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ABSTRACT. In this paper, we study G,-actions on the affine spaces over a commuta-
tive ring of characteristic p¢, where p is a prime number and e > 2. We say that a
G-action is red-nontrivial (resp. red-trivial) if it is nontrivial (resp. trivial) modulo p.
We give a structure theorem for red-nontrivial G,-actions on the affine lines under some
mild assumptions. Interestingly, the invariant ring for such an action is either the ring
of constants or non-finitely generated. We show that every red-trivial G,-action on the
affine space over a certain class of commutative rings is uniquely determined by two
derivations, whose invariant ring is finitely generated if the base ring is noetherian. By
combining these results, we completely determine the G,-actions on the affine lines over
a certain class of commutative rings of positive characteristic, including Z/mZ for any
m>2.

1. Introduction

Throughout this paper, a ring means a commutative ring with nonzero
identity. For a ring R, an R-algebra means a commutative ring containing
R as a subring. Let 4 be an R-algebra, 7" and U indeterminates over A,
and 0: A — A[T] a homomorphism of R-algebras. We define R-linear maps
67 :A4— A for i>0 by a(a) =3,.,07(a)T" for each ae A. Recall that ¢
defines an action of the additive group G, = Spec R[T] on Spec 4 if and only
if the following conditions hold.

(Al) o7 =idy.

(A2) 31000007 (a) U =30 07 (a)(T + U)' for each ae A.

When this is the case, we call ¢ a Gy-action on A (over R). We say that ¢
is trivial if the invariant ring A7 :=(;., ker 6] = {a € A|o(a) = a} is equal to
A, that is, o is the inclusion map 4 — A[T]. We denote the trivial G,-action
by 1. For any Gg-action ¢ on A and be A°\A*, a G,-action on A/bA is
naturally induced from o.
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One of the important problems in Affine Algebraic Geometry is to deter-
mine all the G,-actions on the polynomial ring R[x] = R[xy,...,x,]| in n vari-
ables over R. When n=1, we write R[x] =R[x]. In the case R is an
integral domain, it is well known that a homomorphism o : R[x] — R[x][T]
of R-algebras is a G,-action if and only if ¢(x) € x + RT when char R = 0, and
o(x)ex+ 20 RT?" when p:=char R> 0 (cf. Lemma 5).

Assume that R =K is a field, and let ¢ be a G,-action on K[x]. When
n =2, there exist yj, y» € K[x] such that K[x] = K[y, ] and y; € K[x]” by
Rentschler [11] if p =0, and by Miyanishi [9] if p > 0 (see also [5], [6]). If
this is the case, ¢ is a Gg-action on K[y][y2] over K[y;]. Hence, we are
reduced to the one variable case. For n >3, Freudenburg [3] constructed
G,-actions ¢ on K[x] for which there do not exist yi,..., y, € K[x] such that
K[x] = K|[y1,...,ys and y; € K[x]°. This type of G,-action is difficult to
understand. It is an open problem to determine all the G,-actions on K[x] for
n>3.

We mention that K[xi,x2,x3]° ~ R[x1,xs] if p=0 by Miyanishi [8].
On the other hand, the K-algebra K[x|” is not always finitely generated if
p=0 and n > 5 by Daigle-Freudenburg [2]. The problem of finite genera-
tion of K|[x]? is a special case of Hilbert's fourteenth problem, and is of great
interest.

When R is not an integral domain, G,-actions on R[x] are not studied well,
even in the low-dimensional cases. If R is reduced, then we can explicitely
describe all the G,-actions on R[x] (see Section 9). However, the situation is
far different when R is non-reduced. The difficulty comes from a lack of effec-
tive tools, such as the slice theorem. As far as we know, even for R = Z/mZ
with m > 2 not square-free, the G,-actions on R[x] are not completely deter-
mined previously.

Now, assume that m :=char R >0, and write m = p{'---p/", where
pi,-..,p; are distinct prime numbers and ej,...,e; > 1. Then, the ring 4 =
A/mA is isomorphic to @I.IZI(A /p{’A) by the Chinese Remainder Theorem.
Moreover, every G,-action o on A over R induces a G,-action on A/p;'4 over
R; for i=1,...,t, where R; is the image of R in 4/p;"A. Conversely, for any
given Ga-actlons o; on A/p/’4 over R; for i=1,...,1, the map

A~ D(A/pEA) 3 @)y — (0@ € D(A/pe A)[T) ~ A[T]

i=1 i=1

is a Gg-action on A over R. Therefore, it suffices to consider the case ¢ = 1.

Throughout this paper, let p be a prime number and e > 2 unless other-
wise specified. We study a G,-action o on A when char R = p¢.  We say that
o is red-trivial (resp. red-nontrivial) if the G,-action on A/pA induced from o
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is trivial (resp. nontrivial). Equivalently, o is red-trivial (resp. red-nontrivial) if
o(a) —a e pA|T] for each ae A (resp. a(a) —a ¢ pA[T] for some a e A).
We have the following results for red-nontrivial G,-actions on 4 = R[x].

THEOREM 1. Let R be a ring with char R = p°¢ such that pR is a prime
ideal of R and (p*R : pR) = pR.  Then, for every red-nontrivial G,-action ¢ on
R[x], the following assertions hold.

(1) There exists ae R\pR such that o(x) € x+ aT + pTR[x][T)].

(ii) There exists y € Ry[x] such that R,[x] = R,[y| and o(y) = y+ T, where
R, is the localization of R by the multiplicatively closed set {a'|i> 0}.

(iii) If a is not a zero-divisor of R, then we have R[x]° = R.

(iv) If R[x]” # R, then the R-algebra R|x]° is not finitely generated.

Here are some remarks. We have (p?R : pR) = pR if and only if pr ¢ p>R
for any r € R\pR. Since p is a nilpotent element of R, and pR is a prime ideal
of R, we see that pR is the nilradical of R. Since « in (i) is not nilpotent, we
have R, # {0}. If a is not a zero-divisor of R, then R,[x] contains R[x].
Since the invariant ring for the G,-action on R,[x] = R,[y] over R, defined by
y+— y+ T is equal to R,, (iii) follows from (ii) (see also Lemma 3). (iv) is a
consequence of a more general result (Theorem 3).

The following is a corollary to Theorem 1.

COROLLARY 1. Let R be a ring such that char R = p¢ and pR is a maxi-
mal ideal of R.  Then, for every red-nontrivial G,-action  on R|[x|, the following
assertions hold.

(1) There exists y € R[x| such that R|x] = R[y] and o(y)=y+T.
(ii) We have R[x]° =R

In fact, if char R = p° and pR is a maximal ideal of R, then R is a zero-
dimensional noetherian local ring satisfying (p?’R: pR) = pR (Lemma 7).

For example, Corollary 1 says that, up to a change of variables, every
red-nontrivial G,-action on (Z/p°Z)[x] is equal to the G,-action defined by
x—x+T.

To discuss red-trivial Gg-actions, it is convenient to extend the notion
of Gg-actions as follows. Note that we can also consider the conditions
(Al) and (A2) for a homomorphism o:A4 — A[[T]] of R-algebras, where
A[[T]] is the formal power series ring in 7' over 4. We call ¢ an analytic
G,-action on A (over R) if (Al) and (A2) hold, or equivalently (J7)7, is a
so-called iterative higher R-derivation of A (cf. [10, §27]). To avoid confu-
sion, we will sometimes call a G,-action o: 4 — A[T] an algebraic G,-action
on A. We regard an algebraic G,-action as an analytic G,-action satisfying
a(4) C A[T)].
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When char R = p¢, we say that an analytic G,-action ¢ on A is red-
trivial if o(a) — a € pA[[T]] for each a € A. We mainly study such ¢ in the case
A = R[x] with R=S/p°S, where S is a subring of a Q-algebra with p ¢ S*.
We note that a ring S is a subring of a Q-algebra if and only if char S =0
and no element of Z\{0} C S is a zero-divisor of S. In this case, we have
char R = p°¢. Actually, p¢ ¢ p¢S for any 1 <e’ <e, since p is not a zero-
divisor nor a unit of S. We construct a bijection between the set of red-trivial,
analytic G,-actions ¢ on R[x], and the set of pairs (J,4) of R-derivations
0 : R[x] — R[x] and 4 : R[x] — R[x][[T]] with certain conditions. Under this
correspondence, we have R[x]° =kerdNnker 4 (Corollary 3 (i)). We also
determine the set of pairs (J,4) for which the corresponding analytic G,-
actions on R[x| are algebraic in the following cases (cf. Corollaries 2 and 3 (ii),
and Theorem 6 (iii)).

(a) p>3. (b)n=1, p=2 and V25 =2S.

REMARK 1. Let R=S/(p{" ---p{'S), where pi,...,p, are distinct prime
numbers, S is a subring of a Q-algebra such that p;S,...,p,S are maximal
ideals of S, and ej,...,e, > 1. Then, we have char R = pi'---p/, and R, :=
R/p{ R~ S/p{'S for each i. Moreover, p;R; is a maximal ideal of R;
VpiS = p:S and p; ¢ S*. Hence, if ¢; > 2, then we can use Corollary 1 and
the results for red-trivial G,-actions mentioned above for R=R;. If ¢; =1,
then R; is a field, and the G,-actions of R;[x| are already determined. There-
fore, we can determine all the G,-actions on Rl[x].

For example, for R=7Z/mZ with m >2, we can determine all the
G,-actions ¢ on R[x]. In this case, R[x]° is always finitely generated by the
following theorem.

THEOREM 2. Let R=S/(p{"--- p{'S), where pi,...,p, are distinct prime
numbers, S is a subring of a Q-algebra such that p\S, ..., p,S are prime ideals
of S, and ey,...,e, > 1. Then, the R-algebra f{[x]” is finitely generated for any
G, -action o on R[x].

In the situation of Theorem 2, we can describe generators of R[x]’
explicitely. We prove this theorem in Section 8.

This paper is organized as follows. In Section 2, we study finite gener-
ation of the invariant ring for a homomorphism R[x] — R[x][T] of R-algebras
with certain conditions, and prove Theorem 1 (iv) as a special case. We also
give some examples in which the invariant rings are not finitely generated.
The rest of Theorem 1, and Corollary 1 are proved in Section 3. In Section 4,
we overview the main results for red-trivial G,-actions. We discuss the details
in Sections 5 through 8. In Section 9, we describe the G,-actions on R[x] when
R is a reduced ring.
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2. Non-finitely generated invariant rings

The goal of this section is to prove the following theorem, which includes
Theorem 1 (iv) as a special case. For a ring R, we denote by nil(R) the nil-
radical of R. For a homomorphism ¢ : R[x] — R[x][T] of R-algebras, we define
the invariant ring as R[x]” := {f € R[x]|a(f) = f}.

THEOREM 3. Let R be a ring such that nil(R) is a prime ideal of R, and let
o : R[x] — R[x][T] be a homomorphism of R-algebras such that o(x) — x belongs
to TRIx][T], but does not belong to nil(R[x][T]). Then, we have either (1)
R[x]” = R, or (2) the R-algebra R[x|° is not finitely generated.

Under the assumption of Theorem 1, the prime ideal pR is equal to nil(R)
as remarked. Hence, we have pR[x][T] = nil(R[x][T]), to which a(x) — x does
not belong by red-nontriviality. By (Al), o(x) — x belongs to TR[x][T].
Thus, the assumption of Theorem 3 is satisfied. Therefore, Theorem 1 (iv)
follows from Theorem 3.

Theorem 3 is proved by combining the following three lemmas. These
lemmas hold for any ring S.

LEmMMA 1. Let A be a finitely generated S-subalgebra of S + nil(S[x]).
Then, {deg | f € A\{0}} is bounded above.

Proor. Let fi,..., f; € A\{0} be such that 4 = S[fi,..., fi]. Since 4 C
S + nil(S[x]) by assumption, we may take fi, ..., f; from nil(S[x]). Take e > 1
so that f =--- = f,=0. Then, deg f is less than e max{deg fi|i=1,...,1}
for all feS[fi,....fi] = 4. O

LEMMA 2. Let p e Spec S, and let o : S[x] — S[x][T) be a homomorphism
of S-algebras such that o(x) — x belongs to TS[x][T), but does not belong to
pS[x][T]. Then, we have S[x]° C S + pS[x].

PrROOF. Suppose that there exists f(x) € S[x]° not belonging to S + pS[x].
Then, the image of f(x) in (S/p)[x] is a polynomial of positive degree. Since
S/p is an integral domain, and F := g(x) — x lies in TS[x][T]\pS[x][T], we see
that the image of o(f(x)) = f(x + F) in (S/p)[x][T] is of positive degree in T,
and thus is not equal to the image of f(x). This contradicts that f(x+ F) =
o(£(x) = £(x) in SW[T]. 0

LEmMA 3. Let o: S[x] — S[x|[T] be a homomorphism of S-algebras with
F:=o(x) —xe TS[x|][TI\{0}. If S[x]” #S, then there exists a € S\{0} such
that aF = 0.

Proor. It suffices to show that F is a zero-divisor of S[x]|[T] (cf.
[1, Chapter 1, Exercise 3]). Take any f(x)e S[x]°\S, and write f(x+ T) =
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f(x)+ ZfilﬁTi, where d :=deg f(x) and f; e S[x]. Then, f; is nonzero,
since f; is the leading coefficient of f(x). Hence, I:={i|f; #0} is not
empty. Let /:=min/. Then, we have f(x) =a(f(x)) = f(x+F) = f(x)+
S AFL Tt follows that g(x, T)F' = Y0, fiF' =0, where g(x,T) :=
Zf’:}f firF'. Since F e TS[x][T] by assumption, we see that g(x,0) = f; # 0.
Thus, we get g(x,7) # 0. Therefore, F is a zero-divisor of S[x][T]. O

We remark that, in Lemma 3, ax’ belongs to S[x]° for each / > 1, since
a(x+F)' = ax!. Hence, {deg /| f € S[x]°\{0}} is not bounded above.

ProOF (of Theorem 3). Assume that (1) does not hold. Then, by the re-
mark above, {deg /| f € R[x]”\{0}} is not bounded above. Noting nil(R)R[x]
= nil(R[x]) and nil(R)R[x][T] = nil(R[x][T]), we have R[x]° C R+ nil(R[x]) by
Lemma 2. Therefore, we get (2) by Lemma 1. O

Finally, we give some examples of G,-actions whose invariant rings are not
finitely generated. In the following examples, ¢ and b denote variables.
The first one is an example of Theorem 1.

ExAMPLE 1. Set R := Zla,b]/(p¢, p*>ab, p>b), where p is a prime number,
and e > 3. First, we check that R satisfies the assumptions of Theorem 1.
It is easy to see that char R = p¢, and pR is a prime ideal of R. To show
(p>R: pR) = pR, it suffices to check that pre p>R implies r e pR for re R.
Take f € Z[a,b] such that f =r. Since pre pR, there exists g € Z[a, b] such
that pf — p*g € (p¢, p*ab, p’b). This implies f € pZ[a,b], and so r = f € pR.

Now, we define a G,-action ¢ on R[x] by g(x) = x+aT. Then, o is red-
nontrivial, and o(p?bx) = p*b(x +aT) = p?’bx. Hence, we have R[x]° # R.
Therefore, the R-algebra R[x|° is not finitely generated by Theorem 1 (iv).

Next, we give an example of Theorem 3 in the case char R = 0.

ExaMPLE 2. Set R:=Z[a,b]/(a?,ab). Then, we have char R =0, and
nil(R) = aR € Spec R. We define a G,-action ¢ on R[x] by o(x) =x+bT.
Since o(ax) = a(x + b) = ax, we have R[x]” # R. Therefore, R[x]” is not
finitely generated by Theorem 3.

In the following example, o(x) — x belongs to nil(R[x][T]).

EXAMPLE 3. Let S be a subring of a Q-algebra. Then, R := S[d]/(a®) is
also a subring of a Q-algebra, where ¢ > 2. We define a G,-action o on R[x]
by o(x) =x+a“'T. Then, we claim that R[x]° = R+ aR[x]. In fact, for
f(x) € R[x], we have f(x+a*"'T) = f(x)+a®"'T df /dx, in which a*~! df /dx
=0 if and only if f(x) € R+ aR[x]. By Lemma 1, the R-algebra R+ aR[x] is
not finitely generated.
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In Example 3, if we replace S with a ring with m := char S > 0, then R[x]”
contains R[x"], since dx™/dx =0. Hence, R[x| is integral over R[x]’. If R
is noetherian, this implies that the R-algebra R[x]” is finitely generated (cf.
[1, Proposition 7.8]).

3. Red-nontrivial G -actions on the affine lines
In this section, we prove (i) and (ii) of Theorem 1, and Corollary 1.

LEmMMA 4. Let K be a field. Then, for any f(T)e K[T|\K, we have
(

K[/ (T), UIn KT, f(U)] = K[f(T), f(U)].

ProOOF. Set d :=deg f(T) and B:= K[f(T), ( U)l. Slnce K is a field,
we may assume that f(7) is monic. Then, A[T (—D )]T? holds

iy BT' K[f(T), U =

for any ring A. Hence, we have K[T,f(U)] =
@;ZOIBUJ and

d d d
K[T, U] =@K[f( =PPBT'U’.

i=0 i=0 j=0
This implies that K[f(T), U NK|[T, f(U)] = B. O

Let R be any ring, and ¢ a G,-action on R[x]. Then, F(x,T) := o(x) —
belongs to TR[x][T] by (Al). By (A2), we have a(x)+ F(o(x),U) =x
F(x, T+ U), which is equivalent to

Fx+Fx,T),U)=F(x, T4+ U)—-F(x,T). (3.1)
The following lemma is well known.

LEMMA 5. If R is an integral domain, then we have F(x,T) € R[T], and
so F(x, T+ U) =F(x,T)+ F(x,U) by (3.1). This implies F(x,T) € RT when
char R=0, and F(x,T) € Y ;.o RT” when p:=char R > 0.

Proor. It suffices to verify F(x,T)e R[T] (see Lemma 8 for the last
statement). Set 0 :=degy; F(x,T). Then, as a polynomial in 7 and U, the
right-hand side of (3.1) is of total degree 6. Suppose that F(x,T) ¢ R[T]. Let
[ > 1 be such that the coefficient of 7/ in F(x, T) is of x-degree m > 1. Then,
since R is an integral domain, the monomial x/7T°"U’ appears in the left-
hand side of (3.1) for some ¢ > 0, which is absurd. O

Now, let R be as in Theorem 1, and assume that o is red-nontrivial.
Write F(x,T) =3, ;0 ,;x'T/, where o;;€ R. Let Iy, I;, and I, be the sets
of (i,j) such that o;;¢ pR, o;;€ pR\p’R, and «; ;e p°R, respectively.
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For 1=0,1,2, take fi(x,T)e TR[X|[T] so that 3, o ,;x'T/ = p'fi(x, T).
Then, we have F(x,T) = 212:0 p'fi(x,T). For [ =0,1, the coefficient of each
monomial appearing in f;(x,T) does not belong to pR\{0}. Moreover, we
have fy(x,T) # 0 by red-nontriviality.

Since R/pR is an integral domain of characteristic p, the image of F(x, T)
in (R/pR)[x][T] belongs to ZiZO(R/pR)TPi by Lemma 5. Since o;; ¢ pR
for each (i, j) eIy, it follows that fy(x,T) belongs to EiZORTl’i. So, we
write

d

f(T) = folx, T) =" a;T", (3.2)

i=0
where d >0, and ay,...,as € (R\pR) U {0} with az # 0.

ProoF (of Theorem 1 (i)). Our goal is to show that d = 0. By (3.1), we
have

F(x,T+U)—-F(x,T)— F(x,U)
=F(x+F(x,T),U)—F(x,U)

= pfilx+ f(T),U) = pfi(x,U)  (mod p’RIX|[T,U)),  (33)

since fy(x, T) is independent of x. Set ¢, := (T + U)' = T!— U’ for each
[ > 1. Then, ¢; belongs to pR[T, U] whenever / is a power of p. Hence, we
have

d

f(T+U) = f(T) = f(U) = aigy = pg(T, V) (34)

i=0

for some symmetric polynomial g(7, U) € R[T, U].

Now, suppose that d > 1. If we regard ¢, as an element of Z[7', U], then
the coefficient p’f,il of the monomial M := 77" Ur"»"" in ¢,¢ has the form
pu for some u e Z\pZ. Since the coefficient of M in (3.4) is pua,;, we may
take g(7, U) so that the coefficient of M in ¢g(7T,U) is ua;. We note that uay
lies in R\pR, since u € (Z/p°Z)" C R* and a; € R\pR. To obtain a contradic-
tion, we first investigate the structure of ¢(7T, U).

By (3.4), the left-hand side of (3.3) is congruent to p(g(T,U)+
filx, T+ U) - fi(x,T) — fi(x,U)) modulo p?R[x][T,U]. Since (p*R: pR) =
pR by assumption, it follows that

g(Tv U) +f1(X, T+ U) _fl(xv T) _fl(xv U)
= filx+ f(T),U) — fi(x,U) (mod pR[X|[T, U)). (3.5)
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In the rest of the proof, f(T), g(T,U), fi(x,T) and ¢; denote their images
in (R/pR)[x|[T,U]. Write

T)=> h(T)x',  where h(T)e T(R/pR)[T],

i>0
and set
WT,U) = ho(T + U) = ho(T) — ho(U) = /1(0, T + U) — /1(0,T) — /1(0, U).

Then, from (3.5) with x =0, we get

P:=g(T,U)+h(T,U) = i(f(T),U) - /i(0,U) => h(U (3.6)
i=1

Let K be the field of fractions of R/pR. Then, P belongs to K[f(T), U].
Since P=g(T,U)+ h(T,U) is a symmetric polynomial, P also belongs to
K[T, f(U)]. Thus, P belongs to K[f(T),f(U)] by Lemma 4.

Set P;:= f(T+U)' — f(T) = f(U)" for each i > 1. Since char K = p,
we have f(T+U)=f(T)+f(U) by (3.2) (cf Section 4.1). Hence, P;
belongs to K[f(T), f(U)]. Smce f(1) ea,T? +30 “UKTI by (3.2), we
also have P; € a)g;ya —l—ZlP ' Ky

Now, choose P’ e ZlZ] KP; so that the total degree u of

P—P =g(T,U)+h(T,U)— P (3.7)

is minimal. Note that P’ lies in ) .., Kg; and K[f(T), f(U)]. We show that
u < p? by contradiction. Suppose that x> p?. Then, since deg g(T,U) <
deg f(T) = p? by (3.4), the highest homogeneous part H of P — P’ is equal
to that of h(T,U) — P'.  We claim that #/(T,U) — P'e ) ;. Kg; and P — P’ €
K[f(T),f(U)], since h(T,U)e > ;. Kq; by construction, and P e K[f(T),
f(U)] as mentioned. Because ¢; is either zero or a homogeneous polynomial
of degree i for each i, it follows that H = sq, for some se K*. Since f(T)
and f(U) are of degree p?, we can write u = deg(P — P') = u'p?, where
@ >2. Then, sa; P belongs to squ+>,.,Kqgj=H+3, , Kg. Hence,
we get deg(P P’ —sa, P ) < . This contradicts the minimality of x, prov-
ing u < p?. Therefore, noting P — P' € K[f(T), f(U)], we can write P — P' =
of (T) + pf(U) + y, where a,f5,y € K. Then, (3.7) gives that

g(T,U) =af (T)+ pf(U)+y+ P —h(T,U). (3.8)

As mentioned before, the monomial M appears in g(7,U) with coefficient
uaq € K*. Clearly, M does not appear in of (T)+ ff(U) + 7. Since g,a is
zero in K[T, U], and no monomial of degree p? appears in p; for [ # p?, we
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see that M does not appear in P’ —h(T,U) e >,., Kq;. Therefore, M does
not appear in the right-hand side of (3.8). This is a contradiction. O

Our next goal is to prove Theorem 1 (ii). Let S be any ring. Recall that
y=>i0bix" € S[x] satisfies S[y] = S[x] if and only if b; € S* and b; € nil(S)
for all i > 2 (cf. Remark after Lemma 5 of [12]). Hence, if ¢ is an element of
nil(S), then S[y] = S[x] holds for each ye S*x+ ¢S[x].

LEMMA 6. Let o be a Gy-action on S[x] such that o(x) € x+ T + ¢S[x][T]
Jor some q e nil(S). Then, there exists y € x + ¢qS[x] such that o(y)=y+T.

PrOOF. Suppose that the assertion is false. Then, we can find the
greatest / € Z for which there exists y € x + ¢S[x] such that o(y)e y+ T+
q'S[x][T], since g e nil(S). Since a(x) e x+ T + ¢S[x][T] by assumption, we
have / > 1. Take y e x+ ¢S[x] and g € S[x][T] such that a(y) = y + T + ¢'g.
We write g =g(y,T), since S[y] = S[x] as remarked. Then, (A2) yields

a(»)+ U+4q'g(a(»),U) = y+(T+ U) +¢'9(y, T + V). (3.9)
Since / > 1, we have ¢'g(a(y), U) = ¢'g(y + T, U) modulo a := ¢"*'S[x][T, U].
Hence, (3.9) gives that

¢'9(nT)+4'9(y+T,U)=¢'g(y, T+ U)  (mod a).

Set g1(y) :=g¢(0, ). Then, this congruence, with U+ T, T — y and y — 0,
gives that

791(»)+4¢'9».T)=¢'gi(y+T)  (mod a). (3.10)
Now, set z:= y —¢q'g1(y) € x +¢S[x]. Then, we have
o(z)=0(y) = q¢'q1(c(») = Y+ T+4q'9(».T)) —¢'g(y+ T)
Ey—i—T—qlgl(y):z—i—T (mod a)

by (3.10). Hence, o(z) —z— T belongs to an S[x][T] = ¢! SK|[T]. This
contradicts the maximality of /. O

Proor (of Theorem 1 (ii)). Let @ € R\pR be as in Theorem 1 (i), and set
z:=a 'xe R,[x]. Then, o(z) belongs to z+ T + pR,[x][T]. Since p € nil(R),
we know by Lemma 6 that g(y) = y+ T for some y ez + pR,[z] C (R,) x+
PpR,[x]. This y satisfies R,[y] = R,[x] as remarked above. O

Finally, we derive Corollary 1 from Theorem 1.

LemMma 7. If R is a ring such that char R = p¢ with e > 2, and pR is
a maximal ideal of R, then R is a zero-dimensional noetherian local ring, and
(P*R: pR) = pR
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Proor. Note that pR C nil(R). Since pR is a maximal ideal of R by
assumption, and every prime ideal of R contains nil(R), we see that pR is
the unique prime ideal of R. Hence, R is a zero-dimensional local ring. The
set of ideals of R is {p?R|0 <d < ¢}, since each re R\{0} has the form
r= p“s for some 0 <d < e and se R\pR = R*. Hence, R is noetherian. If
(p*>R: pR) # pR, then pr = p?s holds for some re R\pR= R* and seR.
Since r — pse R* and p(r— ps) = pr — p>s =0, we get p=0. This contra-
dicts e > 2. [l

ProoF (of Corollary 1). By Lemma 7, R satisfies the assumption of
Theorem 1. Moreover, since R is a local ring with maximal ideal pR, we have
R, =R for every ae R\pR = R*. Therefore, the assertion follows from (ii)
and (iii) of Theorem 1. O

4. Theory of red-trivial G, -actions

Sections 4 through 8 are devoted to the study of red-trivial G,-actions. In
this section, we overview our main results.

Let R be any ring, and A any R-algebra. For an A-module M, an
R-linear map D: A — M is called an R-derivation if D(ab) = bD(a) + aD(b)
holds for each a,b € A. The A-module consisting of all R-derivations 4 — M
is denoted by Derg(4,M). For each A-submodule M’ of M, we regard
Derg(A4,M’) as an A-submodule of Derg(4, M) in a natural way. We write
Derg A := Derg(A4, A), where the scalar multiplication of M = A is the ring
multiplication, and call D € Derg A an R-derivation of A. We remark that
0f is an R-derivation of A4 for any analytic G,-action ¢ on A, since
(ab+07(ab)T +---) = (a+6{(a)T 4 ---)(b+67(b)T + ---) for each a,be A.

Now, assume that char R = p¢. Let RTg(A) (resp. RTx(A4)) be the set
of red-trivial, algebraic (resp. analytic) G,-actions on 4 over R. We define an
equivalence relation on RTg(A) (resp. RTx(4)) by o ~ 7 if 67 =7 for 0,7 €
RTg(A) (resp. a,7 € RTy(A4)), and denote by [a] (resp. [s]') the equivalence
class of 6 € RTg(A) (resp. 0 € RTy(4)). Note that

RTR(A), = {67 |6 e RTR(4)}  and  RT4(A), := {67 |c € RT}(A)}

are subsets of Derg(4, pA), which are regarded as the quotient spaces of
RTr(A4) and RTy(A), respectively. Our first task is to describe [o] and [z]’ for
o€ RTg(A) and 7€ RTy(A4). By definition, we have [g] = [¢]' N RTg(A) for
each g € RTg(4).

4.1. Additive polynomials and power series. Let f(7) =3, ,a;T € A[[T]],
where a; € A. We say that f(T) is additive if f(T +U) = f(T)+ f(U), or
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equivalently a,(T + U)' = a;T" + a;U" for all i >0. Clearly, aT is additive
for any ae A. If char 4 = p, then aT?" is also additive for any ae€ A and
k>0. In fact, the following lemma holds for any ring 4 (cf. [7, Lemma
2.3)).

LEMMA 8. For an integer 1>2 and ae A\{0}, we have a(T + U)' =
a(T'+ U") if and only if there exist d > 1 and a prime number q such that
I =q? and {meZ|ma=0}=qZ.

Note that, for a prime number ¢ and ae A\{0}, we have {meZ|
ma =0} = ¢Z if and only if ga =0, since {m € Z|ma =0} is a proper ideal
of Z.

We denote by A[[T]]'” (resp. A[[T}]i”)) the set of f e A[[T]] of the form
fzzizobiTl’i (resp. f = EizlbiT”i) for some b;e A. We set A[T]") =
AT N A[T] and A[T]'? := A[[T))'"”) N A[T]. Elements of A[T]'" are often
called p-polynomials.

Let M be an A-module, and m e M. Then, for each D € Derg A, the
map Dm : A>aw— D(a)me M is an R-derivation. If D is an 4-submodule of
Derg A4, then Dm := {Dm|D € D} is an A-submodule of Derg(4, M). In this
notation, for each a € A, the A-module Derg(A, aA[[T]]”)) is the direct product
of DerR(A,aA)TPi for i > 0. If the R-algebra A is finitely generated, then
Derg(4,aA[T]"”)) is the direct sum of Derg(4,ad)T?" for i > 0.

4.2. Equivalence classes. Let R be any ring with char R = p¢, and 4 any
R-algebra. Let M be the set of A4 € Derg(A4,A[[T]]) such that p4 =0. We
define

9" .= Derg(4, pA[[T]")NM, @] := Derg(4, pA[[T]]'") " M,
@ := Derg(4, pA[T]"V) N M, %, = Derg(4, pA[T])") N M.

REMARK 2. (i) For each 4e€ %' and ae A, we have pA(a)=0 and
A(a) € A[[T)]'”). Hence, 4(a) is additive by Lemma 8.

(ii) Since char R=p¢ and e>2, we see that %' D Derg(4,
pA[T)P). If e=2, then we have 2’ = Derg(4,pA|[T])'"). Similar

statements hold for ', 2 and 2.

Let Homg(4, A[[T]]) be the R-module consisting of all R-linear maps 4 —
A[[T]]. Then, RT}(A4) and Derg(4, A[[T]]) are contained in Homg(4, A[[T]]).
For each S,8" C Homg(4, A[[T]]) and ¢ € Homg(4, A[[T]]), we define

S+S8 ={p+¢'|¢peS, ¢ €S} and Y+S:={y+¢|geS}

We prove the following theorem in Section 5.
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THEOREM 4. Let R be any ring with char R = p°, and A any R-algebra
with Anny(p) = Anng(p)A. Then, the following assertions hold.
(i) We have RTx(A) + 2’ C RTx(A) and RTgr(A) + 2 C RTg(A).
(i) We have o] = 6+ % for each ¢ € RTx(A).
(iii) We have [o] = o+ 24 for each o € RTg(A).

The following corollary is a consequence of Theorem 4, where 1 is the
trivial G,-action on A.

COROLLARY 2. Let R and A be as in Theorem 4. If e =2, then we have
RTR(A4), = RTg(A4), = Derg(4, pA), RTx(A) =1+ 2" and RTg(A) =1+ 2.

Proor. By Theorem 4 (i), we have 1+ %' C RTi(4) and 1+ % C
RTg(A). Moreover, since e =2, we know by Remark 2 (ii) that

9" = Derg(A, pA)T + 7, and 2 = Derg(4, pA)T + 9.

Hence, we get RTy(A), = RTg(4), = Derg(4, p4). Thus, 1+ %' and 14+ 2
contain systems of representatives for the equivalence relations on RT%(A) and
RTg(A), respectively. Thanks to (ii) and (iii) of Theorem 4, this implies that
RT(4) =1+ 2’ and RTg(4) =1+ 2. m

In the following, we consider the case where A is the polynomial ring
R[x] = R[xy,..., Xy

REMARK 3. (i) Anngy(s) = Anng(s)R[x] holds for each se R, since
f € R[x] satisfies sf =0 if and only if all the coefficients of f belongs to
Anng(s). Therefore, the conclusion of Theorem 4 holds for 4 = R[x].

(i) For each « € R[x], we have a Derg R[x] C Derg(R[x],aR][x]). If J is
in Derg(R[x],aR[x]), then 6 =>"" (x;)0/dx; =a ., fi0/0x; € a Derg R[x],
where we write J(x;) = af; with f; € R[x]. Hence, we get Derg(R[x],aR[x]) =
a Derg Rx].

(i) We have

RTgr(R[x]); C RT(R[x]); C Derg(R[x], pR[x]) = p Derg Rx].

4.3. Lifts and restrictions. Let S be a ring in which p is not a zero-divisor
nor a unit. Then, S is of characteristic zero, and R := S/p°S is of charac-
teristic p°. For each f € S[x], we denote by f the image of f in R[x].

LEMMA 9. Let R=S/p’S be as above, and let 1 <v<u<e Then,
pla € p"R implies a € p* 'R for ae R. Hence, we have (p"R: p’R) = p* 'R

Proor. Take o€ S with a =a. If pYae p“R, then p’a— p“f e pcS for
some fe€S. Since ]| <v<u<e, and p is not a zero-divisor of S, it follows
that o e p* '+ pc S C p*¥S. Therefore, we have a e p*"R. O
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Using Lemma 9 for u=¢ and v=1, we get Anng(p) = p¢~'R. This
implies that Anngpy7y(p) = p* ' R[x][[T]]. Since 4 € Derg(R[x], R[x][[T]]) sat-
isfies p4 =0 if and only if A(R[x]) C Anngyry(p), we know that M=
Derg(R[x], p* ' R[x][[T]]). Then, the following proposition is readily verified.

PrOPOSITION 1. Let R = S/p°S be as above and A = R[x]. Then, we have

7' = Derg(R[x], p ' RIK[[T))"), 2L = Derp(R[x], p* ' RIx|[[T]{),

9 = Derg(R[x], p ' Rx][T]"), 2, = Derg(R[x], p ' R[x[T]'")).

For each o € Derg R[x], there exist gi,...,g, € S[x] such that g; =d(x;)
for i=1,...,n. Then, D:= 3" g,0/0x; € Ders S[x] satisfies D(f) = (f) for
each f € S[x]. We call D a lift of 6. Lifts of 0 are not uniquely determined
by 6. However, if ¢ lies in p Derg R[x], then any lift of J lies in p Ders S[x],
since f € pR[x] implies f € pS[x] for any f e S[x].

In the rest of Section 4, we consider the case R = .S/p*S, where

S is a subring of a Q-algebra with p ¢ S™. (4.1

In this case, no element of Z\{0} is a zero-divisor of S. Let Sy, and S,
be the localizations of S by the multiplicatively closed sets Uy := Z\{0} and
Uy :=Z\pZ, respectively. Then, we have S C Sy, C Sy, and Q C Sy,. Let
7 be an analytic G,-action on Sy, [x] over Sy,. We say that 7 restricts to
Su, [x] if T(Sy, [x]) C Sy, [x][[T]], or equivalently J;(x;) € Sy, [x] for each /> 1
and i=1,...,n. When this is the case, v induces an analytic G,-action ¢ on
(Sul/pesul)[x] = R[x]

RemarRK 4. For ¢ and 7t as above, the following statements hold.

(i) o is red-trivial if J;(x;) € pSy,[x] for all />1 and i=1,...,n.
(i) o is an algebraic G,-action if there exists N > 0 as follows: For any
[>N and i=1,...,n, we have d;(x;) € p°Sy,[x].

4.4. Exponential actions. In the case Q C R, the following fact is well known
(cf. [10, §27]): For each 0 € Derg A, an analytic G,-action exp 79 on A is
defined by

I
expTd:Asar— Zél(—'a)TleA[[T]].
=0

Conversely, every analytic G,-action ¢ on A is equal to exp 707. Thus, o is
uniquely determined by J7, and 47 = keré7. We note that, for J € Derg R[x],
the Gg-action exp 79 is algebraic if and only if 0 is locally nilpotent, i.e., for
each a € A, there exists / > 0 such that 6'(a) = 0.
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Now, let R=S/p°S be as in (4.1). Since Sy, contains Q, each D e
Ders S[x] induces the analytic G,-action exp TD on Sy, [x], where we extend D
to an Sy,-derivation of Sy, [x] in a natural way.

We prove the following theorem in Section 6.

THEOREM 5. Let R = S/p°S, where S is a subring of a Q-algebra with
p¢S*.  Then, the following assertions hold for each 6 € p Derg R[x].
(i) For any lift D € Ders S[x]| of 9, the analytic Gy-action exp TD on Sy, |x]
restricts to Sy, [x], and induces a red-trivial, analytic Gg-action ¢ on R|x]
such that o7 = 0.
(ii) ¢ is uniquely determined by 0, and independent of the choice of the lift D
of 0.
(iii) We have ker d = R[x]".
(iv) If one of the following holds, then ¢ is an algebraic G,-action on R[x]:
(a) p=3.
(b) At least one of the lifts of d is locally nilpotent.
(c) p=2, and there exists r € \/2S such that 6 € 27 Derg R[x].
(d) p=2 and 6 € 2Dp.

Here, for a ring 7, we define T[x?:=T[x{,...,x?] and

Dy :={D e Derr T|x]| D(x;) € T[x*] +2T[x] for i=1,...,n}.

We note that ¢(7T[x?] +27T[x]) = T[x*] + 2T[x] holds for any automorphism
¢ of the T-algebra T[x]. Hence, the definition of D7 is independent of the
system Xxi,...,x, of variables of T|x].

We call the G,-action ¢ defined in Theorem 5 the exponential action of o,
and write exp 76 := ¢. By Theorem 5 (i), we have RT}(R[x]); = p Derg R[x],
and {€xp 70 |J € p Derg R[x]} is a system of representatives for the equivalence
relation on RTy(R[x]). Thus, we know by Theorem 4 (ii) that

@ : p Derg R[x] x 9! > (6,4) — exp Td + 4 € RT(R|x]) (4.2)

is bijective. For each (J,4) € p Derg R[x] x ', we have &((9,4)) ~exp T9,
so we get 07O — %P1 _ 5 by Theorem 5 (i).

We also have the following consequence of Theorems 4 and 5.

COROLLARY 3. Let R=S/p°S be as in (4.1).
(i) Set o:= ®((d,4)) for (0,4) € p Derg R[x] x Z'.  Then, we have

R[x]” ZR[x]ﬁmﬂkerA = ker 0 Nker 4. (4.3)

If R is noetherian, then the R-algebra R[x]° is finitely generated.
(ii) If p =3, then we have ®(p Derg R[x] x 2;) = RTr(R[x]).
(iii) If p=2, then we have ®(2Dg x ) C RTg(R[x]).
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Proor. (i) First, we prove (4.3). Set ¢:=@exp 70. Since 0 =+ 4, we
see that f e R[x]*Nker 4 implies o(f) =&(f)+ 4(f) = f, and so f e R[x]°.
For the reverse inclusion, note that 6] =0, and ker d = R[x]* by Theorem 5
(iii). Hence, we have R[x]” =[5, ker 07 C ker 67 = R[x]°. Thus, f € R[x]”
implies o(f) = f =&(f), and so A(f) =a(f) —&(f) =0. Therefore, R[x]” is
contained in R[x]° Nker 4, proving the first equality. Since R[x]° = ker J, the
second equality is clear.

Since char R= p¢, and 6 and 4 are derivations, f?° belongs to
ker 6 Nker 4 = R[x]? for each f e R[x]. Hence, R[x] is integral over R[x]’.
This implies the second statement (cf. [1, Proposition 7.8]).

(i) If p>3, then we have {exp 70|d € p Derg R[x]} C RTr(R[x]) by
(a) of Theorem 5 (iv). Hence, by Theorem 5 (i), we see that RTz(R[x]), =
p Derg R[x], and {exp TJ |0 € p Derg R[x]} is a system of representatives for
the equivalence relation on RTg(R[x]). Therefore, the assertion follows from
Theorem 4 (iii).

(iii) Take any 0€2Dg. By (d) of Theorem 5 (iv), exp 70 belongs
to RTg(R[x]). Hence, we have @({0} x Z;)=2exp 7o+ Z; = [exp T9] C
RTR(R[x]) by Theorem 4 (iii). O

We have determined the structure of RTgz(R[x]) when e=2 or p>3
(Corollaries 2 and 3 (ii)). When p =2, we have

2Dg C RTR(R[x])l C 2 Derp R[x]
We prove the following theorem in Section 7.

THEOREM 6. Let R=S/p°S be as in (4.1). If p=2 and e > 3, then the
following assertions hold.
(i) We have RTg(R[x]); # 2Derg R[x].
(ii) If n=2 or V2§ # 28, then we have 2D # RTg(R[x]),.
(iii) If n=1 and 2S=2S, then we have 2Dg = RTg(R[x]),, and so
@(2DR X @+) = RTR(R[JCD

5. Structure of red-trivial G, -actions
The goal of this section is to prove Theorem 4.

ProoF (of Theorem 4 (i)). First, we prove RTi(A4)+ 2’ C RTy(A).
Take any 0 € RTz(A) and 4€ Z', and set t:=0+ 4. Then, 7: 4 — A[[T]]
is R-linear, and satisfies 7(1) = a(1) + 4(1) =o(1) = 1. By the choice of 4
and o, we have pA(a) =0 and 4(a),o(a) —a € pA[[T]] for each a € A. Hence,
for each a,be A, we get
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1(a)t(b) = (a(a) + 4(a))(a(b) + 4(b))
= a(a)a(b) + (a + (a(a) — a))A() + (b + (a(b) = b))4(a)
=a(a)a(b) + ad(b) + bA(a) = o(ab) + A(ab) = t(ab).

Therefore, v is a homomorphism of R-algebras.

Fix any aecA. Since o(a)—ae pTA[T)] and A(a)e pA[[T)]" c
pTA|[T]], we have t(a) —a e pTA[[T]]. This proves (Al) and the red-triviality
for . To check (A2), write f(T) := 4(a) = Z,>1b T', where b; € pA. Then,
we have t(a) =a+ ;2,07 (a)T"+ > ., b;T". We would like to show that

(@) + > (67 (@)U + > tw(b)U'=a+ Y 67 (@)(T+U)' + f(T+U). (51)

i>1 I>1 i>1

From p4 =0, we see that the following statements hold.

(i) t(pb) = ptr(b) = p(a(b) + 4(b)) = pa(b) = a(pb) for any b e A.

(ii) For each i > 1, we have b; € Anny(p). Since Anny(p) = Anng(p)A4
by assumption, we can write b; = >, ri xb; k, Where r; x € Anng(p) and b; x € A.

Since ¢ is red-trivial by assumption, J7(4) C pA holds for each /> 1.
Hence, we get 6/ (b;) =5, Z,>1 Fi ;ﬁ,( %) = 0. Therefore, we have

(iii) a(b;) =bi+ > 2,0/ (b)T! = b; for each i > 1.

Now, since J; (a), b; € pA, we know by (i) and (iii) that (6] (a)) = o (7 (a))
and t(b;) = o(b;) = b; for each i. Hence, the left-hand side of (5.1) is equal to

a)+Y o(07(a)U'+> hiU' = (ala) + £(T)) + Y _ (07 (a)U' + f(U)

i>1 i>1 i>1

=a+Y 67(@)(T+U) + f(T)+ f(V),

i>1

where the last equality is due to (A2) for ¢. Since f(7) is additive by Remark

2 (i), this is equal to the right-hand side of (5.1).
Since RTg(A4)+ 2 C RTi(A) + 2’ C RTR(A4) as shown above, and
7(A) C A[T] for each 7€ RTgr(A)+ 2, we see that RTgr(A4) + Z C RTg(A).
O

The following lemma holds for any ring R, and any R-algebra A.

LemMaA 10. Let o and © be analytic Gy-actions on A, and N = 1 an integer
such that 67 =9; for all 0 <i < N. Then, the following assertions hold.
(i) 0:=05 —Jdy belongs to Derg A.
(it) da)(T + U)N =6(a)T"N +6(a)UN holds for each a e A.
(iii) If o # 0 and N > 2, then there exist a prime number q and d > 1 such that
N =q? and ¢6 = 0.
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Proor. (i) Clearly, ¢ is R-linear. For each a,b € A, we have

> 07(ab)T" = o(ab) = (Za“ ) (Zé_f(b)Tf>.
i>0 i>0 j=0

From this equality, we obtain 0% (ab) = 3, 7(a)d%_,(b) by comparing the
coefficients of 7V. Similarly, we have J5(ab) =3~ 07 (a)d% ,(b). Since
07 (a)oy,_;(b) =0/ (a)oy_;(b) for 1 <i < N by assumption, and J; =J; =idy
by (Al), it follows that

d(ab) = 65, (ab) — o3 (ab) =~ (07 ()05 _;(b) — 6] (a)dy_;(b)) = ad(b) +d(a)b.
i=0, N
(i) Set a:= TAJ[[T,U]]+ UA[[T,U]]. Since no polynomial of degree N
belongs to the ideal a¥*!, it suffices to verify 6(a)(T + U)" = d(a)(TY + UY)
(mod a™*!) for each a € 4. In the rest of the proof, we assume that all con-
gruences are modulo a¥*!. By (A2) for o, we have

o—(a)+za(5“ U’—a+Z§" (T +U) (5.2)

Since J7 (a) = J;(a) for 1 <i < N and oy(a) =dy(a) +d(a ) the right-hand side
of (5. 2) is equal to a+ SN, 07(a)(T + U)' +6(a)(T + U)", and the left-hand
side of (5.2) is equal to

N
a(a) + Y a(67(a) U’ + a(0(a) U". (5.3)
i=1
For each b € 4, we have a(b) = t(b) +(b)T" and a(b)U' = t(b)U' for i > 1,
and o(b)UN =bU" by (Al) for 6. Hence, we see that

(5.3) = 7(a) + 6(a) TN+Z )T +6(a)U
i=1
N
=a+» 0/(a)(T+U) +a)(T" + UY),

i=1

where the second congruence is due to (A2) for 7. Therefore, we conclude that
3a)(T + U)N =d(a)(TN + UV).

(ili) Take any b ed(A4)\{0}. Then, we have b(T + U)" = b(TVN + UN)
by (ii). Hence, by Lemma 8, there exist d > 1 and a prime number ¢ such that
N =¢? and ¢bh=0. Since N is a fixed integer, we see that ¢ is independent
of the choice of b. Therefore, we have go(A4) = {0}, proving ¢d = 0. O
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In the situation of Lemma 10 (iii), assume that char R = p¢. Then, ¢
must be equal to p, for otherwise ¢ € (Z/p¢Z)" C R*, and so ¢d # 0, a con-
tradiction. Assume further that ¢ and 7 are red-trivial. Then, we have
5(A) C pA. Hence, 6TV : Asa— 6(a)TY € A[[T]] belongs to Z,.

LemmAa 11. Assume that char R = p® and Anny(p) = Anng(p)4. If
0,7 € RT(A) satisfy 6] = 6}, then (67 —6])T" € Z.. holds for all i > 2. Hence,
t=0+ (t—0) belongs to o+ .

ProoF. Suppose that the lemma is false. Let N be the minimal integer
with (05 —05)TY ¢ 9,. Then, we have N > 2, and (6] — 7)T" belongs to &,
for 2<i< N. Hence, by Theorem 4 (i), we know that

d =0+ Y (6] —7)T" € RT(A).

1

By construction, we have d7 =07 for 1 <i< N and 65 =05 #0J5. There-
fore, by the remark before this lemma, we obtain that (95 —d5)T" =
(0% —05)TN € Z,, a contradiction. ]

Now, we are ready to give a

PrOOF (of (ii) and (iii) of Theorem 4). (ii) Take any o € RT{(4). Then,
we have [0]' Co+ 2, by Lemma 11. For the reverse inclusion, take any
A€ and set 7:=0+ 4. Then, 7 belongs to RTy(4) by Theorem 4 (i).
Since 4(A4) C A[[T}]im C T?A[[T]], we get 6] =67. Therefore, v belongs to
[o]'.

(iii) Take any o € RTg(A4), and 7€ [g]. Then, since J; =J7, we know
by Lemma 11 that 4:=7—0€Z|. Since ¢ and 7 are algebraic G,-actions,
we have 4(a) = 7(a) — o(a) € A[T] for each a e 4. Hence, we get 4 € &, and
so t=0+A4€c+%,. By (i) and (ii) of Theorem 4, we have ¢+ %, C
[6] NRTg(4) = [d]. ]

6. Legendre’s formula

Let v, be the p-adic valuation of Q. Namely, we define v,(0) = oo, and
vp(o) =r for each a€Q”, where reZ is such that o= p"o’/a” for some
o' o € Z\pZ. For each o e R, we define |a] := max{re Z|r < a}. The fol-
lowing formula is well known.

THeOREM 7 (Legendre’s formula). For each integer | > 1, we have v,(I') =

Zf:l L/p'].
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Let / = Z_/{(:o lip’ be the p-adic expansion of /, where 0 </, < p. Then,
since |//p'| = Zj‘:i ip’~', we know by Theorem 7 that

<. |/ L &L -1 1=k
ORI D) WS B e R S
P =1 =0 = P p

and so v,(p!/I)) =1—v,(I") >1(p—2)/(p—1)=0. Here are some conse-

quences:

(1°) We can write p'/I! = pa;, where a; € Zy,.

(2°) Assume that p > 3. Then, for every e > 1, there exists N > 1 such that
{p!/11]1 > N} C pZy,.

(3°) By (6.4), we have v(2//1') =1 if and only if / =2k for some k > 0.

ProoF (of Theorem 5). (i) Let D € Ders S[x] be a lift of . Since ¢ is
in p Derg R[x], we can write D = pDy, where D, € Ders S[x] (cf. Section 4.3).
By (1°), it follows that

D'(x;) p'
o

Di(x;) = paiD}(x;) € pSy, [x] fori=1,...,n

Therefore, exp TD restricts to Sy, [x], and induces a red-trivial, analytic
G,-action ¢ on R[x]. By construction, we have J] =J.

(i) Take another lift D’ € Derg S[x] of J, and set D" := D’ — D. Since
D" induces the zero derivation of R[x], we have D"(S[x]) C p°S[x]. By
Remark 3 (ii), we can write D” = p°D, where D € Ders S[x]. Then, we
have D' =D+ D" = p(Dy + p¢ ' D)), and

(D)’ (x:)

- 1
7 = pai(Do+ pT D) (xi) € parDy(xi) + p*Su [x]

forall/>1and i=1,...,n. This shows that exp 7D and exp 7D’ induce the
same analytic G,-action on RIx].
(iii) Clearly, R[x]* = (0,5, ker ] is contained in ker J; = kerd. To show

ker & C R[x|%, take any f € ker , and g € S[x] with g = f. Since D(g) =0, we
can write D(g) = p°h, where h € S[x]. Then, for each / > 1, we have
D'(g) _pD"'(h) _ . p"'Dy (k)

[ = praDy (h) € p“Sy[x),

since p//I' = pa;. This implies that 6;(f) = 0. Therefore, f belongs to R[x]".

(iv) Tt suffices to find a lift D € Ders S[x] of 6 and N > 1 such that, for
all />N and i=1,...,n, we have D/(x;)/I' € p¢Sy,[x]. The case (b) is clear.
Since every lift D of ¢ has the form D = pD, for some Dy € Derg S[x|, the
case (a) follows from (2°). In the case (c), we can find D, € Derg S[x] for
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which D = 2rD, is a lift of 5. Since r is in v/2S, there exists N > 1 such that
rN €2¢S. Then, D'(x;)/I! = 2a;r" D!(x;) € 2¢Sy, [x] holds for all / > N and i =
1,...,n. In the case (d), we can find D, € Dg for which 2D, is a lift of J.
By Lemma 12 (ii) below, there exists N > 0 such that D}(x;) € 2¢71S[x] for all
I>N and i=1,...,n. Then, D'(x;)/I! = (2!/1)Di(x;) = 2a;D}(x;) € 2¢Sy, [x]
holds for all />N and i=1,...,n. O

The following lemma holds for any ring S.

LemMA 12. We set B:= S[x?] + 2S[x].

(i) If feB, then 3*f/ox? €2'B holds for each | >1 and i=1,...,n.

(i) Let DeDs and e>1. Then, D'(x;) belongs to 2¢S[x] for each I >
2e(e—n and i=1,...,n

Proor. (i) It suffices to prove the case /=1 and f e S[x’]U2S[x]. It
is easy to see that 0°f/dx? belongs to 2S[x?] if f e S[x?], and to 4S[x] if
f€2Sx]. In either case, 3*f/0x? belongs to 2B.

(i) Write D =", fi0/dx;, where fie B. Set |k|:=ky +---+k, and

o okl

= m for each k= (ki,...,ky) € (Z=0)".

Now, fix / >2e(e —1)n and 1 < iy <n. Then, we have

n i a n i a n i af
D/ i) — i 2 e [/ - )
(Xo) i?:l fl 53@‘1 i;:l fz 5xi2 i]?l:IfFI Ox

i-1

which is a sum of polynomials of the form g := f, (0%£,)(8%f.) - (0% f,).
Here, ny,...,nye{l,...,n}, and ky,... k € (Z=o)" satisfy

lka| + -+ k)| =1—1>=2e(e—1)n. (6.5)

We show that g € 2¢S[x]. This is true if #{i|k; # 0} > e, since Jf /dx; € 2S[x]
holds for any f € B and i. So, assume that #{i|k; # 0} <e. Then, by (6.5),
there exist i and j for which the j-th component of &; is at least 2e. By (i),
this implies that 0%, € 2°S[x], proving g € 2¢S[x]. O

7. The case where p =2

The goal of this section is to prove Theorem 6. Let S be a subring of a
Q-algebra with 2 ¢ S*, and let R=S/2°S with e > 2. We consider the four
types of 0 € 2Derg R[x] defined as follows.

(A) 0:= 2x1(3/6x1.
(B) 0 :=2x,0/0x».
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(C) 0 :=2Fx,0/0x|, where re/2S\2S.
(D) &:=2f0/0x;, where f e R[x1]\(R[x?] + 2R[x1]).

We note that (B) and (C) require that n > 2 and /2S # 2, respectively.
For ¢ in (B) and (C), exp 76 belongs to RTg(R[x]) by (b) and (c) of Theorem
5 (iv). Hence, ¢ in (B) and (C) lies in RTg(R[x]);.

ProoF (of Theorem 6 (ii)). It suffices to check that J in (B) and (C) are
not in 2Dg, ie., 2xy,27x ¢ 2(R[x*] +2R[x]). Since 1,7 ¢ 2R, we show that
2ax; ¢ 2(R[x?] + 2R[x]) for any a € R\2R. If 2ax; € 2(R[x*] + 2R[x]), then we
have 2a € 4R. Since (4R:2R) =2R by Lemma 9, it follows that « € 2R, a
contradiction. O

To prove (i) and (iii) of Theorem 6, it suffices to verify that  does not
belong to RTx(R[x]), in the case (A), and in the case (D) when v2S = 25,
since any element of 2 Derg R[x]\2Dg is written as J in (D) if n = 1. These
statements follow from the two lemmas below.

LEmMA 13.  Assume that e > 3. For 0 € 2 Derg R[x], we set ¢ :=exp T0.
If 05k(x1) ¢ 4R[x] holds for each k > 1, then ¢ does not belong to RTg(R[x]),.

PrROOF. Suppose that there exists o € RTgr(R[x]) with 67 =J. Then, we
have ¢e[o]' =o+ 2, by Theorems 4 (ii). Hence, ¢— o belongs to Z,.
Thus, by Proposition 1, 65; — 65 € Dergr(R[x],2¢7 ' R[x]) = 2¢~! Derg R[x] holds
for each k> 1. Since e > 3 by assumption, it follows that o5 (x;) — o5 (x1) €
4R[x] for all k > 1. On the other hand, 65,(x;) =0 holds for /> 0, because
o is an algebraic G,-action. Then, we get d5,(x;) = d5/(x1) —5:/(x1) € 4R[x], a
contradiction. O

LemMA 14.  Assume that e > 2. If 0 is as in (A), or if V2§ =28 and J is
as in (D), then ¢:=exp T0 satisfies 05 (x1) ¢ 4R[x] for all k > 1.

Proor. (A) Note that D :=2x;0/0x; €2 Derg S[x] is a lift of J, and
D'(x;) = 2'x; for each />0. Suppose that d5:(x;) € 4R[x] for some k > 1,
and set / := 2%, Then, there exists s € Sy, such that 2//I! —4se2¢S,,. By (3°)
in Section 6, we can write 2//I! = 2a, where a € Z;,\2Zy,. Then, we have
a—2se2°1Sy,, and so a € 28y, since S is a subring of a Q-algebra and e > 2.
Therefore, a belongs to 28y, NZy, = 2Z,,, a contradiction.

(D) Take ge S[x1|\(S[x}] +2S[x;]) with g= f, and set D :=gd/ox.
Then, 2D is a lift of §. Since g ¢ S[x7] + 2S[xi], there appears in g a mono-
mial cx{ with ¢ € S\2S and an odd number j > 0. Since 2S5 = v/2S is equal to
the intersection of all p € Spec S with 2 € p, we can find p € Spec S such that
2ep and c¢p. Then, we have g ¢ pS[x].

We show that D/(x;) ¢ pS[x] for each /> 1. Write h) := d'h/ox! for
each s e S[x] and / > 0. Then, we have D'(x;) =g (D'"'(x;))""). Since g ¢
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pS[x], and pS[x] is a prime ideal of S[x], it suffices to show that (D’(x;))) ¢
pS[x] for each / > 0. We prove this by induction on /. The assertion is clear
f /=0. Assume that /> 1. Then, we have

(D'(x))V = (g- (D )M =g (D )P + g (D)) (7.1)

—

Since (x1)® = i(i— 1)xi"2 € 2S[x] C pS[x] for each ieZ.y, we see that
(D'"'(x1))? belongs to pS[x]. By induction assumption, (D'~!(x))!) does
not belong to pS[x]. So, we show that g(!) ¢ pS[x]. The monomial jcx{_1
appears in ¢g(l). Since ¢c¢p, 2€p, and j is an odd number, we have jc ¢ p,
and so g1 ¢ pS[x]. Therefore, (7.1) does not belong to pSix].

Now, suppose that 55:(x;) belongs to 4R[x] for some k > 1, and set
[:=2% Then, there exists /&€ Sy, [x] such that (2//1)D'(x) — 4h € 2¢Sy, [x].
By (3°) in Section 6, we can write 2'/I! = 2b, where be Zy,\2Zy,. Since
be(Zy,)" C (Sy,)", 2 is not a zero-divisor of Sy,, and e > 2, it follows that
D'(x) € 28y, [x] C pSy,[x]. We claim that pSy [x] N S[x] = pS[x]. Indeed,
since pNZ =27 and U, =Z\2Z, we have pNU; = . Hence, pSy, is a
prime ideal of Sy, with pSy, NS =p. Since D/(x;) lies in S[x] by construc-
tion, we know that D’(x;) belongs to pS[x]. This is a contradiction. O

This completes the proof of Theorem 6.

REMARK 5. Assume that e =2, and let 0 be as in (A). Then, exp 70 is
not an algebraic G,-action by Lemma 14. However, J belongs to RTg(R[x]),,
since RTg(R[x]); = Derg(R[x],2R[x]) = 2 Derg R[x] by Corollary 2.

8. Generators of invariant rings
Throughout this section, assume that n =1 and R = .§/p°S, where
S is a subring of a Q-algebra such that pS e Spec S. (8.1)
We describe generators of the R-algebra R[x]” for o € RTR(R[x])\{}.

REMARK 6. For each a,be S with a ¢ pS and b ¢ p°S, we have ab ¢ p°S
by (8.1). Hence, no element of R\pR is a zero-divisor of R. Similarly, no
element of R[x|[[T]]\pR[x][[T]] is a zero-divisor of R[x][[T]], since S[x][[T]] is a
subring of a Q-algebra and pSIx][[T]] € Spec S[x][[T]].

By (4.2) and Corollary 3 (i), there exist 6 € p Derg R[x] and 4 € &/ such
that 0 =exp 790+ 4 and R[x]” =kerdNker 4. Write 6 = fid/dx and 4 =
fod/dx, where fi e pR[x] and f> € pRX][[T]]\”). For each f e R[x|[[T]], we
define

ord,(f) :=max{l e {0,...,e} | f € p'RX|[[T]]}.
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Then, we have d;:=ord,(f;) >1 for i=1,2, and u:=e—min{d,,dr} <e.
Set

up = u— vy(l) and T) = p“x’ for I=1,...,p"

ReEMaRrRk 7. (i) Since o # 1, we have (fi, f2) # (0,0). Hence, d; or d, is
less than e. Therefore, u is positive.
(i) We have u;>1 for i=1,...,p"—1, and u,. = 0.

The following theorem generalizes the main result of the Master’s Thesis of
Yuto Imamura [4].

THEOREM 8. Let R = S/p°S be as in (8.1), and 6 € RT(R[x])\{1}. Then,
in the notation above, we have R[x|° = R[T1,..., Tpy.

Proor. For ie{l,2}, write f; = p%g, where g; e R[x|[T]]\pR[x][[T]].
Then, ¢g; is not a zero-divisor of R[x][[T]] by Remark 6. Hence, we have
fidh/dx =0 if and only if p% dh/dx =0 for he R[x].

For [/=1,...,p% we have uv,(p%p“l)=di+u+v,()=di+u=>e.
Hence, p% dT;/dx = p“p*Ix'~! = 0 holds in R[x]. Thus, § and 4 kill T,...,
Tyu. Therefore, R[T\,..., Ty is contained in ker d Nker 4 = R[x]°.

For the reverse inclusion, take any h =3, ,¢x’ € R[x]’, where ¢; € R.
We show that ¢;x’ € R[T1,..., T, for each /. Since 5(h) = A(h) = 0, we have

dh
0=p e éoc;p Ix for i=1,2.

Hence, ¢;p%[ =0 holds for each /> 1 and i=1,2. Fix/>1, and let ¢,r e Z
be the quotient and the remainder of / divided by p%, respectively. Write
¢; = p*cand r = p»"y’ where s := ord,(¢;), c € R\pR and r’' € Z\pZ. Choose
ie{1,2} so that d; =min{d,,d,}. Then, since d;+u=-e, we have p¥l=
ph(pqg+r) = pYr (mod p¢). Hence, cp*+4to )y’ = ¢;pdiy = ¢;p%l =0 holds
in R. Since ¢ is not a zero-divisor of R[x] by Remark 6, ' € (Z/p°Z)" C
R*, and char R = p¢, this implies that s+ d; + v,(r) > e. Thus, we get s>
e —d; — vy(r) =u—uv,(r) =u,. Therefore, we have ¢;x! = cp*Wpux’(x?")! =
cp* T, T, which belongs to R[T,..., Ty O

p

PrROOF (of Theorem 2). Note that char R=p{---p{", and R;:=
R/p{R ~ S/pf'S for each i. By the Chinese Remainder Theorem, it suffices
to show that, for i=1,...,7 and any Gg-action o on R;[x] over R;, the
R;-algebra R;[x]7 is finitely generated. If ¢; = 1, then R; is an integral domain.
In this case, we have R;[x]” = R; unless o is trivial (cf. Lemma 3). So, assume
that ¢; > 2. If ¢ is red-trivial, then we can apply Theorem 8. We show that
Ri[x]” = R; if ¢ is red-nontrivial. Note that p;R; € Spec R;, and (p?R; : p;R;) =



G,-actions on the affine line 41

piR; by Lemma 9. Hence, the assumption of Theorem 1 is fulfilled. Since no
element of R;\p;R; is a zero-divisor of R; by Remark 6, we have R;[x]” = R; by
Theorem 1 (iii). O

9. G,-actions on the reduced affine lines

In closing this paper, we shortly mention the case where R is reduced.
Let 2 be the set of prime numbers. We define ./ to be the set of f € R[T] of
the form

j1::a7”+—§£:§£:ahpTwz

I1>1pe?
where a e R, and a;, € R is such that pa; , =0 for each /> 1 and pe 2.

THEOREM 9. Let R be a reduced ring, and o : R|x] — R[x][T] a homomor-
phism of R-algebras. Then, o is a Gg-action on R[x] if and only if o(x) —x
belongs to /.

Proor. By Lemma 8§, every element of .o/ is additive. Noting this, we
can check the “if” part easily. To show the “only if” part, assume that ¢ is a
G,-action. Then, by (Al), we can write

fi=0(x)=x=>"> a;x'T/,  where a;;€R.

i>0 j>1

Take any p € Spec R. Then, ¢ induces a Gy-action on (R/p)[x] over the in-
tegral domain R/p. Hence, modulo pR[x][T], we have f = ao T if char(R/p)
=0, and f = ZIZOaOJ,ITP' if char(R/p) =p >0 (cf. Lemma 5). In either
case, a;; belongs to p if i > 1 or j is not a power of a prime number. Since
this holds for all p € Spec R, and R is reduced by assumption, it follows that
a;;=0if i > 1 or jis not a power of a prime number. Hence, we have f =
a1 T+ s Zpeg,ao‘p/Tf", which belongs to R[T]. Then, (A2) implies that
f is additive. Thus, we know by Lemma 8 that pa,, =0 holds for each
[>1 and pe . Therefore, f belongs to .o7. O

RemARK 8. (i) If Q C R, then we have .o/ = {aT |a € R}, since pa # 0 for
any pe 2 and ae R\{0}.

(ii) If char R = p e 2, then we have .o/ = R[T]"”), since pa =0 for any
aeR, and ga #0 for any g e #\{p} and a e R\{0}.

ExaMpLE 4. Let R| := Z[a,b]/(2a,3b) and R, := Z[a, b]/(2a,3b,6), where
a and b are variables. Then, we have char Ry =0 and char R, = 6. For
i=1,2, we can define a G,-action on R;[x] by o(x) = x+aT?+bT>.
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