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Abstract. The m-trace of a knot is the 4-manifold obtained from B4 by attaching a

2-handle along the knot with m-framing. In 2015, Abe, Jong, Luecke and Osoinach

introduced a technique to construct infinitely many knots with the same (di¤eomorphic)

m-trace, which is called the operation ð�mÞ. In 2018, Miller and Piccirillo gave pairs

of knots with di¤eomorphic m-traces by utilizing Gompf and Miyazaki’s dualizable

pattern. In this paper, we clarify the relation between the two techniques. In par-

ticular, we prove that the ‘‘twistings’’ appearing in both techniques are corresponding.

In addition, we show that the family of knots admitting the same 4-surgery given by

Teragaito can be explained by the operation ð�mÞ.

1. Introduction

For an integer m, the m-trace XKðmÞ of a knot K is the 4-manifold

obtained from B4 by attaching a 2-handle along the knot with m-framing. On

techniques to construct knots with the same trace, the following are known.
� Abe, Jong, Luecke and Osoinach [2] introduced a technique to con-

struct infinitely many knots with the same (di¤eomorphic) m-trace.

The technique is based on ‘‘annulus presentation’’ and called the opera-

tion ð�mÞ1. The operation is given by a composition of Osoinach’s

annular twisting technique [9] and twisting m times along a certain

curve ‘‘g’’. This twisting is denoted by Tm in this paper (for detail,

see Section 2).
� Miller and Piccirillo [8] constructed a pair of knots with the same

m-trace by utilizing dualizable patterns. In particular, such a pair

is given by a dualizable pattern and twisting its dual m times along

a meridian of the solid torus containing the dual. This twisting is

denoted by tm (for dualizable patterns, see Section 3).

Miller and Piccirillo [8] pointed out that the construction by an annulus pre-

sentation can be regarded as that by a dualizable pattern. In fact they
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constructed a dualizable pattern from the annulus presentation. This is the

case m ¼ 0, namely, untwisted case.

In this paper, we extend Miller and Piccirillo’s work on a correspondence

between annulus presentations and dualizable patterns to twisted cases. In

particular, we find that the twisting Tm appearing in operation ð�mÞ corre-

sponds to the twisting tm on the duals of dualizable patterns. As an appli-

cation, we directly draw the duals to Miller and Piccirillo’s dualizable patterns

obtained from annulus presentations (Theorem 4.3 and Figure 5). In addition,

we explain the family of knots admitting the same 4-surgery given by Teragaito

[11] in terms of the operation ð�mÞ (Section 5). We also remark some obser-

vations in the final section. Throughout this paper,
� unless specifically mentioned, all knots and links are smooth and un-

oriented, and all other manifolds are smooth and oriented,
� for an n-component link L1 [ � � � [ Ln, we denote the 3-manifold

obtained from S3 by mi-surgery on the knot Li for i ¼ 1; . . . ; n by

ML1[���[Ln
ðm1; . . . ;mnÞ,

� we denote a tubular neighborhood of a knot K in a 3-manifold by

nðKÞ, and
� we denote the unknot in S3 by U .

2. Annulus twist, annulus presentation and the operation ð�mÞ

2.1. Annulus twist and annulus presentation. Let A � S3 be an embedded

annulus with ordered boundaries qA ¼ c1 [ c2. An n-fold annulus twist along

A is to apply ðlkðc1; c2Þ þ 1=nÞ-surgery along c1 and ðlkðc1; c2Þ � 1=nÞ-surgery
along c2, where lkðc1; c2Þ is the linking number of c1 and c2 and we give c1 and

c2 parallel orientations. We see that the resulting manifold obtained by an

annulus twist is also S3.

Let A � S3 be an embedded annulus with qA ¼ c1 [ c2. Take an em-

bedding of a band b : I � I ! S3 such that
� bðI � IÞ \ qA ¼ bðqI � IÞ,
� bðI � IÞ \ Int A consists of ribbon singularities, and
� A [ bðI � IÞ is an immersion of an orientable surface,

where I ¼ ½0; 1�. If a knot K � S3 is isotopic to the knot ðqAnbðqI � IÞÞ [
bðI � qIÞ, then we call ðA; bÞ an annulus presentation of K . An annulus

presentation ðA; bÞ is special if A is unknotted and lkðc1; c2Þ ¼G1 (that is, A is

G1-full twisted). Let K be a knot with an annulus presentation ðA; bÞ. Let

A 0 � A be a shrunken annulus with qA 0 ¼ c 01 [ c 02 which satisfies the following:
� AnA 0 is a disjoint union of two annuli,
� each c 0i is isotopic to ci in AnA 0 for i ¼ 1; 2, and
� AnðqA [ A 0Þ does not intersect bðI � IÞ.
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Then, by AnðKÞ, we denote the knot obtained from K by the n-fold annulus

twist along A 0. For simplicity, we denote A1ðKÞ by AðKÞ and A0ðKÞ by K .

Remark 2.1. We find many examples of special annulus presentations in

[1, 2, 4, 5, 10]. Remark that in [2, 5], our special annulus presentations are

called ‘‘annulus presentations’’, simply. In this paper, for an annulus presen-

tation ðA; bÞ, we often draw the attaching regions A \ b by bold arcs and we

omit the band b.

By utilizing Osoinach’s work [9, Theorem 2.3], for a knot K with an

annulus presentation ðA; bÞ, we see that MKð0Þ and MAnðKÞð0Þ are orientation-

preservingly homeomorphic for any n A Z. In particular, a homeomorphism

fn : MKð0Þ ! MAnðKÞð0Þ is given as in Figure 1, which is explicitly given by

Teragaito [11]. We call fn the n-th Osoinach-Teragaito’s homeomorphism.

Moreover, if ðA; bÞ is special, by applying Abe, Jong, Omae and Takeuchi’s

result [1, Theorem 2.8] to the knot, we see that the homeomorphism fn extends

to an orientation-preserving di¤eomorphism Fn : XKð0Þ ! XAnðKÞð0Þ for any

n A Z.

As a consequence, we obtain the following.

Theorem 2.2. Let K � S3 be a knot with an annulus presentation ðA; bÞ.
Then, there is an orientation-preservingly homeomorphism fn : MKð0Þ !

Fig. 1. (color online) Osoinach-Teragaito’s homeomorphism fn. For simplicity we draw A as a

flat annulus although A may be knotted and twisted.
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MAnðKÞð0Þ for any n A Z. In particular, fn is given as in Figure 1. Moreover, if

ðA; bÞ is special, fn extends to an orientation-preserving di¤eomorphism

Fn : XKð0Þ ! XAnðKÞð0Þ.

2.2. Operation ð�mÞ. Let K be a knot with a special annulus presentation

ðA; bÞ. Let gAðKÞ � S3nnðAðKÞÞ be a curve depicted in Figure 2. Remark that

the definition of gAðKÞ depends on the twist of A. Denote the knot obtained

from AðKÞ by twisting m times along gAðKÞ by TmðAðKÞÞ. In [2, Section 3.1.2],

the operation K 7! TmðAðKÞÞ is called the operation ð�mÞ. Then, Abe, Jong,

Luecke and Osoinach [2] proved the following theorem.

Theorem 2.3 ([2, Theorem 3.7 and Theorem 3.10]). Let K be a knot with

a special annulus presentation ðA; bÞ. Then, there is an orientation-preservingly

homeomorphism cm : MKðmÞ ! MTmðAðKÞÞðmÞ which extends to a di¤eomorphism

Cm : XKðmÞ ! XTmðAðKÞÞðmÞ for any m A Z.

Concretely, cm is given as in Figure 3 for the case A is þ1 twisted. For

the case A is �1 twisted, we can define cm similarly (see also [3, Appendix]).

Remark 2.4. Note that Osoinach-Teragaito’s homeomorphism induces a

homeomorphism fþ1 : ðMKð0Þ; aKÞ ! ðMAðKÞð0Þ; gAðKÞÞ, where aK � S3nnðKÞ is

a meridian of K and we regard aK and gAðKÞ as curves in MKð0Þ and MAðKÞð0Þ,
respectively (see also the bottom arrow in Figure 3).

3. Relation between annulus presentation and dualizable pattern

3.1. Dualizable pattern. Here, we recall the definition of dualizable patterns,

which is firstly given by Gompf and Miyazaki [7] and developed by Miller and

Piccirillo [8] (see also [10]).

Let P : S1 ! V be an oriented knot in a solid torus V ¼ S1 �D2. Sup-

pose that the image PðS1Þ is not null-homologous in V . Such a P is called a

Fig. 2. (color online) The curve gAðKÞ.
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pattern. By an abuse of notation, we use the notation P for both a map and

its image. Define lV , mP, mV and lP as follows:
� put lV ¼ S1 � fx0g � qV � V for some x0 A qD2 and orient lV so that

P is homologous to rlV in V for some positive r A Z>0,
� define mP � V by a meridian of P and orient mP so that the linking

number of P and mP is 1,
� put mV ¼ fx1g � qD2 � qV � V for some x1 A S1 and orient mV so that

mV is homologous to smP in VnnðPÞ for some positive s A Z>0,
� define lP by a longitude of P which is homologous to tlV in VnnðPÞ for

some positive t A Z>0.

For an oriented knot K � S3, let iK : V ! S3 be an embedding which

identifies V with nðKÞ and sends lV to an oriented curve on qnðKÞ which is

null-homologous in S3nnðKÞ and isotopic to K in S3. Then iK � P : S1 ! S3

represents an oriented knot. The knot is called the satellite of K with pattern

P and denoted by PðKÞ.
A pattern P : S1 ! V is dualizable if there is a pattern P� : S1 ! V � and

an orientation-preserving homeomorphism f : VnnðPÞ ! V �nnðP�Þ such that

f ðlV Þ ¼ lP� , f ðlPÞ ¼ lV � , f ðmV Þ ¼ �mP� and f ðmPÞ ¼ �mV � .

Fig. 3. (color online) The homeomorphism cm : MK ðmÞ ! MTmðAðKÞÞðmÞ for the case A is þ1

twisted.
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Miller and Piccirillo [8, Proposition 2.5] introduced a convenient tech-

nique to determine whether a given pattern is dualizable as follows (see also

[7, Section 2]). Define G : S1 �D2 ! S1 � S2 by Gðt; dÞ ¼ ðt; gðdÞÞ, where

g : D2 ! S2 is an arbitrary orientation preserving embedding. For any curve

c : S1 ! S1 �D2, define ĉc ¼ G � c : S1 ! S1 � S2. Then, we obtain the fol-

lowing proposition.

Proposition 3.1 ([8, Proposition 2.5]). A pattern P in a solid torus V is

dualizable if and only if P̂P is isotopic to clVlV in S1 � S2.

Related to knot traces, the following are known. Let P � V be a pattern.

Let tm : V ! V be a homeomorphism given by twisting m times along a

meridian of V . It is known that if P is dualizable then tmðPÞ is also dualizable

and its dual is given by t�mðP�Þ, where P� is the dual to P (see [8, Theorem

3.6] and [10, Remark 4.6]). Moreover, we obtain the following.

Theorem 3.2 ([8, Theorem 3.6] and [10, Remark 4.6]). Let P be a

dualizable pattern and P� be its dual. Then, we have XPðUÞðmÞGXtmðP �ÞðUÞðmÞ
for any m A Z.

Remark 3.3. For a dualizable pattern P � V , we see that MPðUÞ[mV ð0; 0Þ
GS3. Conversely, for a knot k in S3, if there exists an unknot c such that

Mk[cð0; 0ÞGS3, we see that k � S3nnðcÞ is a dualizable pattern after giving

some orientation to k (for detail, see [6] and [10, Remarks 3.3 and 4.6]).

3.2. From special annulus presentations to dualizable patterns. In this section,

we recall Miller and Piccirillo’s construction ([8, Section 5]) of dualizable

patterns from a special annulus presentation (see also [10]).

Let K � S3 be a knot with a special annulus presentation ðA; bÞ. In

Figure 4, the left knots represent K , and each right knot represents AG1ðKÞ for

the corresponding left K . Then, for each case, take curves bGK � S3nnðKÞ as

in Figure 4.

Let Pþ (resp. P�) be the pattern given by K � Vþ ¼ S3nnðbþ
K Þ (resp.

K � V� ¼ S3nnðb�
K Þ), where we give a parameter of VG so that PGðUÞ ¼ K .

Moreover, we give an orientation of PG arbitrarily. Then, we can check that

PG are dualizable patterns (for example, slide K along the 0-framing of bGK in

MbG
K
ð0ÞGS1 � S2 and apply Proposition 3.1). These dualizable patterns sat-

isfy the following.

Proposition 3.4 (e.g. [8, Proposition 5.3] and [10, Proposition 3.9]). Let

K be a knot with a special annulus presentation ðA; bÞ. Let Pþ and P� be the

dualizable patterns as above. Then we have PGðUÞ ¼ K and P�
GðUÞ ¼ AG1ðKÞ.

Here, P�
Gð¼ ðPGÞ�Þ denotes the dual of PG for each sign.
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Remark 3.5. The homeomorphisms given in Figure 1 induce homeo-

morphisms

fG1 : ðMKð0Þ; bGKÞ ! ðMAG1ðKÞð0Þ; aAG1ðKÞÞ;

where aAG1ðKÞ � S3nnðAG1ðKÞÞ is a meridian of AG1ðKÞ. Here we regard

bGK and aAG1ðKÞ as curves in MKð0Þ and MAG1ðKÞð0Þ, respectively, under the

identifications

S3nnðKÞGMKð0ÞnnðLKÞ;

S3nnðAG1ðKÞÞGMAG1ðKÞð0ÞnnðLAG1ðKÞÞ;

respectively, where LK and LAG1ðKÞ are the corresponding surgery duals.

4. Operation ð�mÞ and dualizable pattern

By Theorems 2.3 and 3.2, for a knot K with a special annulus presentation

ðA; bÞ, we have

XtmðP�
þÞðUÞðmÞGXPþðUÞðmÞ ¼ XKðmÞGXTmðAðKÞÞðmÞ;

Fig. 4. (color online) From a special annulus presentation ðA; bÞ of a knot K to dualizable

patterns Pþ and P� given by K � S3nnðbGK Þ ¼ VG.
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where Pþ is the dualizable pattern obtained from K as in Section 3.2. Hence,

it is a natural question whether tmðP�
þÞðUÞ is isotopic to TmðAðKÞÞ or not.

Proposition 3.4 implies that the answer is ‘‘yes’’ if m ¼ 0. The following

theorem gives the a‰rmative answer to this question for any m A Z.

Theorem 4.1. Let K be a knot with a special annulus presentation ðA; bÞ.
Let Pþ be the dualizable pattern obtained from K as in Section 3.2. Then, we

obtain tmðP�
þÞðUÞ ¼ TmðAðKÞÞ for any m A Z.

Miller and Piccirillo [8, Proposition 5.3] proved Theorem 4.1 for m ¼ 0.

We can prove Theorem 4.1 by extending Miller and Piccirillo’s proof as

follows.

Proof. Let L
ðmÞ
TmðAðKÞÞ � MTmðAðKÞÞðmÞ be the surgery dual to TmðAðKÞÞ.

Let aTmðAðKÞÞ � S3nnðTmðAðKÞÞÞ be a meridian of TmðAðKÞÞ. Then, we can

regard aTmðAðKÞÞ as a curve in MTmðAðKÞÞðmÞ by using the following identification

S3nnðTmðAðKÞÞÞ ¼ MTmðAðKÞÞðmÞnnðLðmÞ
TmðAðKÞÞÞ: ð1Þ

Since aTmðAðKÞÞ is isotopic to L
ðmÞ
TmðAðKÞÞ in MTmðAðKÞÞðmÞ, we have

MTmðAðKÞÞðmÞnnðLðmÞ
TmðAðKÞÞÞGMTmðAðKÞÞðmÞnnðaTmðAðKÞÞÞ: ð2Þ

Let bþ
K � S3nnðKÞ be the curve given in Section 3.2 (see also Figure 4).

We can also regard bþ
K as a curve in MKðmÞ under the identification S3nnðKÞG

MKðmÞnnðLðmÞ
K Þ, where L

ðmÞ
K is the surgery dual to K . Then, we can check that

cmðbþ
K Þ ¼ aTmðAðKÞÞ, where cm : MKðmÞ ! MTmðAðKÞÞðmÞ is given in Figure 3.

Hence, we obtain

MTmðAðKÞÞðmÞnnðaTmðAðKÞÞÞGMKðmÞnnðbþ
K Þ

GMK[aK ð0;�1=mÞnnðbþ
K Þ

GS3nnðK [ aK [ bþ
K Þ [

G
i¼0;1

ðS1
i �D2

i Þ; ð3Þ

where the last (small) union is given by identifying qD2
0 with 0-framing of K

and qD2
1 with �1=m-framing of aK .

Recall that the solid torus Vþ containing Pþ is given by Vþ ¼ S3nnðbþ
K Þ.

Since, the 0-framing of K is viewed as lPþ and aK is viewed as mPþ in Vþ,

we have

S3nnðK [ aK [ bþ
K Þ [

G
i¼0;1

ðS1
i �D2

i Þ

G ððVþnnðPþÞÞnnðmPþÞÞ [
G
i¼0;1

ðS1
i �D2

i Þ; ð4Þ
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where the last (small) union is given by identifying qD2
0 with lPþ and qD2

1 with

�1=m-framing of mPþ . By the dualizability of Pþ, we obtain

ððVþnnðPþÞÞnnðmPþÞÞ [
G
i¼0;1

ðS1
i �D2

i Þ

G ððV �
þnnðP�

þÞÞnnðmV �
þ
ÞÞ [

G
i¼0;1

ðS1
i �D2

i Þ

G ðV �
þnnðtmðP�

þÞÞÞ [ ðS1
0 �D2

0Þ

GS3nnðtmðP�
þÞðUÞÞ; ð5Þ

where the last union is given by identifying qD2
0 with lV �

þ
. By (1)–(5) and the

Knot Complement Theorem, we obtain tmðP�
þÞðUÞ ¼ TmðAðKÞÞ.

Remark 4.2. Let K be a knot with a special annulus presentation ðA; bÞ.
Let K be the mirror image of K and ðA; bÞ be the special annulus presen-

tation of K obtained from ðA; bÞ by taking mirror image. Let gA�1ðKÞ �
S3nnðA�1ðKÞÞ be the mirror image of g

AðKÞ � S3nnðAðKÞÞ (see also Figure 5).

Denote the knot obtained from A�1ðKÞ by twisting m times along gA�1ðKÞ
by TmðA�1ðKÞÞ. Then, by the similar discussion to Theorem 4.1, we see that

tmðP�
�ÞðUÞ ¼ TmðA�1ðKÞÞ for any m A Z.

We see that AðKÞ � S3nnðgAðKÞÞ ¼ V 0
þ also gives a dualizable pattern,

where the parameter of V 0
þ GS1 �D2 is given by the standard way. Denote

it by P 0
þ. It is easy to see that tmðP 0

þÞðUÞ ¼ TmðAðKÞÞ ¼ tmðP�
þÞðUÞ for any

m A Z. So we can consider the question which asks whether P 0
þ is equal to P�

þ
as a pattern. We can give the a‰rmative answer to the question as follows.

Theorem 4.3. Let K be a knot with a special annulus presentation ðA; bÞ.
Let P 0

þ � V 0
þ be the dualizable pattern as above, and let P�

þ � V �
þ be the dual-

izable pattern obtained from K as in Section 3.2. Then, for any m A Z, there

is an orientation-preserving homeomorphism h : V 0
þ ! V �

þ such that
� hðtmðP 0

þÞÞ ¼ tmðP�
þÞ, and

� hðlV 0
þ
Þ ¼ lV �

þ and hðmV 0
þ
Þ ¼ mV �

þ
.

Namely, P 0
þ ¼ P�

þ as patterns.

Proof. By the definition of the operation ð�mÞ, we see that

MTmðAðKÞÞðmÞnnðaTmðAðKÞÞÞ

GMAðKÞ[gAðKÞ ð0;�1=mÞnnðaAðKÞÞ

GS3nnðAðKÞ [ gAðKÞ [ aAðKÞÞ [
G
i¼0;1

ðS1
i �D2

i Þ; ð6Þ
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where the last (small) union is given by identifying qD2
0 with 0-framing of AðKÞ

and qD2
1 with �1=m-framing of gðAðKÞÞ. Since aAðKÞ is isotopic to the surgery

dual to AðKÞ, we have

S3nnðAðKÞ [ gAðKÞ [ aAðKÞÞ [
G
i¼0;1

ðS1
i �D2

i Þ

GS3nnðAðKÞ [ gAðKÞÞ [ ðS1
1 �D2

1Þ

¼ ðV 0
þnnðtmðP 0

þÞÞÞ [ ðS1
2 �D2

2Þ; ð7Þ

where the last union is given by identifying qD2
2 with lV 0

þ
. By considering the

composition of (7), (6), (3), (4) and (5), we obtain an orientation-preserving

homeomorphism

h : ðV 0
þnnðtmðP 0

þÞÞÞ [ ðS1
2 �D2

2Þ ! ðV �
þnnðtmðP�

þÞÞÞ [ ðS1
0 �D2

0Þ:

Then, we can check that
� hðltmðP 0

þÞÞ ¼ ltmðP�
þÞ,

� hðlV 0
þ
Þ ¼ lV �

þ and hðmV 0
þ
Þ ¼ mV �

þ
, and

� hðS1
2 �D2

2Þ ¼ S1
0 �D2

0 .

Hence, h induces a desired homeomorphism.

Remark 4.4. Similarly, we can define P 0
� as A�1ðKÞ � S3nnðgA�1ðKÞÞ ¼ V 0

�
(see also Remark 4.2). By the same discussion as the proof of Theorem 4.3,

we see that there is an orientation-preserving homeomorphism h : V 0
� ! V �

�
which satisfies hðtmðP 0

�ÞÞ ¼ tmðP�
�Þ, hðlV 0

� Þ ¼ lV �
� and hðmV 0

�
Þ ¼ mV �

�
.

Remark 4.5. We see that Theorem 4.3 induces Theorem 4.1 since

tmðP�
þÞðUÞ ¼ tmðP 0

þÞðUÞ by Theorem 4.3 and tmðP 0
þÞðUÞ ¼ TmðAðKÞÞ by the

definition of P 0
þ.

By Theorem 4.3 and Remark 4.4, we can draw the duals P�
G to PG as in

Figure 5, where PG are the dualizable patterns obtained from a knot K with a

special annulus presentation ðA; bÞ as in Section 3.2.

5. Flipped annulus twist and operation ð�mÞ with m ¼G4

In [11], Teragaito gave the first example of a Seifert fibered manifold which

is represented by the same integral surgery on infinitely many hyperbolic knots.

In the work, Teragaito used a presentation of 942, which is almost the same

as a special annulus presentation but does not satisfy the last condition: A [ b

is an immersion of an orientable surface. In fact, in the examples, the surface

is non-orientable, see (the final figure in) Figure 6. Teragaito explained that,

for a knot with such a presentation, we obtain a family of knots admitting the
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same 4-surgery (not 0-surgery) by annulus twists along (a shrunken annulus of )

the annulus. It has been known that such knots have the same 4-trace (see

[1, Theorem 2.8]).

In this section, we prove that the above phenomenon can be explained in

terms of the operation ð�mÞ with m ¼ 4.

5.1. Flipped annulus twist. Let A � S3 be an embedded annulus with ordered

boundary qA ¼ c1 [ c2. We suppose that A is unknottend and lkðc1; c2Þ ¼G1,

where we give c1 and c2 parallel orientations. Then, an n-fold flipped annulus

twist along A is to apply ð�lkðc1; c2Þ þ 1=nÞ-surgery along c1 and ð�lkðc1; c2Þ �
1=nÞ-surgery along c2 (compare with Section 2.1).

Let K be a knot with a special annulus presentation ðA; bÞ. Then, by

An
f ðKÞ, we denote the knot obtained from K by the n-fold flipped annulus twist

along A 0, where A 0 is a shrunken annulus given in Section 2.1. For sim-

plicity, we also denote A1
f ðKÞ by Af ðKÞ. We also see An

f ðKÞ as follows:

After ‘‘flipping’’ c1 (or c2) as in Figure 6, we find another annulus Af . Then,

by using [3, Lemma 7.15], we see that An
f ðKÞ is obtained from K by applying

the n-fold annulus twist along A 0
f , where A 0

f is a shrunken annulus of Af .

Remark that ðAf ; bÞ is not an annulus presentation any more since Af [ b is

an immersion of a non-orientable surface.

Fig. 5. (color online) The dualizable patterns PG� VG ¼ S3nnðbGK Þ and P�
G � V �

G ¼ S3nnðgAG1ðKÞÞ.
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5.2. Relation to the operation ð�mÞ with m ¼G4. Teragaito [11, Proposition

2.1] proved that there is an orientation-preserving homeomorphism MKðrÞ !
MAn

f
ðKÞðrÞ, where r ¼ �4 lkðc1; c2Þ A fG4g. Denote this homeomorphism by

f f
n : MKðrÞ ! MAn

f
ðKÞðrÞ:

For a sketch of the proof, see Figure 7. Then, we notice that

f
f
G1ðb

H
KÞ ¼ aAG1

f
ðKÞ; ð8Þ

Fig. 6. (color online) An annulus presentation of 942 (left). After ‘‘flipping’’ c1, we find a new

annulus Af .

Fig. 7. (color online). The homeomorphism f f
n : MK ðrÞ ! MAn

f
ðKÞðrÞ, where e A fG1g and

r ¼ �4e. The box with e represents e-full-twist. For convenience, we draw an orientation of

the knot (not c1 and c2).
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where aAG1
f

ðKÞ is a meridian of AG1
f ðKÞ and we regard bGK and aAG1

f
ðKÞ as curves

in MKðrÞ and MAn
f
ðKÞðrÞ, respectively (by using the same discussion in Remark

3.5). We have seen that MTrðAðKÞÞðrÞGMKðrÞGMA�1
f

ðKÞðrÞ. Moreover, we

can prove that

TrðAH1ðKÞÞ ¼ AG1
f ðKÞ: ð9Þ

In fact, by replacing cm with f
f
G1 and bþ

K with bHK in the proof of Theorem

4.1, we see that S3nnðAG1
f ðKÞÞGS3nnðtrðP�

HÞðUÞÞGS3nnðTrðAH1ðKÞÞÞ. By

the Knot Complement Theorem, we obtain Equation (9). As a consequence,

we obtain the following.

Theorem 5.1. Let K be a knot with a special annulus presentation ðA; bÞ
with qA ¼ c1 [ c2. Then we obtain

TrðAH1ðKÞÞ ¼ AG1
f ðKÞ;

where r ¼ �4 lkðc1; c2Þ, and we give c1 and c2 parallel orientations.

Remark 5.2. In private communication, Tetsuya Abe commented that

T4ðAð942ÞÞ and A�1
f ð942Þ may be equivalent because of computational calcula-

tions. Theorem 5.1 is inspired by the comment.

6. Discussions

6.1. Naturality. Let K be a knot with a special annulus presentation ðA; bÞ.
Then, we obtain a dualizable pattern Pþ as in Section 3.2. Put �KK ¼ AðKÞ and
give the natural annulus presentation ð �AA; �bbÞ of �KK from ðA; bÞ. Then we obtain

another dualizable pattern �PP� from �KK as in Section 3.2. We see that these

patterns satisfy PþðUÞ ¼ K , P�
þðUÞ ¼ AðKÞ, �PP�ðUÞ ¼ AðKÞ and �PP�

�ðUÞ ¼ K .

More strongly, Theorem 4.3 and Figure 5 imply that Pþ ¼ �PP�
� and P�

þ ¼ �PP�.

Let SAP be the set of special annulus presentations and DP be the set of

unoriented patterns which are dualizable after giving some orientation. Then,

by the above discussion, we obtain the following commutative diagram:

SAP ���!G
DP

AG1

???y
???y�

SAP ���!H
DP

where
� AG1 : SAP ! SAP is the map induced by G1-fold annulus twist,
� G : SAP ! DP is given by ðA; bÞ 7! PG as in Section 3.2, and
� � : DP ! DP is given by P 7! P�.
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6.2. Generalization. For more general setting, we obtain the following result

by the proof of Theorem 4.1. Remark that, in Theorem 6.1 below, we regard

curves b and aK2
as curves in MK1

ðmÞ and MK2
ðmÞ, respectively, under the

identification S3nnðKiÞ ¼ MKi
ðmÞnnðLKi

Þ, where LKi
is the surgery dual.

Theorem 6.1. Let K1 and K2 be knots in S3. Let b � S3nnðK1Þ be

an unknot. Let aK2
� S3nnðK2Þ be a meridian of K2. Suppose that P ¼

K1 � S3nnðbÞ gives a dualizable pattern. Then, if there is an orientation-

preserving homeomorphism f : MK1
ðmÞ ! MK2

ðmÞ such that fðbÞ ¼ aK2
, we

have tmðP�ÞðUÞ ¼ K2. Moreover f extends to a di¤eomorphism F : XK1
ðmÞ

! XK2
ðmÞ.

The last claim follows from the same discussion as Theorem 3.2.

Question 6.2. Let f : MK1
ðmÞ ! MK2

ðmÞ be an orientation-preserving

homeomorphism. Then, when is there an unknot b � S3nnðK1Þ which satisfies

the condition of Theorem 6.1? Moreover, if exists, is such b unique up to

isotopy in S3nnðK1Þ?
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