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ABSTRACT. The m-trace of a knot is the 4-manifold obtained from B* by attaching a
2-handle along the knot with m-framing. In 2015, Abe, Jong, Luecke and Osoinach
introduced a technique to construct infinitely many knots with the same (diffeomorphic)
m-trace, which is called the operation (xm). In 2018, Miller and Piccirillo gave pairs
of knots with diffeomorphic m-traces by utilizing Gompf and Miyazaki’s dualizable
pattern. In this paper, we clarify the relation between the two techniques. In par-
ticular, we prove that the “twistings” appearing in both techniques are corresponding.
In addition, we show that the family of knots admitting the same 4-surgery given by
Teragaito can be explained by the operation (xm).

1. Introduction

For an integer m, the m-trace Xx(m) of a knot K is the 4-manifold
obtained from B* by attaching a 2-handle along the knot with m-framing. On
techniques to construct knots with the same trace, the following are known.

e Abe, Jong, Luecke and Osoinach [2] introduced a technique to con-
struct infinitely many knots with the same (diffeomorphic) m-trace.
The technique is based on “annulus presentation” and called the opera-
tion (¥m)'. The operation is given by a composition of Osoinach’s
annular twisting technique [9] and twisting m times along a certain
curve “p”. This twisting is denoted by 7, in this paper (for detail,
see Section 2).

e Miller and Piccirillo [8] constructed a pair of knots with the same
m-trace by utilizing dualizable patterns. In particular, such a pair
is given by a dualizable pattern and twisting its dual m times along
a meridian of the solid torus containing the dual. This twisting is
denoted by 7, (for dualizable patterns, see Section 3).

Miller and Piccirillo [8] pointed out that the construction by an annulus pre-
sentation can be regarded as that by a dualizable pattern. In fact they
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constructed a dualizable pattern from the annulus presentation. This is the
case m = 0, namely, untwisted case.

In this paper, we extend Miller and Piccirillo’s work on a correspondence
between annulus presentations and dualizable patterns to twisted cases. In
particular, we find that the twisting T, appearing in operation (xm) corre-
sponds to the twisting 7,, on the duals of dualizable patterns. As an appli-
cation, we directly draw the duals to Miller and Piccirillo’s dualizable patterns
obtained from annulus presentations (Theorem 4.3 and Figure 5). In addition,
we explain the family of knots admitting the same 4-surgery given by Teragaito
[11] in terms of the operation (xm) (Section 5). We also remark some obser-
vations in the final section. Throughout this paper,

e unless specifically mentioned, all knots and links are smooth and un-

oriented, and all other manifolds are smooth and oriented,

e for an n-component link L;U---UL,, we denote the 3-manifold

obtained from S* by mj-surgery on the knot L; for i=1,...,n by

ML1U-~UL,,(m17~--7mn)>
* we denote a tubular neighborhood of a knot K in a 3-manifold by
v(K), and

« we denote the unknot in S* by U.

2. Annulus twist, annulus presentation and the operation (xm1)

2.1. Annulus twist and annulus presentation. Let 4 C S® be an embedded
annulus with ordered boundaries 04 = ¢; Uc¢y. An n-fold annulus twist along
A is to apply (Ik(ci,c2) + 1/n)-surgery along ¢; and (Ik(ci, ¢2) — 1/n)-surgery
along ¢, where 1k(cy, ¢3) is the linking number of ¢; and ¢, and we give ¢; and
¢, parallel orientations. We see that the resulting manifold obtained by an
annulus twist is also S°.

Let A CS® be an embedded annulus with 04 = ¢; Uc,. Take an em-
bedding of a band b: 1 x I — S* such that

o b(IxI)NJA=Db(0I x1I),

* b(I xI)NInt A consists of ribbon singularities, and

* AUb(I xI) is an immersion of an orientable surface,
where 7 =[0,1]. If a knot K C S8? is isotopic to the knot (0A\h(OI x I)) U
b(I x oI), then we call (A4,b) an annulus presentation of K. An annulus
presentation (A,b) is special if A is unknotted and lk(cj, ¢2) = +1 (that is, 4 is
+1-full twisted). Let K be a knot with an annulus presentation (A4,b). Let
A’ C A be a shrunken annulus with 04’ = ¢{ U ¢§ which satisfies the following:

o A\A' is a disjoint union of two annuli,

s each ¢/ is isotopic to ¢; in A\A’ for i =1,2, and

* A\(0AUA') does not intersect h(I x I).
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Then, by A"(K), we denote the knot obtained from K by the n-fold annulus
twist along A’. For simplicity, we denote 4'(K) by A(K) and 4°(K) by K.

REMARK 2.1. We find many examples of special annulus presentations in
[1, 2, 4, 5, 10]. Remark that in [2, 5], our special annulus presentations are
called “annulus presentations”, simply. In this paper, for an annulus presen-
tation (A4,b), we often draw the attaching regions 4 Nb by bold arcs and we
omit the band b.

By utilizing Osoinach’s work [9, Theorem 2.3], for a knot K with an
annulus presentation (4,b), we see that Mg (0) and M ) (0) are orientation-
preservingly homeomorphic for any ne Z. In particular, a homeomorphism
¢, : Mg(0) — M 4n(x)(0) is given as in Figure 1, which is explicitly given by
Teragaito [11]. We call ¢, the n-th Osoinach-Teragaito’s homeomorphism.
Moreover, if (4,b) is special, by applying Abe, Jong, Omae and Takeuchi’s
result [1, Theorem 2.8] to the knot, we see that the homeomorphism ¢, extends
to an orientation-preserving diffeomorphism @, : Xx(0) — X n(x)(0) for any
nel.

As a consequence, we obtain the following.

THEOREM 2.2. Let K C S* be a knot with an annulus presentation (A,b).
Then, there is an orientation-preservingly —homeomorphism ¢, : Mg(0) —

0
C2 101
~K
| ¢n
0
~A"(K)

Fig. 1. (color online) Osoinach-Teragaito’s homeomorphism ¢,. For simplicity we draw 4 as a
flat annulus although 4 may be knotted and twisted.
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/A(K)
SYAK
! :/VA(K)

Fig. 2. (color online) The curve y,.

M 40 (k)(0) for any n e Z.  In particular, ¢, is given as in Figure 1. Moreover, if
(A4,b) is special, ¢, extends to an orientation-preserving diffeomorphism
¢n : XK(O) — XAn(K)(O).

2.2. Operation (xm). Let K be a knot with a special annulus presentation
(A4,b). Let y k) C S*\v(4(K)) be a curve depicted in Figure 2. Remark that
the definition of y, ) depends on the twist of 4. Denote the knot obtained
from A(K) by twisting m times along y k) by T(A(K)). In [2, Section 3.1.2],
the operation K — T,,,(A(K)) is called the operation (xm). Then, Abe, Jong,
Luecke and Osoinach [2] proved the following theorem.

THEOREM 2.3 ([2, Theorem 3.7 and Theorem 3.10]). Let K be a knot with
a special annulus presentation (A,b). Then, there is an orientation-preservingly

homeomorphism \y,, - Mg(m) — My, 4x))(m) which extends to a diffeomorphism
Yo+ Xx(m) — X1, 4x))(m) for any meZ.

Concretely, ,, is given as in Figure 3 for the case 4 is +1 twisted. For

the case 4 is —1 twisted, we can define ,, similarly (see also [3, Appendix]).

REMARK 2.4. Note that Osoinach-Teragaito’s homeomorphism induces a
homeomorphism ¢, : (Mg(0),0x) — (M4k)(0),y.4k)), Where ax C SI\v(K) is
a meridian of K and we regard ox and y ) as curves in Mg(0) and M 4k)(0),
respectively (see also the bottom arrow in Figure 3).

3. Relation between annulus presentation and dualizable pattern

3.1. Dualizable pattern. Here, we recall the definition of dualizable patterns,
which is firstly given by Gompf and Miyazaki [7] and developed by Miller and
Piccirillo [8] (see also [10]).

Let P:S' — ¥ be an oriented knot in a solid torus ¥ =S! x D2 Sup-
pose that the image P(S') is not null-homologous in V. Such a P is called a
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Fig. 3. (color online) The homeomorphism v, : Mg (m) — My, 4k)(m) for the case 4 is +1
twisted.

pattern. By an abuse of notation, we use the notation P for both a map and
its image. Define Ay, up, 1, and Ap as follows:
e put iy = S x {xo} C @V C V for some xo € 0D? and orient 1; so that
P is homologous to riy in V' for some positive r € Z-y,
e define up C V' by a meridian of P and orient up so that the linking
number of P and up is 1,
o put g, = {x1} x dD* C 0V C V for some x; € S! and orient x, so that
1y, is homologous to sup in V\v(P) for some positive s € Z-o,
* define 1p by a longitude of P which is homologous to 74y in V\v(P) for
some positive ¢ € Z-y.
For an oriented knot K C S, let ix: ¥ — S be an embedding which

identifies ¥ with v(K) and sends 4y to an oriented curve on dv(K) which is
null-homologous in S*\v(K) and isotopic to K in S*. Then ixoP:S' — §3
represents an oriented knot. The knot is called the sarellite of K with pattern
P and denoted by P(K).

A pattern P :S' — V is dualizable if there is a pattern P* : S' — V* and
an orientation-preserving homeomorphism f : V\v(P) — V*\v(P*) such that
fy) = dpe, [(Ap) = Av+, [(uy) = —pp- and [(up) = —py-.
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Miller and Piccirillo [8, Proposition 2.5] introduced a convenient tech-
nique to determine whether a given pattern is dualizable as follows (see also
[7, Section 2]). Define I':S'x D> —S!' x8* by I'(t,d) = (t,7(d)), where
y: D? — S? is an arbitrary orientation preserving embedding. For any curve
¢:S' = S'"x D2 define ¢ =Ioc:S' —S!xS% Then, we obtain the fol-
lowing proposition.

PropositioN 3.1 ([8, Proposition 2.5]). A pattern P in a solid torus V is
dualizable if and only if P is isotopic to Ay in S' x S%

Related to knot traces, the following are known. Let P C V' be a pattern.
Let 7,,: V' — V be a homeomorphism given by twisting m times along a
meridian of V. It is known that if P is dualizable then 7,,(P) is also dualizable
and its dual is given by t_,,(P*), where P* is the dual to P (see [8, Theorem
3.6] and [10, Remark 4.6]). Moreover, we obtain the following.

THEOREM 3.2 ([8, Theorem 3.6] and [10, Remark 4.6]). Let P be a
dualizable pattern and P* be its dual.  Then, we have Xpyy(m) = X, (poyu)(m)
for any meZ.

REMARK 3.3. For a dualizable pattern P C V, we see that Mp(yyy,, (0,0)
~S3  Conversely, for a knot k in S°, if there exists an unknot ¢ such that
M;e(0,0) = S*, we see that k € S*\v(c) is a dualizable pattern after giving
some orientation to k (for detail, see [6] and [10, Remarks 3.3 and 4.6]).

3.2. From special annulus presentations to dualizable patterns. In this section,
we recall Miller and Piccirillo’s construction ([8, Section 5]) of dualizable
patterns from a special annulus presentation (see also [10]).

Let K S be a knot with a special annulus presentation (4,b). In
Figure 4, the left knots represent K, and each right knot represents 4*!(K) for
the corresponding left K. Then, for each case, take curves S C S3\V<K) as
in Figure 4.

Let P, (resp. P_) be the pattern given by K C V. = S*\v(f;) (resp.
K c V. =8*v(fy)), where we give a parameter of Vi so that P (U) =K.
Moreover, we give an orientation of Py arbitrarily. Then, we can check that
P, are dualizable patterns (for example, slide K along the 0-framing of % in
My (0) = S' x 8? and apply Proposition 3.1). These dualizable patterns sat-
isfy the following.

PrOPOSITION 3.4 (e.g. [8, Proposition 5.3] and [10, Proposition 3.9]). Let
K be a knot with a special annulus presentation (A,b). Let P, and P_ be the
dualizable patterns as above. Then we have P.(U) = K and P;(U) = A*'(K).
Here, P;(= (Py)") denotes the dual of Py for each sign. -
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The homeomorphisms given in Figure

);

where o441y C ST\n(4*!(K)) is a meridian of A*!(K).
Bx and aysi(k) as curves in Mg(0) and My (k)(0), respectively, under the

identifications

S*\V(K) = Mg(0)\v(L),

SN\W(AF (K)) = Mge ) (0)\ V(L o1 k),

Here

(color online) From a special annulus presentation (A4,b) of a knot K to dualizable
patterns P, and P_ given by K C S*\v(f%) = V..

1 induce homeo-

we regard

respectively, where Lg and L= k) are the corresponding surgery duals.

4. Operation (xm) and dualizable pattern

By Theorems 2.3 and 3.2, for a knot K with a special annulus presentation

(4,b), we have

X, (pyw)(m) = Xp () (m) = Xx(m) = Xr,,4(x))(m),
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where P is the dualizable pattern obtained from K as in Section 3.2. Hence,
it is a natural question whether 7,,(P})(U) is isotopic to 7,,(A4(K)) or not.
Proposition 3.4 implies that the answer is “yes” if m =0. The following
theorem gives the affirmative answer to this question for any m € Z.

THEOREM 4.1. Let K be a knot with a special annulus presentation (A,b).
Let P, be the dualizable pattern obtained from K as in Section 3.2. Then, we
obtain 7,,(P;)(U) = T(A(K)) for any meZ.

Miller and Piccirillo [8, Proposition 5.3] proved Theorem 4.1 for m = 0.
We can prove Theorem 4.1 by extending Miller and Piccirillo’s proof as
follows.

Proor. Let L<T >(A(K)) C M7, a(x))(m) be the surgery dual to T,,(A(K)).
Let AT (4

(A(K)) c SY\W(T;,(A(K))) be a meridian of 7),(4(K)). Then, we can

regard o7, (4(k)) as a curve in My, (4(x)) (m) by using the following identification
SP\W(Tw(A(K))) = Mr, agxy (m)\WELT" 4 ) (1)
m)

Since a7, (4(x)) 1s isotopic to L<Tm (k) I My, 4
(m)

M, k) (m)\V(Ly4x0)) = M, ack) (m)\v(oz,, (ak)))- (2)

Let B C SS\V( ) be the curve given in Section 3.2 (see also Figure 4).
We can also regard By as a curve in My (m) under the identification S*\v(K) =

M (m)\v(LY"), where LY is the surgery dual to K. Then, we can check that
Vo (BE) = ar,ack)), where ¥, : Mx(m) — Mg, 4x))(m) is given in Figure 3.
Hence, we obtain

M, k) (m)\V(og,, (k) = M (m)\v(By)
= Mgua (0, —1/m)\v(fy)

=S\W(KUogUBLU | | (S xD]), ()
i=0, 1

(a(k))(m), we have

where the last (small) union is given by identifying dD3 with O-framing of K
and 0D} with —1/m-framing of og.

Recall that the solid torus ¥, containing P, is given by V., = S*\v(8}).
Since, the O-framing of K is viewed as Ap, and ag is viewed as up in V.,
we have

SH\W(K Uag UBE)U |_| (S} x D?)

i=0, 1

= (V\v(P))\(kp,)) U | (S} x D}), )

i=0,1
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where the last (small) union is given by identifying dD? with Zp, and 0D} with
—1/m-framing of up . By the dualizability of P, we obtain

(V) \W(p ) U | (8] x D)

i=0,1

(VEWEPON\ ) U | (ST D)

i=0, 1

Il

lle

(VE\V(Tm(P}))) U (Sy x D)
= SN\v(zn(P1)(U)), (5)

where the last union is given by identifying 0D with Zy:. By (1)=(5) and the
Knot Complement Theorem, we obtain t,,(P})(U) = T,,(A(K)).

REMARK 4.2. Let K be a knot with a special annulus presentation (4, b).
Let K be the mirror image of K and (4,b) be the special annulus presen-
tation of K obtained from (4,b) by taking mirror image. Let y 4-1(k) C
S*\v(4~1(K)) be the mirror image of Vi C S*\v(4(K)) (see also Figure 5).
Denote the knot obtained from A~'(K) by twisting m times along YA4-1(K)
by T,,(A7'(K)). Then, by the similar discussion to Theorem 4.1, we see that
tu(P*)(U) = T,y(A7Y(K)) for any m e Z.

We see that A(K) CS3\v(yA<K>) = V| also gives a dualizable pattern,
where the parameter of ¥/ =~ S! x D? is given by the standard way. Denote
it by P. It is easy to see that 7,,(P)(U) = T,,(A(K)) = 7,,(P})(U) for any
meZ. So we can consider the question which asks whether P’ is equal to P
as a pattern. We can give the affirmative answer to the question as follows.

THEOREM 4.3. Let K be a knot with a special annulus presentation (A,b).
Let P, C V7 be the dualizable pattern as above, and let P C V7 be the dual-
izable pattern obtained from K as in Section 3.2. Then, for any m € Z, there
is an orientation-preserving homeomorphism h: V| — V7 such that

* h(tm(P})) = tw(P}), and

* h(Ay;) = 4v; and h(py,) = py ..
Namely, P’ = P} as patterns.

ProoF. By the definition of the operation (xm), we see that
M, k) (m)\v(ar, (4(x)))
= MA(K)U})A(K) (0, 71/}’}’[)\\/(0([4(1())

>~ SP\W(A(K) Uy ) Uotax)) U || (S x D), (6)
i=0, 1
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where the last (small) union is given by identifying dD3 with 0-framing of A(K)
and 0D? with —1/m-framing of Yia(ky- Since oy k) 1s isotopic to the surgery
dual to A(K), we have

S\W(A(K) Uy Uaax) U | ] (8] x DP)
i=0, 1

=S \W(4(K)U Yax)) Y (S| x DY)
= (V{\v(zu(P)))) U (S; x D3), (7)

where the last union is given by identifying 0D? with Ay;. By considering the
composition of (7), (6), (3), (4) and (5), we obtain an orientation-preserving
homeomorphism

B (VIA(tm(PL) U (Sy x D3) — (V\v(tw(P1)) U (S x D§)-

Then, we can check that
° h(;LTriz(Pjr)) = )"'Tm(P;)’

. h_()LVi) = Jy: and /_l(/lV;) = uy:, and
e h(S}xD3) =S} %D}

Hence, / induces a desired homeomorphism.

REMARK 4.4. Similarly, we can define P’ as 4~!(K) C S3\v(yA,|(K)) =V
(see also Remark 4.2). By the same discussion as the proof of Theorem 4.3,
we see that there is an orientation-preserving homeomorphism /4: V' — V'*

which satisfies (7, (P")) = tu(P*), h(Ay:) = Ay» and h(uy ) = py-.

REMARK 4.5. We see that Theorem 4.3 induces Theorem 4.1 since
7n(P})(U) = 1,,(P')(U) by Theorem 4.3 and ,,(P’)(U) = T,,(A(K)) by the
definition of P’ .

By Theorem 4.3 and Remark 4.4, we can draw the duals P} to P; as in
Figure 5, where P, are the dualizable patterns obtained from a knot K with a
special annulus presentation (A4,b) as in Section 3.2.

5. Flipped annulus twist and operation (xm) with m = +4

In [11], Teragaito gave the first example of a Seifert fibered manifold which
is represented by the same integral surgery on infinitely many hyperbolic knots.
In the work, Teragaito used a presentation of 94, which is almost the same
as a special annulus presentation but does not satisfy the last condition: A Ub
is an immersion of an orientable surface. In fact, in the examples, the surface
is non-orientable, see (the final figure in) Figure 6. Teragaito explained that,
for a knot with such a presentation, we obtain a family of knots admitting the
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Fig. 5. (color online) The dualizable patterns P. C Vi = S*\v(fz) and Pl CVy= S3\v(yA11(K)).

same 4-surgery (not 0-surgery) by annulus twists along (a shrunken annulus of)
the annulus. It has been known that such knots have the same 4-trace (see
[1, Theorem 2.8]).

In this section, we prove that the above phenomenon can be explained in
terms of the operation (xm) with m = 4.

5.1. Flipped annulus twist. Let 4 C S® be an embedded annulus with ordered
boundary 04 = ¢; Ucy. We suppose that A is unknottend and 1k(cy, ¢2) = +1,
where we give ¢; and ¢, parallel orientations. Then, an n-fold flipped annulus
twist along A is to apply (—1k(c1, ¢2) + 1/n)-surgery along ¢; and (—lk(cy, ¢2) —
1/n)-surgery along ¢, (compare with Section 2.1).

Let K be a knot with a special annulus presentation (A,b). Then, by
A/’}(K ), we denote the knot obtained from K by the n-fold flipped annulus twist
along A’, where A’ is a shrunken annulus given in Section 2.1. For sim-
plicity, we also denote A}(K) by As(K). We also see Af(K) as follows:
After “flipping” ¢; (or ¢,) as in Figure 6, we find another annulus 4,. Then,
by using [3, Lemma 7.15], we see that Af(K) is obtained from K by applying
the n-fold annulus twist along Ay, where A/ is a shrunken annulus of 4.
Remark that (4;,b) is not an annulus presentation any more since Ay Ub is
an immersion of a non-orientable surface.
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L: —j\

942

XX

(

Fig. 6. (color online) An annulus presentation of 94 (left). After “flipping” ¢, we find a new
annulus A;.

5.2. Relation to the operation («m) with m = +4. Teragaito [11, Proposition
2.1] proved that there is an orientation-preserving homeomorphism Mk (r) —
MA/n(,Q(r), where r = —41k(cy,¢2) € {+4}. Denote this homeomorphism by

¢« Mg(r) — MA,"<K)(”)-
For a sketch of the proof, see Figure 7. Then, we notice that

¢£1(ﬁ1¥<) = %4t (k) (8)

|
=
e
|
=
o

Q
N
SR
g Sl=
\

L (e S J [
l¢,f lhandle dide )|V

R /| [0 ¢ I — Y U} (¢ :J«K

Fig. 7. (color online). The homeomorphism ¢/ : Mx(r) HMA;Y(K)(r), where ¢e {+1} and
r=—4¢. The box with & represents e-full-twist. For convenience, we draw an orientation of
the knot (not ¢; and c3).
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where o114 is a meridian of A;—.rl(K) and we regard S and %+ (x) S Curves
in Mk(r) and M, A;(K)(r), respectively (by using the same discussion in Remark
3.5). We have seen that My, k) (r) = Mg(r) ;MA/A(K)(V). Moreover, we
can prove that ‘

T(ATY(K)) = A7 (K). ©)

In fact, by replacing y,, with ¢£1 and B with [)’If in the proof of Theorem
4.1, we see that S3\v(Afi1(K))283\v(r,(P§)(U))gS3\v(T,(A¥1(K))). By
the Knot Complement Theorem, we obtain Equation (9). As a consequence,
we obtain the following.

THEOREM 5.1. Let K be a knot with a special annulus presentation (A,b)
with 04 = ¢y Uc,.  Then we obtain

T,(AT'(K)) = AF'(K),

where r = —41k(c1, ¢2), and we give ¢ and ¢, parallel orientations.

REMARK 5.2. In private communication, Tetsuya Abe commented that
T4(A(942)) and A, '(942) may be equivalent because of computational calcula-
tions. Theorem 5.1 is inspired by the comment.

6. Discussions

6.1. Naturality. Let K be a knot with a special annulus presentation (4, b).
Then, we obtain a dualizable pattern P, as in Section 3.2. Put K = 4(K) and
give the natural annulus presentation (A4,b) of K from (4,b). Then we obtain
another dualizable pattern P_ from K as in Section 3.2. We see that these
patterns satisfy P.(U) =K, P*(U) = A(K), P_(U) = A(K) and P*(U) =K.
More strongly, Theorem 4.3 and Figure 5 imply that P, = P* and P = P_.

Let SAP be the set of special annulus presentations and DP be the set of
unoriented patterns which are dualizable after giving some orientation. Then,

by the above discussion, we obtain the following commutative diagram:

SAP —X ., pp

SAP — pp

where
e A*!':SAP — SAP is the map induced by +1-fold annulus twist,
e +:S4P — DP is given by (4,b) — P, as in Section 3.2, and
e x:DP— DP is given by P+ P*.



14 Keiji TaGaMI

6.2. Generalization. For more general setting, we obtain the following result
by the proof of Theorem 4.1. Remark that, in Theorem 6.1 below, we regard
curves f and ag, as curves in Mg, (m) and Mg, (m), respectively, under the
identification S*\v(K;) = My, (m)\v(Lx ), where Lg, is the surgery dual.

THEOREM 6.1. Let K; and K, be knots in S°. Let f C S*\v(K;) be
an unknot. Let ok, C S*\v(K,) be a meridian of K, Suppose that P =
Ky C S*\v(p) gives a dualizable pattern. Then, if there is an orientation-
preserving homeomorphism ¢ : Mg, (m) — Mg, (m) such that ¢(f) = ok,, we
have ©,(P*)(U) = Ky. Moreover ¢ extends to a diffeomorphism @ : Xk, (m)
_)XKz(m)'

The last claim follows from the same discussion as Theorem 3.2.

QUESTION 6.2. Let ¢: Mg, (m) — Mg,(m) be an orientation-preserving
homeomorphism.  Then, when is there an unknot  C S*\v(Ky) which satisfies
the condition of Theorem 6.17  Moreover, if exists, is such [ unique up to
isotopy in S*\v(K;)?
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