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Proof. (i) Clearly, d is R-linear. For each a; b A A, we have

X
ib0

dsi ðabÞT i ¼ sðabÞ ¼ sðaÞsðbÞ ¼
X
ib0

dsi ðaÞT i

 ! X
jb0

dsj ðbÞT j

 !
:

From this equality, we obtain dsNðabÞ ¼
PN

i¼0 d
s
i ðaÞdsN�iðbÞ by comparing the

coe‰cients of TN . Similarly, we have dtNðabÞ ¼
PN

i¼0 d
t
i ðaÞd

t
N�iðbÞ. Since

dsi ðaÞd
s
N�iðbÞ ¼ dti ðaÞd

t
N�iðbÞ for 1a i < N by assumption, and ds0 ¼ dt0 ¼ idA

by (A1), it follows that

dðabÞ ¼ dsNðabÞ � dtNðabÞ ¼
X
i¼0;N

ðdsi ðaÞd
s
N�iðbÞ � dti ðaÞd

t
N�iðbÞÞ ¼ adðbÞ þ dðaÞb:

(ii) Set a :¼ TA½½T ;U �� þUA½½T ;U ��. Since no polynomial of degree N

belongs to the ideal aNþ1, it su‰ces to verify dðaÞðT þUÞN 1 dðaÞðTN þUNÞ
ðmod aNþ1Þ for each a A A. In the rest of the proof, we assume that all con-

gruences are modulo aNþ1. By (A2) for s, we have

sðaÞ þ
XN
i¼1

sðdsi ðaÞÞU i 1 aþ
XN
i¼1

dsi ðaÞðT þUÞ i: ð5:2Þ

Since dsi ðaÞ ¼ dti ðaÞ for 1a i < N and dsNðaÞ ¼ dtNðaÞ þ dðaÞ, the right-hand side

of (5.2) is equal to aþ
PN

i¼1 d
t
i ðaÞðT þUÞ i þ dðaÞðT þUÞN , and the left-hand

side of (5.2) is equal to

sðaÞ þ
XN
i¼1

sðdti ðaÞÞU i þ sðdðaÞÞUN : ð5:3Þ

For each b A A, we have sðbÞ1 tðbÞ þ dðbÞTN and sðbÞU i 1 tðbÞU i for ib 1,

and sðbÞUN 1 bUN by (A1) for s. Hence, we see that

ð5:3Þ1 tðaÞ þ dðaÞTN þ
XN
i¼1

tðdti ðaÞÞT i þ dðaÞUN

1 aþ
XN
i¼1

dti ðaÞðT þUÞ i þ dðaÞðTN þUNÞ;

where the second congruence is due to (A2) for t. Therefore, we conclude that

dðaÞðT þUÞN 1 dðaÞðTN þUNÞ.
(iii) Take any b A dðAÞnf0g. Then, we have bðT þUÞN ¼ bðTN þUNÞ

by (ii). Hence, by Lemma 8, there exist db 1 and a prime number q such that

N ¼ qd and qb ¼ 0. Since N is a fixed integer, we see that q is independent

of the choice of b. Therefore, we have qdðAÞ ¼ f0g, proving qd ¼ 0. r
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In the situation of Lemma 10 (iii), assume that char R ¼ pe. Then, q

must be equal to p, for otherwise q A ðZ=peZÞ� � R�, and so qd0 0, a con-

tradiction. Assume further that s and t are red-trivial. Then, we have

dðAÞ � pA. Hence, dTN : A C a 7! dðaÞTN A A½½T �� belongs to Dþ.

Lemma 11. Assume that char R ¼ pe and AnnAðpÞ ¼ AnnRðpÞA. If

s; t A RT 0
RðAÞ satisfy ds1 ¼ dt1 , then ðdti � dsi ÞT i A Dþ holds for all ib 2. Hence,

t ¼ sþ ðt� sÞ belongs to sþD 0
þ.

Proof. Suppose that the lemma is false. Let N be the minimal integer

with ðdtN � dsNÞTN B Dþ. Then, we have Nb 2, and ðdti � dsi ÞT i belongs to Dþ
for 2a i < N. Hence, by Theorem 4 (i), we know that

s 0 :¼ sþ
XN�1

i¼2

ðdti � dsi ÞT i A RT 0
RðAÞ:

By construction, we have ds
0

i ¼ dti for 1a i < N and ds
0

N ¼ dsN 0 dtN . There-

fore, by the remark before this lemma, we obtain that ðdtN � dsNÞTN ¼
ðdtN � ds

0

N ÞTN A Dþ, a contradiction. r

Now, we are ready to give a

Proof (of (ii) and (iii) of Theorem 4). (ii) Take any s A RT 0
RðAÞ. Then,

we have ½s� 0 � sþD 0
þ by Lemma 11. For the reverse inclusion, take any

D A D 0
þ and set t :¼ sþ D. Then, t belongs to RT 0

RðAÞ by Theorem 4 (i).

Since DðAÞ � A½½T ��ðpÞþ � T 2A½½T ��, we get dt1 ¼ ds1 . Therefore, t belongs to

½s� 0.
(iii) Take any s A RTRðAÞ, and t A ½s�. Then, since dt1 ¼ ds1 , we know

by Lemma 11 that D :¼ t� s A D 0
þ. Since s and t are algebraic Ga-actions,

we have DðaÞ ¼ tðaÞ � sðaÞ A A½T � for each a A A. Hence, we get D A Dþ, and

so t ¼ sþ D A sþDþ. By (i) and (ii) of Theorem 4, we have sþDþ �
½s� 0 \RTRðAÞ ¼ ½s�. r

6. Legendre’s formula

Let vp be the p-adic valuation of Q. Namely, we define vpð0Þ ¼ y, and

vpðaÞ ¼ r for each a A Q�, where r A Z is such that a ¼ pra 0=a 00 for some

a 0; a 00 A ZnpZ. For each a A R, we define bac :¼ maxfr A Z j ra ag. The fol-

lowing formula is well known.

Theorem 7 (Legendre’s formula). For each integer lb 1, we have vpðl!Þ ¼Py
i¼1bl=pic.
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Let l ¼
Pk

j¼0 lj p
j be the p-adic expansion of l, where 0a lj < p. Then,

since bl=pic ¼
Pk

j¼i lj p
j�i, we know by Theorem 7 that

vpðl!Þ ¼
Xy
i¼1

l

pi

� �
¼
Xk
j¼1

Xj�1

i¼0

lj p
i ¼

Xk
j¼1

ljðp j � 1Þ
p� 1

¼ l �
Pk

i¼1 li

p� 1
; ð6:4Þ

and so vpðpl=l!Þ ¼ l � vpðl!Þ > lðp� 2Þ=ðp� 1Þb 0. Here are some conse-

quences:

(1�) We can write pl=l! ¼ pal , where al A ZU 1
.

(2�) Assume that pb 3. Then, for every eb 1, there exists Nb 1 such that

fpl=l! j lbNg � peZU 1
.

(3�) By (6.4), we have v2ð2 l=l!Þ ¼ 1 if and only if l ¼ 2k for some kb 0.

Proof (of Theorem 5). (i) Let D A DerS S½x� be a lift of d. Since d is

in p DerR R½x�, we can write D ¼ pD0, where D0 A DerS S½x� (cf. Section 4.3).

By (1�), it follows that

DlðxiÞ
l!

¼ pl

l!
Dl

0ðxiÞ ¼ palD
l
0ðxiÞ A pSU 1

½x� for i ¼ 1; . . . ; n:

Therefore, exp TD restricts to SU 1
½x�, and induces a red-trivial, analytic

Ga-action e on R½x�. By construction, we have de1 ¼ d.

(ii) Take another lift D 0 A DerS S½x� of d, and set D 00 :¼ D 0 �D. Since

D 00 induces the zero derivation of R½x�, we have D 00ðS½x�Þ � peS½x�. By

Remark 3 (ii), we can write D 00 ¼ peD 00
0 , where D 00

0 A DerS S½x�. Then, we

have D 0 ¼ DþD 00 ¼ pðD0 þ pe�1D 00
0 Þ, and

ðD 0Þ lðxiÞ
l!

¼ palðD0 þ pe�1D 00
0 Þ

lðxiÞ A palD
l
0ðxiÞ þ peSU 1

½x�

for all lb 1 and i ¼ 1; . . . ; n. This shows that exp TD and exp TD 0 induce the

same analytic Ga-action on R½x�.
(iii) Clearly, R½x�e ¼

T
lb1 ker del is contained in ker de1 ¼ ker d. To show

ker d � R½x�e, take any f A ker d, and g A S½x� with g ¼ f . Since DðgÞ ¼ 0, we

can write DðgÞ ¼ peh, where h A S½x�. Then, for each lb 1, we have

DlðgÞ
l!

¼ peDl�1ðhÞ
l!

¼ pe p
l�1Dl�1

0 ðhÞ
l!

¼ pealD
l�1
0 ðhÞ A peSU 1

½x�;

since pl=l! ¼ pal . This implies that del ð f Þ ¼ 0. Therefore, f belongs to R½x�e.
(iv) It su‰ces to find a lift D A DerS S½x� of d and Nb 1 such that, for

all lbN and i ¼ 1; . . . ; n, we have DlðxiÞ=l! A peSU 1
½x�. The case (b) is clear.

Since every lift D of d has the form D ¼ pD0 for some D0 A DerS S½x�, the

case (a) follows from (2�). In the case (c), we can find D1 A DerS S½x� for
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which D ¼ 2rD1 is a lift of d. Since r is in
ffiffiffiffiffiffi
2S

p
, there exists Nb 1 such that

rN A 2eS. Then, DlðxiÞ=l! ¼ 2alr
NDl

1ðxiÞ A 2eSU 1
½x� holds for all lbN and i ¼

1; . . . ; n. In the case (d), we can find D2 ADS for which 2D2 is a lift of d.

By Lemma 12 (ii) below, there exists N > 0 such that Dl
2ðxiÞ A 2e�1S½x� for all

lbN and i ¼ 1; . . . ; n. Then, DlðxiÞ=l! ¼ ð2 l=l!ÞDl
2ðxiÞ ¼ 2alD

l
2ðxiÞ A 2eSU 1

½x�
holds for all lbN and i ¼ 1; . . . ; n. r

The following lemma holds for any ring S.

Lemma 12. We set B :¼ S½x2� þ 2S½x�.
( i ) If f A B, then q2l f =qx2l

i A 2 lB holds for each lb 1 and i ¼ 1; . . . ; n.

(ii) Let D ADS and eb 1. Then, DlðxiÞ belongs to 2eS½x� for each l >

2eðe� 1Þn and i ¼ 1; . . . ; n.

Proof. (i) It su‰ces to prove the case l ¼ 1 and f A S½x2� [ 2S½x�. It

is easy to see that q2f =qx2
i belongs to 2S½x2� if f A S½x2�, and to 4S½x� if

f A 2S½x�. In either case, q2f =qx2
i belongs to 2B.

(ii) Write D ¼
Pn

i¼1 fiq=qxi, where fi A B. Set jkj :¼ k1 þ � � � þ kn and

qk :¼ qjkj

qxk1
1 � � � qxkn

n

for each k ¼ ðk1; . . . ; knÞ A ðZb0Þn:

Now, fix l > 2eðe� 1Þn and 1a i0 a n. Then, we have

Dlðxi0Þ ¼
Xn
i1¼1

fi1
q

qxi1

Xn
i2¼1

fi2
q

qxi2
� � �
Xn
il�1¼1

fil�1

qfi0
qxil�1

;

which is a sum of polynomials of the form g :¼ fn1ðqk2 fn2Þðqk3 fn3Þ � � � ðqkl fnl Þ.
Here, n1; . . . ; nl A f1; . . . ; ng, and k2; . . . ; kl A ðZb0Þn satisfy

jk2j þ � � � þ jkl j ¼ l � 1b 2eðe� 1Þn: ð6:5Þ

We show that g A 2eS½x�. This is true if afi j ki 0 0gb e, since qf =qxi A 2S½x�
holds for any f A B and i. So, assume that afi j ki 0 0g < e. Then, by (6.5),

there exist i and j for which the j-th component of ki is at least 2e. By (i),

this implies that qki fni A 2eS½x�, proving g A 2eS½x�. r

7. The case where p ¼ 2

The goal of this section is to prove Theorem 6. Let S be a subring of a

Q-algebra with 2 B S �, and let R ¼ S=2eS with eb 2. We consider the four

types of d A 2DerR R½x� defined as follows.

(A) d :¼ 2x1q=qx1.

(B) d :¼ 2x1q=qx2.
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(C) d :¼ 2rx1q=qx1, where r A
ffiffiffiffiffiffi
2S

p
n2S.

(D) d :¼ 2f q=qx1, where f A R½x1�nðR½x2
1 � þ 2R½x1�Þ.

We note that (B) and (C) require that nb 2 and
ffiffiffiffiffiffi
2S

p
0 2S, respectively.

For d in (B) and (C), exp Td belongs to RTRðR½x�Þ by (b) and (c) of Theorem

5 (iv). Hence, d in (B) and (C) lies in RTRðR½x�Þ1.

Proof (of Theorem 6 (ii)). It su‰ces to check that d in (B) and (C) are

not in 2DR, i.e., 2x1; 2rx1 B 2ðR½x2� þ 2R½x�Þ. Since 1; r B 2R, we show that

2ax1 B 2ðR½x2� þ 2R½x�Þ for any a A Rn2R. If 2ax1 A 2ðR½x2� þ 2R½x�Þ, then we

have 2a A 4R. Since ð4R : 2RÞ ¼ 2R by Lemma 9, it follows that a A 2R, a

contradiction. r

To prove (i) and (iii) of Theorem 6, it su‰ces to verify that d does not

belong to RTRðR½x�Þ1 in the case (A), and in the case (D) when
ffiffiffiffiffiffi
2S

p
¼ 2S,

since any element of 2 DerR R½x�n2DR is written as d in (D) if n ¼ 1. These

statements follow from the two lemmas below.

Lemma 13. Assume that eb 3. For d A 2 DerR R½x�, we set e :¼ exp Td.

If de2k ðx1Þ B 4R½x� holds for each kb 1, then d does not belong to RTRðR½x�Þ1.

Proof. Suppose that there exists s A RTRðR½x�Þ with ds1 ¼ d. Then, we

have e A ½s� 0 ¼ sþD 0
þ by Theorems 4 (ii). Hence, e� s belongs to D 0

þ.

Thus, by Proposition 1, de2k � ds2k A DerRðR½x�; 2e�1R½x�Þ ¼ 2e�1 DerR R½x� holds
for each kb 1. Since eb 3 by assumption, it follows that de2k ðx1Þ � ds2k ðx1Þ A
4R½x� for all kb 1. On the other hand, ds2 l ðx1Þ ¼ 0 holds for lg 0, because

s is an algebraic Ga-action. Then, we get de2 l ðx1Þ ¼ de2 l ðx1Þ � ds2 l ðx1Þ A 4R½x�, a
contradiction. r

Lemma 14. Assume that eb 2. If d is as in (A), or if
ffiffiffiffiffiffi
2S

p
¼ 2S and d is

as in (D), then e :¼ exp Td satisfies de2k ðx1Þ B 4R½x� for all kb 1.

Proof. (A) Note that D :¼ 2x1q=qx1 A 2 DerS S½x� is a lift of d, and

Dlðx1Þ ¼ 2 lx1 for each lb 0. Suppose that de2k ðx1Þ A 4R½x� for some kb 1,

and set l :¼ 2k. Then, there exists s A SU 1
such that 2 l=l!� 4s A 2eSU 1

. By (3�)

in Section 6, we can write 2 l=l! ¼ 2a, where a A ZU 1
n2ZU 1

. Then, we have

a� 2s A 2e�1SU 1
, and so a A 2SU 1

, since S is a subring of a Q-algebra and eb 2.

Therefore, a belongs to 2SU 1
\ ZU 1

¼ 2ZU 1
, a contradiction.

(D) Take g A S½x1�nðS½x2
1 � þ 2S½x1�Þ with g ¼ f , and set D :¼ gq=qx1.

Then, 2D is a lift of d. Since g B S½x2
1 � þ 2S½x1�, there appears in g a mono-

mial cx
j
1 with c A Sn2S and an odd number j > 0. Since 2S ¼

ffiffiffiffiffiffi
2S

p
is equal to

the intersection of all p A Spec S with 2 A p, we can find p A Spec S such that

2 A p and c B p. Then, we have g B pS½x�.
We show that Dlðx1Þ B pS½x� for each lb 1. Write hðlÞ :¼ q lh=qxl

1 for

each h A S½x� and lb 0. Then, we have Dlðx1Þ ¼ g � ðDl�1ðx1ÞÞð1Þ. Since g B
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pS½x�, and pS½x� is a prime ideal of S½x�, it su‰ces to show that ðDlðx1ÞÞð1Þ B
pS½x� for each lb 0. We prove this by induction on l. The assertion is clear

if l ¼ 0. Assume that lb 1. Then, we have

ðDlðx1ÞÞð1Þ ¼ ðg � ðDl�1ðx1ÞÞð1ÞÞð1Þ ¼ g � ðDl�1ðx1ÞÞð2Þ þ gð1Þ � ðDl�1ðx1ÞÞð1Þ: ð7:1Þ

Since ðxi
1Þ

ð2Þ ¼ iði � 1Þxi�2
1 A 2S½x� � pS½x� for each i A Zb0, we see that

ðDl�1ðx1ÞÞð2Þ belongs to pS½x�. By induction assumption, ðDl�1ðx1ÞÞð1Þ does

not belong to pS½x�. So, we show that gð1Þ B pS½x�. The monomial jcx
j�1
1

appears in gð1Þ. Since c B p, 2 A p, and j is an odd number, we have jc B p,

and so gð1Þ B pS½x�. Therefore, (7.1) does not belong to pS½x�.
Now, suppose that de2k ðx1Þ belongs to 4R½x� for some kb 1, and set

l :¼ 2k. Then, there exists h A SU 1
½x� such that ð2 l=l!ÞDlðx1Þ � 4h A 2eSU 1

½x�.
By (3�) in Section 6, we can write 2 l=l! ¼ 2b, where b A ZU 1

n2ZU 1
. Since

b A ðZU 1
Þ� � ðSU 1

Þ�, 2 is not a zero-divisor of SU 1
, and eb 2, it follows that

Dlðx1Þ A 2SU 1
½x� � pSU 1

½x�. We claim that pSU 1
½x� \ S½x� ¼ pS½x�. Indeed,

since p \ Z ¼ 2Z and U 1 ¼ Zn2Z, we have p \U 1 ¼ q. Hence, pSU 1
is a

prime ideal of SU 1
with pSU 1

\ S ¼ p. Since Dlðx1Þ lies in S½x� by construc-

tion, we know that Dlðx1Þ belongs to pS½x�. This is a contradiction. r

This completes the proof of Theorem 6.

Remark 5. Assume that e ¼ 2, and let d be as in (A). Then, exp Td is

not an algebraic Ga-action by Lemma 14. However, d belongs to RTRðR½x�Þ1,
since RTRðR½x�Þ1 ¼ DerRðR½x�; 2R½x�Þ ¼ 2 DerR R½x� by Corollary 2.

8. Generators of invariant rings

Throughout this section, assume that n ¼ 1 and R ¼ S=peS, where

S is a subring of a Q-algebra such that pS A Spec S: ð8:1Þ

We describe generators of the R-algebra R½x�s for s A RT 0
RðR½x�Þnfig.

Remark 6. For each a; b A S with a B pS and b B peS, we have ab B peS

by (8.1). Hence, no element of RnpR is a zero-divisor of R. Similarly, no

element of R½x�½½T ��npR½x�½½T �� is a zero-divisor of R½x�½½T ��, since S½x�½½T �� is a

subring of a Q-algebra and pS½x�½½T �� A Spec S½x�½½T ��.

By (4.2) and Corollary 3 (i), there exist d A p DerR R½x� and D A D 0
þ such

that s ¼ exp Tdþ D and R½x�s ¼ ker d \ ker D. Write d ¼ f1d=dx and D ¼
f2d=dx, where f1 A pR½x� and f2 A pR½x�½½T ��ðpÞþ . For each f A R½x�½½T ��, we

define

ordpð f Þ :¼ maxfl A f0; . . . ; eg j f A plR½x�½½T ��g:
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Then, we have di :¼ ordpð fiÞb 1 for i ¼ 1; 2, and u :¼ e�minfd1; d2g < e.

Set

ul :¼ u� vpðlÞ and Tl :¼ pul xl for l ¼ 1; . . . ; pu:

Remark 7. (i) Since s0 i, we have ð f1; f2Þ0 ð0; 0Þ. Hence, d1 or d2 is

less than e. Therefore, u is positive.

(ii) We have ul b 1 for i ¼ 1; . . . ; pu � 1, and upu ¼ 0.

The following theorem generalizes the main result of the Master’s Thesis of

Yuto Imamura [4].

Theorem 8. Let R ¼ S=peS be as in (8.1), and s A RT 0
RðR½x�Þnfig. Then,

in the notation above, we have R½x�s ¼ R½T1; . . . ;Tpu �.

Proof. For i A f1; 2g, write fi ¼ pdigi, where gi A R½x�½½T ��npR½x�½½T ��.
Then, gi is not a zero-divisor of R½x�½½T �� by Remark 6. Hence, we have

fi dh=dx ¼ 0 if and only if pdi dh=dx ¼ 0 for h A R½x�.
For l ¼ 1; . . . ; pu, we have vpðpdipul lÞ ¼ di þ ul þ vpðlÞ ¼ di þ ub e.

Hence, pdi dTl=dx ¼ pdipul lxl�1 ¼ 0 holds in R½x�. Thus, d and D kill T1; . . . ;

Tpu . Therefore, R½T1; . . . ;Tpu � is contained in ker d \ ker D ¼ R½x�s.
For the reverse inclusion, take any h ¼

P
lb0 clx

l A R½x�s, where cl A R.

We show that clx
l A R½T1; . . . ;Tpu � for each l. Since dðhÞ ¼ DðhÞ ¼ 0, we have

0 ¼ pdi
dh

dx
¼
X
lb0

cl p
di lxl�1 for i ¼ 1; 2:

Hence, cl p
di l ¼ 0 holds for each lb 1 and i ¼ 1; 2. Fix lb 1, and let q; r A Z

be the quotient and the remainder of l divided by pu, respectively. Write

cl ¼ psc and r ¼ pvpðrÞr 0, where s :¼ ordpðclÞ, c A RnpR and r 0 A ZnpZ. Choose

i A f1; 2g so that di ¼ minfd1; d2g. Then, since di þ u ¼ e, we have pdi l ¼
pdiðpuqþ rÞ1 pdi r ðmod peÞ. Hence, cpsþdiþvpðrÞr 0 ¼ cl p

di r ¼ cl p
di l ¼ 0 holds

in R. Since c is not a zero-divisor of R½x� by Remark 6, r 0 A ðZ=peZÞ� �
R�, and char R ¼ pe, this implies that sþ di þ vpðrÞb e. Thus, we get sb

e� di � vpðrÞ ¼ u� vpðrÞ ¼ ur. Therefore, we have clx
l ¼ cps�urpurxrðx puÞq ¼

cps�urTrT
q
pu , which belongs to R½T1; . . . ;Tpu �. r

Proof (of Theorem 2). Note that char ~RR ¼ pe1
1 � � � pet

t , and Ri :¼
~RR=pei

i
~RRFS=pei

i S for each i. By the Chinese Remainder Theorem, it su‰ces

to show that, for i ¼ 1; . . . ; t and any Ga-action s on Ri½x� over Ri, the

Ri-algebra Ri½x�s is finitely generated. If ei ¼ 1, then Ri is an integral domain.

In this case, we have Ri½x�s ¼ Ri unless s is trivial (cf. Lemma 3). So, assume

that ei b 2. If s is red-trivial, then we can apply Theorem 8. We show that

Ri½x�s ¼ Ri if s is red-nontrivial. Note that piRi A Spec Ri, and ðp2i Ri : piRiÞ ¼
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piRi by Lemma 9. Hence, the assumption of Theorem 1 is fulfilled. Since no

element of RinpiRi is a zero-divisor of Ri by Remark 6, we have Ri½x�s ¼ Ri by

Theorem 1 (iii). r

9. Ga-actions on the reduced a‰ne lines

In closing this paper, we shortly mention the case where R is reduced.

Let P be the set of prime numbers. We define A to be the set of f A R½T � of
the form

f ¼ aT þ
X
lb1

X
p AP

al;pT
pl

;

where a A R, and al;p A R is such that pal;p ¼ 0 for each lb 1 and p A P.

Theorem 9. Let R be a reduced ring, and s : R½x� ! R½x�½T � a homomor-

phism of R-algebras. Then, s is a Ga-action on R½x� if and only if sðxÞ � x

belongs to A.

Proof. By Lemma 8, every element of A is additive. Noting this, we

can check the ‘‘if ’’ part easily. To show the ‘‘only if ’’ part, assume that s is a

Ga-action. Then, by (A1), we can write

f :¼ sðxÞ � x ¼
X
ib0

X
jb1

ai; jx
iT j; where ai; j A R:

Take any p A Spec R. Then, s induces a Ga-action on ðR=pÞ½x� over the in-

tegral domain R=p. Hence, modulo pR½x�½T �, we have f 1 a0;1T if charðR=pÞ
¼ 0, and f 1

P
lb0 a0;p lT pl

if charðR=pÞ ¼ p > 0 (cf. Lemma 5). In either

case, ai; j belongs to p if ib 1 or j is not a power of a prime number. Since

this holds for all p A Spec R, and R is reduced by assumption, it follows that

ai; j ¼ 0 if ib 1 or j is not a power of a prime number. Hence, we have f ¼
a0;1T þ

P
lb1

P
p AP a0;p lT pl

, which belongs to R½T �. Then, (A2) implies that

f is additive. Thus, we know by Lemma 8 that pa0;p l ¼ 0 holds for each

lb 1 and p A P. Therefore, f belongs to A. r

Remark 8. (i) If Q � R, then we have A ¼ faT j a A Rg, since pa0 0 for

any p A P and a A Rnf0g.
(ii) If char R ¼ p A P, then we have A ¼ R½T �ðpÞ, since pa ¼ 0 for any

a A R, and qa0 0 for any q A Pnfpg and a A Rnf0g.

Example 4. Let R1 :¼ Z½a; b�=ð2a; 3bÞ and R2 :¼ Z½a; b�=ð2a; 3b; 6Þ, where
a and b are variables. Then, we have char R1 ¼ 0 and char R2 ¼ 6. For

i ¼ 1; 2, we can define a Ga-action on Ri½x� by sðxÞ ¼ xþ aT 2 þ bT 3.
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