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ABSTRACT. We give a definition of scattering matrices based on the asymptotic
behaviors of generalized eigenfunctions proving existence of radial limits of the functions
and show that these scattering matrices are equivalent to the ones defined by wave
operator approach in long-range N-body problems including the problems of Coulomb
interaction potentials. Equivalence of stationary and time-dependent definitions of the
generalized Fourier transforms is also shown.

1. Introduction

Scattering matrices play an important role in the study of long-time
asymptotic behaviors of the solutions to Schrédinger equations. Scattering
matrices are defined in two different ways. In the time-dependent viewpoint,
the scattering matrices are defined using wave operators and the Fourier trans-
forms. On the other hand, in the stationary viewpoint, they are defined using
the asymptotic behaviors of generalized eigenfunctions at infinity. In this
paper we prove that both the definitions are equivalent in long-range N-body
problems. We also give a definition of the generalized Fourier transforms
using the asymptotic behaviors of outgoing solutions to nonhomogeneous equa-
tions. We prove that they are equivalent to the ones using wave operators.

Before we consider the N-body problems, it is instructive to recall the
results for 2-body problems in which only two particles appear. In quantum
mechanics, a state of a particle is represented by an element in a Hilbert space.
The Hilbert space is the set of square-integrable functions. The time evolution
of the state of the particle is described by unitary operators in the Hilbert
space. However, in practice, functions which are not square-integrable are
used as waves representing scattering processes. These functions are not
square-integrable because they do not decay enough as |x| — oo, where x is
the relative position of the particles. They are called generalized eigenfunc-
tions, since they satisfy the Schrodinger equation Hu = Au but they are not
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eigenfunctions of H in the Hilbert space framework, where H := —4 + V' (x) is
the Hamiltonian and A € IR. Here, 4 is the Laplacian and V' is a real valued
function called a potential. In the scattering process, we are interested in the
angular distribution of the probability to find a scattered particle after particles
collided and when the distance between the particles is large enough. The
function representing the angular distribution is called scattering amplitude.
The scattering amplitude is usually calculated considering the asymptotic be-
haviors of the generalized eigenfunction as |x] — co. However, the relation
between the long-time asymptotic behavior of the function in the Hilbert space
and the generalized eigenfunction which is not in the Hilbert space is not
obvious.

In fact, even the existence of the generalized eigenfunctions with appro-
priate asymptotic behaviors is not obvious. Let the potential V' (x) e C*(R")
satisfy

07V (x)] = O(|x| ), (1)

for £ >0 as |x| — oo, where ve N is the space dimension. The generalized
eigenfunction used in the calculation of the scattering amplitude in the two-
body problem with potentials decaying fast enough is a distorted plane wave
u: composed of the plane wave e ™< and the scattered wave, where ¢ is the
momentum of the particle. The function u¢ satisfies the Lippmann-Schwinger
equation us = e ¢ — (H — 2 — i0) "' Ve ¢, where A = |¢|* and (H — 1 — i0) ™"
is the resolvent of the Hamiltonian. However, if the potential V'(x) does not
decay enough as |x| — oo, the term (H — 4 — i0) ' Ve~*< is not defined because
Ve~¢ does not decay enough and it is not in the domain of (H — A — i0) .
We can overcome this problem by using a spherical incident wave

vlg] == g(R)e KO T2 %= x /),

instead of the plane wave e <, where K(x) = v/i|x| +o(|x]), |x| — o, is a
solution to the eikonal equation

VKxX))*+V(x)=24,  A>0.

Notice that the wave v[g] multiplied by e~ moves toward the origin as time
advances, and hence we call it incoming. Using v[g] the generalized eigen-
function

#,]g) = vlg] — (H — 2 i0)™ (H - Z)olg], 2)

is well-defined. This function #;,[g] would be regarded as the smeared function

|, sty do
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of the distorted plane waves u 5 as above by C*(S"1)-function g(w) with
respect to the angle w of the incident wave, and the Schwartz integral kernel
of the map g+~ i;[g] would be the distorted plane wave u s . After con-
structing the generalized eigenfunction we also need to study the asymptotic
behavior of the function. Practically, we need to prove the existence of the
radial limits of the function. It is expected that the scattered wave component
—(H — 2 —i0) "' (H — 2)v[g] of i;[g] in (2) has an asymptotic behavior as

—(H = 7= 10)"(H = 2)olg] = S| - o(|x ),

as |x| — oo, where f is a function on the sphere §''. The map X(1): g — f
is the scattering matrix defined in the stationary way. The Schwartz integral
kernel of the scattering matrix 2'(1) whose singularity due to the incident wave
without being scattered removed would be the scattering amplitude.

Finally, we consider the relation between the scattering matrices defined by
stationary and time-dependent way. For short-range potentials, that is, when
u>11n (1), as time ¢ tends to +oo0, the asymptotic behaviors of the solutions
e ™y e #,.(H) to the Schrédinger equation are given by the free evolution
ey, for some . € L*(R"), where #,.(H) is the absolutely continuous sub-
space of H. In other words,

lle™ ™y — ™y, || — 0,

as t — £oo. On the contrary, for any y, € L*(R") there exists Y € #,.(H)
such that

le™yr, — eyl — 0,

as t— +oo. The wave operators W, :L>(R") — L?(IR*) are defined by
Wi, :==y. The wave operators W, are partial isometries from L*(R”) to
Hae(H). The scattering operator S is defined as the map Sy_ :=y_,. Let F
be the Fourier transform. Then, S := FSF* commutes with any bounded Borel
functions of |¢|>, and therefore, there exists S(2) e Z(L*(S'™")), a.e. 1 >0
such that

(8/)(4s0) = (SA (@),  E=Vio, weS",

ae. >0 for any f(¢)eL*(R") (see e.g. Reed-Simon [18]). Here f(A)e€
L2(S"") is defined by (f(2))(w) := f(4,®). The operators S(/) are scattering
matrices defined in time-dependent way. Thus the scattering matrices give the
map from the datum as ¢t — —oo to the one as t — co. The time-dependent
and stationary scattering matrices S(4) and (1) are equivalent in the sense
that the following equation holds (see e.g. [18] and Melrose [17]).

SOy =i"'2(A)»,
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where Z is the reflection operator, i.e. (Zg)(w) := g(—w). A similar result as
above for long-range (i.e., # < 1) 2-body problems has been proved by Gatel-
Yafaev [5].

We now turn to N-body problems. When we consider collisions of com-
posite particles such as atoms and molecules, we need to consider many-body
problems in which the Hamiltonian consists of kinetic energy of the particles
and the potentials between pairs of the particles. Even if there are seemingly
only two particles before and after the collision, when at least one of the
particles is a composite particle as in the scattering of an electron by an atom,
rigorous treatment of the scattering needs to deal with the N-body problems.
For there are interactions between particles within the same or different com-
posite particles. We shall introduce the configuration spaces needed for
N-body problems (see e.g. [3]). Let v, N be natural numbers. We consider
N particles in v-dimensional space with masses m; > 0. Let x; € R” be the
position of the i-th particle. The tuple (xj,...,xy) of the positions of the
particles is a point in R"Y. Since the center of mass of the particles moves
freely, we are interested only in the relative motion of the particles. The rela-
tive positions of the particles are indicated by a point in the center of mass
configuration space

N
X = {x: (X1,...,XN) :x,jeIR”,Zm,-x,- :0}.

i=1

We need to consider the relative positions of the particles within subsets of
N particles and the relative positions of these subsets. For this purpose we
introduce the notion of cluster decomposition. Let Cj,...,C;y be nonempty
subsets of {1,2,...,N}. Then we call the set « := {C},...,Ci} a cluster de-
composition if C;N C; = & (i # j) and U,k:1 C;={1,2,....,N}. A simple and
important cluster decomposition (i) is defined by

@) = {102 A U VD),

where {k} means that {k} is absent. In (i) only i-th and j-th particles form a
cluster. The configuration space X“ of the internal coordinates of a is defined
by

X“::{x:(xl,...,xN)eX:Zm/x/:O for all Cea}.

jeC

The configuration space X, of the inter-cluster coordinates of «a is defined
by

X, ={xeX:x;=x; if i,je C for some C€a}.



N-body long-range scattering matrix 181

Then X, is the orthogonal complement of X“ in X with respect to the inner
product 3"~ m;(x; - ;). Concerning the cluster decomposition (i), x; — x; can
be used as a coordinate of X7). However, we do not specify particular coor-
dinates in X'“ and X, in general, since specific coordinates for a can not be
used as coordinates for all of the other cluster decompositions. Let a and b be
cluster decompositions. We write b < a and call b is finer than a, if for any
D e b there exists C € a such that D C C. As for (i), it is readily confirmed
that (if) < aif i, j e C for some C € a. We denote by I7¢ and II, the orthog-
onal projections in X onto X“ and X, respectively. We decompose x = x, @
x4e X, ® X* The operators —4, and —4“ denote the Laplacians in X, and
X respectively.
An N-body Hamiltonian is an operator of the form

H:=-4+ Y Vylx

1<i<j<N

Here 4 is the Laplacian in X and Vj; is a real-valued function on IR" which is
in this paper a sum of a compactly supported Laplacian-compact short-range
part and a smooth long-range part (cf. Assumption 1). It should be empha-
sized that physically important Coulomb potential Vj;(x) = 1/|x| satisfies As-
sumption 1. Let # := L*(X), #, := L*(X,) and #“ := L*>(X“). Under this
assumption H is a self-adjoint operator on #. We will also need the sub-
system Hamiltonian H“ on #“ defined by

4= A% + Z i (

(if) <a

The set of thresholds is defined by

where g,,(4) is the set of eigenvalues of 4. We label the eigenvalues of H*
counted with multiplicities, by integers m, and we call the pairs o = (a,m)
channels. We denote the eigenvalue of the channel o and the corresponding
normalized eigenfunction by E, and u, respectively. We can identify a channel
o with a tuple (a, E,,u,) as a = (a, E,, u,).

Time-dependent scattering matrices are defined as follows. In the fol-
lowing we denote channels by o = (a, E,, u,) and f = (b, Eg,ug). Set we H,.
Then there exists ¥ e # such that

e S5 Pa)=1E (4, @ ) — =yt || — 0, 3)
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as t — +oo, where S*(&,,7) is a solution to a Hamilton-Jacobi equation

0S,
=, (Cart) = &l + Lu(Ve, Sul & 1),

and p, = —iV,,. Here, I, is the effective inter-cluster potential (cf. Section 2).
The tensor product u, ® w is a wave in the state w with respect to inter-cluster
coordinates and in the bound state u, with respect to internal coordinates.
S* is a generating function of the asymptotic displacement by classical trajecto-
ries, i.e. V: S(&,, 1) equals asymptotically the displacement by the trajectory
with the asymptotic momentum &, (cf. [3, Section 2.7]). The unitary operator
e~iSi(pe)—iEut gives asymptotic time evolution. Note that in momentum space
it is a multiplication by e~ (€0~ \whose absolute value is 1, and therefore,
it does not change the distribution of momentum. Thus w has the same distri-
bution of momentum as the asymptotic one of e~y which is the subject
of scattering theory. The wave operator W,* is defined by WiEw = lﬁ* Let
¥, be the component of Y, such that y, =, +¢“, ¥, € Ran W, zp €
(Ran W*) . Then in an opposite manner to (3), there exists wp € #3 such
that

||efi5;r<p/ht)*iE/;f(uﬂ ® Wﬂ) o e*itHl/;;” N 0,

as t — oo which is obvious by 1}; € Ran W/;r and the definition of W/j. The
function wg is given by the equation wp = (Wﬁ*)*x//; . The scattering operator
Sg, is defined by Sp,w:=wp. Let F,:#, — L*((E,,),L*(C,)) be the
Fourier transform which maps functions in #, to the functions with respect
to polar coordinates, where C,:= s"'nX, n,:=dim X,. Then we can
write
Spu := FySpoFy = J ® Sp.(2)dA,
max{E,, Ez}

where S, (1) € Z(L*(C,), L*(Cy)) is the fiber of Sp, (see e.g. [19]). The oper-
ators Sp,(4) are called scattering matrices.

The other definition comes from the asymptotic behaviors of generalized
eigenfunctions as in the 2-body problems. In N-body problems there are direc-
tions in which the potential Vj(x; — x;) does not decay in the configuration
space X which cause singular behaviors of wave functions in those directions.
Thus we restrict the function g assigning angular distributions of a incident
wave to a function whose support is away from such directions i.e. supp g C C,,
= Co\Upg, Xp- If o is a channel obeying some decay condition (cf. (14)),
for Ae &, := (E,, 0)\(0,p(H)N T (H)) and ge C(C)) there exists a gener-
alized eigenfunction u (corresponding to P} [g] in Section 4) of H such that
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U — 11y (x9) ® (g()rl " 2e=iKulxai=E) is outgoing in the sense of Section 4,
where r, := |x,|, X, := x,/|x4| and K,(x,, 1) is a solution to an eikonal equation
V. K>+ 1, =4 Here,

ua(xa) ® (g(fcu)r[glfna)/2671‘1(1,(,@,).7&))7

is an incident wave which is spherical with respect to the inter-cluster coor-
dinates and a bound state with respect to the internal coordinates. The out-
going component of u is expected to have the form as

D) © Uyt M), gy e 13(G)

One of the greatest challenges for the stationary definition in the long-range
N-body case would be rigorous justification of this fact and to obtain the data
Jp. In the present result we extract fz from the generalized eigenfunction u as
a functional on C°(Cy) using an expected equation

JC Jp(Xp)h(Xp)d X

= lim p*IJ J P! (R ) e RS0 AR () (ry Ry Yy Ry, (4)
p—=0 Cy Jry<p

for any he C*(C}), where (mgu)(xp):= [ip(x?)u(xp, x?)dx?. (The right-
hand side corresponds to Qf ;(u) = O; 4(P/,[g]) in Sections 3 and 4.) Note
that if we substitute ug(x?) ® (f3(%)r\ ™/ *e®e-2En)) into u in the right-
hand side, we certainly obtain the left hand side. Although we do not use
the following fact explicitly in this paper, it deserves attention in order to
understand mechanism extracting f;. The incoming component u,(x?)®
(g(xa)r{ ") e=iKalxai=E2)) of 4 does not contribute to the limit in the right-
hand side of (4). For if the incoming component is substituted into « in the
right-hand side, for f # « the integrand decays somewhat fast and for f = o the
integral oscillates and p~' — 0. Thus we can use the generalized eigenfunction
u itself in (4) instead of its outgoing component. The scattering matrix Xg,(4)
is defined by X3,(4)g = f3.

In contrast to Sp,(4) the definition of X4,(4) does not need time evolution
at all. The main result of this paper is the following relation between the two
definitions of scattering matrices:

Spau(2) = et DI S (D Ry D 6,0 6,

where A, := 4 — E, and 2, is the reflection operator on L?(C,). To show this
equivalence of Sp,(4) and Xy4,(4), an explicit representation of the radial limit
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Z ﬁ(u) is necessary. We obtain such a representation by proving a represen-
tation formula for radial limits in conic regions for long-range decaying poten-
tials (cf. Lemma 1). Actually, the non-trivial existence of the radial limits itself
is proved at the same time. The main idea of the proof is to insert a cut-off
function having a linear slope in most part of its support into the representation
by inner products and consider the limit as the support spreads. In order to
obtain the relation between the wave operator and the generalized Fourier trans-
form we use the representation of the asymptotic time evolution of e« (re:) by
an integral of spherical waves in Ikebe-Isozaki [11] (cf. Theorem 2). In fact,
Theorem 2 is nothing but equivalence of time-dependent and stationary gener-
alized Fourier transforms. For the proof of the relation between the resolvent
of H and the Poisson operator P; _[g] we employ a nontrivial equation obtained
by the uniqueness theorem of outgoing and incoming solutions to nonhomo-
geneous equations of the form (H — A)u = f in Isozaki [14] (cf. Lemmas 7 and
4). Although spherical waves and their tensor products with eigenfunctions
would be the simplest outgoing and incoming functions, the property has not
been proved in the previous literature as far as the author knows. The prop-
erty for spherical waves can be proved by pseudodifferential techniques only,
but that of the tensor products of eigenfunctions and spherical waves need
other techniques, because the commutator of the potential Vj; and a pseudo-
diffetential operator does not have a good decay property. We replace the
pseudodifferential operator by a function of a first order differential operator
B in Gérard-Isozaki-Skibsted [6] having a good commutator estimate with Vj;
during the commutator calculus. To localize the pseudodifferential operator
onto the subspace X, we use decay of the eigenfunction. In the proof of
the equivalence, there could exist other possibilities for transforming the time-
dependent scattering matrix to representations using inner products and oper-
ators such as the resolvent, the Poisson operator Pz—’a and Qz—r_a, but our method
would be a simple one for the proof of the eq’uivalence' of the scattering
matrices.

There are significant differences in difficulty in proving the results as
above between short-range (i.e. x> 1 in Assumption 1) and long-range (i.e.
1 > u > 0) potentials and between 2-body and N-body problems. This is be-
cause the slow decay of potentials causes substantial change to both the time
evolution of wave functions and asymptotic behaviors of generalized eigen-
functions and there are many difficulties in estimation of decay with respect
to time or distance especially in N-body problems. Isozaki [13] and Hassell
[8] proved similar results for 2-cluster to 3-cluster scattering in 3-body prob-
lems and for the free channel scattering in which all particles are separated
in N-body problems respectively under rather strong decay conditions using
different methods. Vasy [21] proved a similar result for short-range smooth
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potentials in N-body problems. Yafaev [22] also obtained a stationary
representation for short-range N-body scattering matrices defined by time-
dependent way for any channel. However, even a stationary definition of scat-
tering matrices has not been obtained for long-range potentials in N-body
problems and the relation to the time-dependent scattering matrices has not
been known so far.

The main points of the approaches of the previous and present results are
as follows. Since in [13] generalized eigenfunctions with plane incident waves
are considered, the fast decay of the potentials is needed. For a decay estimate
of inter-cluster potentials in the proof, the three-body structure is essential in
[13]. In [8] the equivalence of the free channel scattering matrices is proved
relating both the stationary and time-dependent scattering matrices for the free
channel to the transition matrix, and also uses generalized eigenfunctions with
plane incident waves in the proof, so that the fast decay of the potentials is
needed. In [22] the stationary representation of the time-dependent scattering
matrices for all channels is obtained proving new resolvent estimates, but to
prove the existence of the radial limits of generalized eigenfunctions necessary
for the stationary definition of scattering matrices, other resolvent estimates as
those obtained for the free channel scattering in [9, Corollary 5.3] are needed.
In [21] this problem is bypassed using a kind of weak radial limits. The
proof of the existence of the limits and a representation of the limits by inner
products in [21] depends on the short-range assumption (cf. Remark 1). In the
proof of the existence of the radial limits, an ordinary differential equation with
respect to r, is used based on the fact that the phase iK, in the asymptotic
behaviors of the generalized eigenfunctions has the form iv/A— E,r,. How-
ever, in long-range problems K, depends not only on r, but also on angular
coordinates Xx,. The present result overcomes this problem introducing dif-
ferent weak radial limits (4) and obtaining a representation of the limit for
Hamiltonians with long-range potentials. The limit in (4) is a weak limit as-
sociated with the little-o notation o4 (|x|""""/?) in [5] introduced to study
asymptotic behaviors of spherical waves, where &(x) € 0g(|x|~"""/?) if and
only if

lim /flJ lo(x)|2dx = 0.
P x| <p

The incident component of the Poisson operator in [21] has a form as P} , (1)g,
where P{, (2) is the Poissson operator for the free Laplacian. On the other
hand, we use the spherical waves directly as incident waves which makes the
structure of the generalized eigenfunction clear and would make the analysis of
the function simple. The method to transform the time-dependent scattering
matrix in the present result depends on the representation of the asymptotic
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time evolution for long-range two-body problems in [11] and the uniqueness
theorem in [14].

Although we use a kind of weak limit in (4) in contrast to a kind of strong
convergence for a short-range decaying potential (see e.g. [17]), i.e. short-range
two-body problems, the stationary definition and the relation to the time depen-
dent definition would still be useful in the study of quantities in scattering
phenomena such as the scattering amplitude in N-body problems. For if we
construct a generalized eigenfunction u or its approximation, the right-hand side
of (4) could be calculated. Moreover, since the relation between weakly defined
quantities are clear now by the present results, only the existence of stronger
limits would remain as a problem in the results as above with other definitions
of the limits.

The content of this paper is as follows. In Section 2 the existence of
radial limits of functions in conic regions is proved. Using the limits we define
radial limits for channels in Section 3. In Section 4 we introduce Poisson
operators and stationary scattering matrices using the radial limits for channels.
In Section 5 we introduce the well-known time-dependent definition of scat-
tering matrices and prove the equivalence of the time-dependent and stationary
scattering matrices. Equivalence of stationary and time-dependent definitions
of the generalized Fourier transforms is also proved. In Appendix A proofs of
outgoing and incoming properties and boundedness of functions and operators
are given.

2. Preliminaries

In this section we prove the existence of radial limits of functions in conic
regions under a certain condition. We assume the potentials Vj; obey the
following.

ASSUMPTION 1. There exists pe (0,1] such that Vy(x) = Vi(x) + Vi;(x),
where
(1) Vi(x) is compactly supported and Vi is —Ac compact, ie.

Vi(=4s+ 1)~ is compact.

(2) V,j(x) € C*(R") and for any ye N’
|07 V()| = O(|x| 7).
Let n e C*(R) be a function such that supp# C (1, 0) and #(t) =1 for

1>2. Set Iy =344 V,/ . Removing directions in which 7, does not decay,
we define

i)

Iu = ia(xa) = Iu(xa) H ”('bea| 1n<xa>/<xa>)7
bta
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which is a generalization of the “free channel” potential in [9, Definition 2.2]
to the general cluster decomposition a. This potential can be regarded as a
one-body potential fulfilling for any ' € (0,u) the bounds

107 Iu(xa)| = O(xal 7). (5)
To confirm (5) we note that for x, = (x1,...,xy) € X, C X and b = (ij) we
have
m9x, =(0,...,0—2—(x;— x),0,...,0,——(x;— x,),0,...,0 | e X
Xa <Oa 707mi+mj (.X, xj)aoa ’O’I’Vli—l—m]' (X, xl)a07 ,0) ek,

where only i-th and j-th components are not 0. Thus by the definition of the
inner product 3, mx; - y; in X, we have [I1%x,|* = m"?j:",;/_ |x; — x,~|2. Since for
(fj) £ a the inequality

[T x,| > (x> /Indx,,

holds on supp '7(|171<Z)x”| In<x,»/<{xa), it follows that |x; — xj| > C{x,>/In{x4,
where C = (mi+"1f) . Thus we conclude that if (ij) £ a,

mm;

107V (xi = x;)| = O(<xa> ™ (I, ») ),

on the support from which we can see that (5) holds.
We let K,(-,A), 4> 0 denote the (approximate) solution to the eikonal
equation

|Vx,,Ka|2 + I~a =1 (6)

as taken from [12] and [11]. The function K, is a C*-function and there exists
C > 0 such that (6) holds for |x,| > C. K, satisfies K (x4, 1) = VAry + Ya(xa, A)
and

107 Yo(xa 2)] = O(|xa| 777, (7)

(the bounds being locally uniform in A).

We drop for the moment the subscript « of x,, I,, K, etc. and consider the
operator H = —4 + I on L*(IR") identifying X, = R”. We need Besov spaces
Z(R") and #*(R"). We set

Qo :={xeR": |x|] <1},
Q= {xeR": 27" <|x| <2/}, (jeN,j=1).

Let #(IR") be the set of functions u such that

o]
lilaguey = 2l < oo
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Then the dual space 4*(R") of Z(R") is the set of functions u such that

[ u

]

—i/2
2*(R") ‘= 8Sup 2 Z ||u||Lz(Q_) < 00.
Jj=0
We can easily see that there exists a constant C > 0 such that

C’lHu

1/2
- 2
2w < [ sup p IJ |u(x)|"dx < Cllull 4+ (- (8)
p>1 |x|<p

The relation between L2(R”) := (x> 'L(R"), <x> := (1 + |x|*)'/?, #(R") and
#*(R") is as follows: for /> 1/2
L} (R") C B(R") C L} H(R") C L*(R") C L? ,(R") C #*(R") C L (R").

For U C IR” the notation Fy stands for multiplication by 1y. The following
lemma which guarantees existence of radial limits of a function u satisfying
a certain condition in conic region U is crucial to the stationary definition of
scattering matrices.

LEMMA 1. Let U be an open subset of R” such that U' := UNS"' # &
and UN{|x| =1} ={x=cx":ce[l,w),x' e U'}. Let for any ge C*(U’)
and A > 0,

v (x) = vig](x) = n(r)g(R)rl! /2K ri= x|, X :=x/r.

Suppose tie B* N HY. and Fy(H — J)ii€ B. Then

lim p’IJ vE(x)u(x)dx
p=0 r<p

= +27i 7 P (ot (H = Wiy — (H = Ao, ay), )
where {v,u)y = [ tu dx.

Proor. First, by calculation of the quantity in the middle of (8) inte-
grating with respect to the polar coordinates, we can check vt € #*. To esti-
mate (H — A)v*, using |VK|*+1 =1 we compute

(H — 2)v* = Fi[(4K)ngr'' =7 + 2(VK) - V(ngr'=/7?)
¢ Z'A(;,]gr(l—n)ﬂ)]eiiK (10)

for |x| large enough. Using 4 = g—i—i—ﬂi 4 and K =+VAr+ Y(x,A) by a

roor g2
direct calculation the right-hand side is rewritten as

Fil(AY)ngr' ™2 4 2(VY) -V (ngr!1?)

+ 2VA(0um)gr 2 T id(ngr /2K,
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where A is the Laplace-Beltrami operator on S"!. Since noticing

07Y (x, 2)| = O(|x|"" ),

we have
2 A Yl = o(1x -1 P¥l = Ol
6r2+r2 = O(|~| )s VY| =0(x]™"),
[V (ngr =) = (x|~ 02), [ A(ngr TR = 0(x| ),

and 0,7 has a compact support, we obtain (H — A)v™ = ¢(|x|~"*/27*). Thus
we obtain

(H—2)vreL?(R"), for 1/2<s<1/2+u. (11)

In particular (H — A)v* € %, whence the right hand side of (9) is well-defined.
For any ¢€ (0,1/9) choose a decreasing function y, € C*(R) such that

1 for ¢ <e,
20 =< 1+e—1t for3e<t<],
0 for 1> 14 2e,

and y; > —1. Letting x, , = y.(r/p), p> 1, we compute the right-hand side

of (9) as
F27172 lim ot ilH g, 000

p—0

— . _ X ~
=i lim (0l i)

p—0

= Fil "2 lim p~'owt, 1) (|- |/p)i), (12)

p—o

where in the first equality we used Vy, 12, =5y (] - |/p) and

x> A5, 10,1 = O(p"),

— O(log p), (13)

J x> huw dx
[x|<2p

as p — oo for u,v e #*, and the second equality follows from J, = ﬁ V. We
can calculate 0,0 as

ot = () grt /2K 4 Ll ;nngr’<"“)/zeiiK + i0, Yngr1=m/2 %K

+ iVangr=m/2e K,
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Using p~!|x| < 2 on supp )(/’),1/2(| -1/p) and (13), the limits including first three
terms vanish. Thus the right-hand side of (12) is equal to

— lim p_l<vi7){//,—1/2(| “|/p)iy.

p—0

We can rewrite this expression as

(- iy = | VE()a(x)dx + 0(p~ 1)

3p~12<r/p<1
=p! J vE(X)a(x)dx + O(p~1*).
r/p<l
Here we used

p! J |v* | dx
a <r<ay

12 12
<p 12 <J vi|2dx> <p1 J 12|2dx>
a1 <r<ay a1 <r<ay

= 0(p™"Play — ay]'?),

1/2

where a; =0, a» =3p'/? or ay =p, a = p+2p'/>. Whence

= lim p o iy = lim p | S
=0 =L r/p<1

which is the left-hand side of (9) and completes the proof.

REMARK 1. A result analogous to this lemma with I =0 (ie., H= —A4)
is the “boundary pairing” in [17, Proposition 13] in which v* is replaced by a
Sfunction having both outgoing and incoming components. A localized version of
the boundary pairing in conic regions with I =0 is obtained by [21, Proposi-
tion 3.3]. For short-range potentials |I| = O(|x|™), u > 1 boundary pairing for

H = —A is sufficient, because if i€ Lil/z_g and (—4 —|:I~ — e L12/2+8, then
(—4—Xue L12/2+8 holds for ¢ >0 small enough using I e L]2/2+8.
3. Radial limits for channels
Consider a channel o = (a, E;,u,) assuming ||uy||;2yo) =1 and
Uy € D({x*H)™) for some sp > 1. (14)

Whence, alternatively stated, u, € Lfﬂ (X4) := x4 ™L2(X%) for some sy > 1
which holds at least if E, ¢ 7 (H) (cf. [4]). Let n, e (A, #,) be given by
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(7o) (x4) := g, (-, x,)». Tt is a consequence of (14) that also
ny € L(B*(X), B (X,)). (15)

The proof of (15) is given in the Appendix A.

Let C,:=X,NS" " n,:=dim X, and Cl = C,\ Ubia X,. Suppose
ue B (X) obeys (H—ANueAB(X), >E, Then we can define the map
Qf“(u) : CF(C)) — € by the following recipe: Let for any g e C°(C))

a

(Q;,)(g) = lim /)’IJ < v, [91(xa) (7a0) (xa) dXa, (16)

p—0
where
vfx[g] (xq) = 77(”::)9(56‘;)7’21 —na)/2eiil<u(xmix),

with A, = 4 — E,. The map (QF (u))(g) is linear with respect to u and anti-
linear with respect to g. Notice that Lemma 1 applies to & = m,u by con-
sidering an open U’ C C, with suppg C U’ C U’ C C} so that in fact using
Haua = Eo:uoc

(Q5,)(9) = 2712, (7 o). (~da + Lu = d) s
— (= Aa+ Lu = 2)vf 9] )
= +27i2, (ot L), (H = Auy = (H = )17 lglw), - (17)
where the outgoing and incoming quasi-modes Javfa[g} = u, ®U;—ia[g] obey
Jav}lg) € L2(X), (18)
for any §> 1/2 and
(H = 2)J.07 ) € LX) € B(X), (19)

for some s = s(u, o) > 1/2, and the right-hand side of (17) is well-defined. (18)
follows from u, € L*(X“) and vy ,[g] € L?;(X,) for any § > 1/2. (19) is proved
considering each term of

(H— )V)Jav;,_r,a[g] =, +1a— iu)']ct”;._r,a[g] + Ju(=4a + I - ia)”;__r.a[g]
= (I + 1o — L)% 9] + Jo(Hy — 20)0F 9], (20)

where 7 =3 ., V; and H,:= —A,+1,. The proof is given in the Ap-
pendix A.

By the definition (16) and (15), it is easily seen that there exists C > 0
independent of u# and ¢ such that

(0;,()(9)] < Cllu|

a ollall 2 e, (21)
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Therefore, by Riesz theorem there exists 4 e L>(C!) = L*(C,) such that

(05, () (g) = <g.h>,

for any ge C*(C,). We denote this /1 also by the same notation Qfx(u).

a
With these notations we can write

(0;,())(9) = <9, 0}, () (22)

We defined QF (1) in (16) as antilinear functional to make Qli,a linear with
respect to u and in order not to make complex conjugate § appear in (22) at the
same time.

Summarizing the results above we have the following theorem.

THEOREM 1. For any channel (a, E,,u,) obeying (14) and any ue B*(X)
obeying (H — ) u € B(X) for some A > E, there exist week limits

0% (u) = w-L*(C,)-lim p*lj pna= /2 F iKaraka 2a) (. 1g) (%0 )y (23)
re<p

Ao
p—0

A useful example is given by u = R(A + i0)f, where f € #(X), R(A =+ i0)
= (H—2Fi0)"" and

)€ &y = (Ey, 0)\ (0, (H) U T (H)).

This function u is defined by familiar limiting absorption principle (LAP cf. [1,
Theorem 9.4.19)):

R0+ i0) € Z(B(X), B*(X)). (24)
Notice that Jfl]z]l(X) and Jffll/z,w(X) in [1, Theorem 9.4.19] correspond to
(—iV>B(X) and  (—iV) '%*(X),

respectively.
As we see in the proof of Lemma 4 2. below, we can show

O ,(R(ZF i0)f) =0.

On the other hand the function Qia(R(/I +i0)f) is in general nonzero, see
Lemmas 4 2. and 5 below.

4. Poisson operators and geometric scattering matrix

Consider a channel o = (a, E,,u,) obeying (14), and consider the quasi-
modes

Juvi,lg) = u, ® vflgl, g€ CP(C,).
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The assertions (19) and (24) allow us to define for 1 € &, the exact generalized
eigenfunctions in #*(X),

P} l9) == T} ,lg] — RO £ i0)(H — 2)J.07 lg], (25)
P} lgl = 1w} lg) — RO.F i0)(H — )0 lg). (26)
REMARK 2. Since the function

o fo](0) = n(ra)g(a)rf! R,

is a spherical wave, P;_ra[g] is a generalized eigenfunction with a spherical in-
coming or outgoing wave. It is plausible that PJr 9] is a smeared distorted plane
wave and the Schwartz integral kernel of the map g— P+ ,1g) forms a family of
distorted plane waves. In other words, there would exist a family of generalized
eigenfunction u\/)— ,wq € C such that u\/)—w — Uy ® eF i (VB0 +Yalxa 1)) g gp
outgoing or incoming spherical wave, and the following equation holds.

a

Pz_’“g:J g(w)uF—  daw,. 27
il = oty 1)

Here eFita (Vo) +Yalxaka)) s the “plane wave”. Note that we need Y, (x4, Ay,) in
the exponent as a modification from the true plane wave in the scattering by long-
range potentials which holds even in the two-body scattering by a Coulomb poten-
tial (see [20, Section 21]). It would be rather difficult to obtain the asymptotic
behavior of “jﬂwu’ because the radial distribution of the scattered wave is known
to be singular even in the two-body Coulomb problem (see [20, Section 21]).
The equation (27) has been proved by [8, page 3808] for the free channel
scattering in which all particles are separated in the N-body problem with rapidly
decreasing potentials. For a general channel with long-range potentials it is an

open problem to construct ”T/Tw and prove (27).

Lemma 4 below is based on the uniqueness of solutions to nonhomoge-
neous equations under outgoing (incoming) condition below. For any k,s € R
we let 2% be a class of functions p e C*(R” x IR") such that

10707 p(x,€)] < CprCx>* I H,
for any 7,7’ e N”. We set

RS = n g?k,s
keR

We define the pseudodifferential operator Op(p) corresponding to p € 2%* by

Op(p)f = <2n>*"j WD Ep(y, &) £ (1) dyde,
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for any f e S(R"). We let Z,(t) (resp., Z_(t)) denote the class of functions
pe2° such that on supp p(x, &)

ingfmf>r <resp‘, supfc-f<r>.
X x,&
We call ue L? (R"), s> 1/2 is outgoing (resp., incoming), if there exist 0 <
s" < 1/2 and &> 0 such that Op(p_)ue L, (R") (resp., Op(ps)ue L? ,(R"))
for any p_(x,¢&) € Z_(¢) (resp., p+(x,&) € #.(—¢)). The physical meaning of
outgoing (resp., incoming) properties would be that as time advances, the wave
moves toward the infinity (resp., the origin). The function v} [g] (resp., v} [g])
defined in Lemma 1 should be outgoing (resp., incoming), since multiplied by
e ™ ] >0 they are spherical incoming and outgoing waves. We can see the
definition of outgoing and incoming properties as above is suitable by the
following lemma.
LEMMA 2. vf[g] (resp., v;[g]) is outgoing (resp., incoming).
Considering the physical meaning of outgoing and incoming properties as
above, we expect that the tensor product Javfa[g] =u, ®vi,lg] of an eigen-
function and an outgoing or incoming wave also satisfies the condition, which
is indeed true.

Lem™A 3. J,v] [g] (resp., Juv; ,lg]) is outgoing (resp., incoming).

We defer the proofs of Lemmas 2 and 3 to the Appendix A.

In the following lemma we make use of the many-body version of Som-
merfeld uniqueness result in [14, Theorem 1.3], that is, uniqueness of the out-
going and incoming solution u € L* (X), s > 1/2 to the equation (H — A)u = f,
fel}X), s>1)2.

LemMA 4. For any channel o= (a,E,,u,) obeying (14), A€ &, and ge
Cr(C)

1. Pj:a[g]_: 0,

2 g= OF,(PF,l0). )

3. 9= 05 (RO F 0)(H = 2)J.v] ,[g])-

Proor. 1. By the definition (26) of Iu’fa[g] we have only to prove
Juv}l9) = ROAF i0)(H — 2)J,0] [g]- (28)

We note that Jvf [g] and R(ZF i0)(H — 2)Jv],lg] are solutions to the
equation

(H — M= (H — 7).} lg],
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for u. Thus combining Lemma 3 and the fact that R(1+i0)f (resp.,
R(Z—1i0)f), f e L*(X), s> 1/2 is outgoing (resp., incoming) (cf. [6, Theorem
2.12]), (28) follows from the uniqueness of the outgoing and incoming solution
stated above the lemma.

2. By (17), (26) and 1, we have

(QF,(R(ZF i0)/))(g)
= 427, (i lg), S — ((H = 2)J0f 9], R( T i0)f)
= 427100, P (<o lg), f > — <R £ i0)(H — 1) J,v7 9], )

+27i, PCPY lg) f

I
*

Thus we can see that

and therefore, by (25)

07 (P} ,lg)) = OF ,(Juv] la))-

y (23) we can readily check that the right-hand side is equal to g.
3. By (28) we have

OF (R(2 F i0)(H — A)J,v7 ,[9]) = 07 ,(Juv] ,[9]).
y (23) the right-hand side is equal to g.

LemMMA 5. For any channel o= (a,E,,u,) obeying (14), ge C*(C)) and
any f e A(X),

+271i3, ' PCPE [g), £ = <9, OF ,(R(A £ 10)f)). (29)

In particular, Pf € £ (L*(C,), #*(X)) with a strongly continuous dependence on
A€ &, with respect to weak-x topology.

ProoF. Applying (17) to u = R(1 +i0)f we obtain
9, 07 ,(R(Z £ i0)f)>
= £271i (Lt la), S > — (H = 2)J,0f 9], RO+ i0) f)
= 42713, ' PCPE gl ), (30)



196 Sohei ASHIDA

which is (29). By (21) and (24) we have
O ,R(). + i0) € Z(B(X),L*(C,)). (31)
(31) and (29) imply
P, e Z(L*(Cl), #*(X)).

The continuous dependence on A follows from the second expression in (30),
(20) and (10) combined with regularity of the function K, and continuity of the
boundary values of the resolvent (cf. [I, Theorem 9.4.19)).

For two channels « = (a, E,,u,) and f = (b, Eg,up) with the decay con-
dition (14) fulfilled for u, as well as for u; the geometric scattering matrix, or
rather the component given by considering o as incoming and f as outgoing, is
given by

2p,(A)g == QIB(P;’%[QD, le&,NéEp ge CL(C)).
Alternatively, this quantity is given also by
Zpa(2)g = —Q}f p(R(A + i0)(H — 2)Jv; ,[g])- (32)
Using (29), (32), (17), (H — /1)P~+ [g) =0 and (22) we compute the adjoint
25,19 =0, ,(Plylal), ANy ge CI(Cy). (33)

LeMMA 6. The component X, (L) of the geometric scattering matrix extends
to an operator in L (L*(C,),L*(Cy)) with weakly continuous dependence on 1 €
&N éa/;.

Proor. The assertion X, (1) € L(L*(C,),L*(C,)) follows from Lemma 5
and (21). By (32) (22) and (17) we have

Ch, Zpu(2)g> = =27 idg P (o ), (H = )07 lg)>
— (H = 2)Jpv} 4[], RO+ i0)(H — 2)J,07,[g]>),

for any g e C*(C)) and he C*(C;). Thus the continuity follows from (20),

a

(10) combined with regularity of K, and continuity of R(4+ i0).

5. Time-dependent scattering theory and equivalence to stationary definitions

Let us first remember the standard time-dependent definitions. Let
Sa(&,, 1) be a solution to the Hamilton-Jacobi equation

'\Sa
S (G t) = |l + LV, Su(Er 1), (34)
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defined in terms of the Legendre transform of the function K,(-,4) (cf. [11,
Section 6]). More precisely, S, is defined as follows. There exist x,(&,, 1) €
C*(X\{0} x R; X,) and A({,,1) e C*(X\{0} x R;R) satistying the follow-
ing condition: For any compact set 4 C X;\{0} there exists a positive con-
stant 7 such that for £, e A4 and ¢t > T we have

0K,

é(l :VaKa(xa(émt)ai(‘fuat))a t:ﬁ(

xa(éaa t)a /l(éav t))

We define S, by

Sa(&art) = Xa(&ar 1) - &+ A&as 1)1 = Ka(Xa(Eay 1), A(Eas 1))

Then for any compact set 4 C X \{0} there exists 7> 0 such that (34) holds
for £,€4 and t > T. For any channel o = (a, E,, u,) obeying (14) we can
easily show the existence of channel wave operators by Cook criterion.
Whence we introduce

Wt .= slim e J e Si(pa )+ Eu)
15

o )
—+00

where p, = —iVy, and S¥(&,, +|t]) = £S.(+&,, |1]).

We combine the Fourier transformation and unitary transformations of the
change of the variables (4,,®) = (|fa|2,%) and A =1, + E,. The combined
transformation is denoted by F, : #, — L*((E,, o), L*(C,)) and for we #,
explicitly written as

(Fyw) (2, w) = (21) "/?2712() — E,) =24 Je_i(l_E“)l/zw"‘“ Ww(x,)dx,.

The adjoint operator F, of F, is obtained by combining the inverse trans-
formations, and the transformation F)f of f(4,w) is explicitly given by

éali<nu72)/2f(|éa|2 + sza éa)dfa’ (35)

(F;f) (x,) = (2r) 7nu/221/2 Jeix“.éu

where &, :=¢,/|¢,]. By the intertwining property HW} > W (p2 + E,) and
the fact that p2 + E, is diagonalized by the unitary map F,, we can write

Spa = EAOW) W, F = | ® Spa()d2. (36)
max{E,, Eg}

Here the fiber operator Sp,(4) e Z(L*(C,),L*(Cp)) is defined for a.e. 1>

max{E,, Ez}.
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Similarly the restriction of the maps F,(W*)" has strong almost every-
where interpretations, at least formally in this case,

F, (W) = JE @ (F,(WE)*)(A)d ).

When applied to f € #(X) C L*(X), we have the assertion below.
Let %, denote the reflection operator on L*(C,), and let

cE()) = el =28 ) S,

o

For 1€ &, let us define stationary generalized Fourier transforms by

% (2) = ¢ ()0} R(. + i0) € L(B(X),LX(C,),
' 37
%, (1) = ¢; (R0, R — 10) € L(B(X),L*(C.)). o7

THEOREM 2. For any channel o= (a,E,,u,) obeying (14) and any f €
B(X) C A the restrictions (F,(WE)" f)(-) € L*(C,) are weakly continuous in &,.
In fact for any f e B(X)

(F(W5) ) =954, Aeé,

ProOF. We mimic the proof of [15, Lemma 3.8] using as input [11,
Lemma 6.4]. Only a simplified version of the proof of [15, Lemma 3.8] is
needed. We can assume that f e L?(X), and we will consider the plus case
only. For any given ge C*(&, x C) C L*((E,, ), L*(C,)) we have

CE(W,)'f 90 =<f, W, F )

T itH —i(S) (pa, ) +Eyt) g+

= lim {f,e"" e F 9>

= [lim<f,ei’HJaJ e E Dqib(2,)) " v 19( A + Eny )]dia>
— 00 0

= 11m< foe"™, rc “H(mib(2y)) ! :“[g(/l,~)]di>, (38)

t— o0 E
o

where b(4,) := el Im/4g=1/2)1/4 " The third equality follows substituting the
definition

vy, y[ (Ao + Eyy)|(Xa) = 0(ra)g (2 + Eouxa)rélina)/zem"(xm/:l)7

and a formula

€_iS‘T(pmt)F1*g = (27'5)7”“/221/2J€i(xa'5“_5 <) |f | (e zg(|5a‘2 + Eauéa)dém
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obtained by (35) into
||<2n>‘”"/22”2J@"(“‘“'g” FEnDe, DR 2, & e,
_Jw it K 2) (Db (1)) (ra) 1y VP (D, Ra)d Al — 0, (39)
0

as t — oo, which holds for any ¢ € C°(Ry x C,). The formula (39) has been
obtained in [11, Lemma 6.4] applying the Fourier transformation to the both
terms, inserting cut-off functions for x,/¢ and &, into the second term, changing

the variable as x, = 1y, and applying the stationary phase theorem. The index
(ny — Dmi/4 of
lb(;{x) _ e(n[,fl)ni/4n71/2/1;/4’
comes from the factor ¢™/* in the stationary phase theorem, where o is
the signature of the Hessian matrix of y, &, + Ay — Viau|ya| at (ya, 4y) =
(2&,,1E4%). Here, yy-Eu+ Ay — /75| va| appears as the main term of (x, - &, +
Aot — Ky(x4,24))/t after the change of the variable x, = ty,.
Inserting e~ to the last expression of (38) we obtain

FW)f 9> = ;gg<f, g, | e mib(in) o7 lo G ->W>

E,

= lim ng e‘”’< frety, J: e "H(2mib(2,)) " v lg (2, )]d/1>d

SLO 0

_limsrc< 1, r eMH=At 1 (2mib (1)) v lg (2,-)]dt>d/1.

elo JE, 0

The second equality follows from Abel’s theorem. Integrating with respect to ¢
gives

CEW,)f 9>

— lim isjw VRO~ i6)J,(2mib(1,)) " vF g(A, )]>d
el0 E, ’

—hmj (1= R = ie) (H — 2) 1 (2rib(7)) "o} lg(n )] >di

€l0

ZJDO(Zmb( )" S (1= R(2 = i0)(H = 2))Ju07 [g(2, )] >d2. (40)

E,

On the other hand, by (22) and (17) we have
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G ()1 9(4))
= ¢ (A<Q; ,R(A+10)f,9(2,")>
= —¢; (AL S Ty L9 )
— (R(A+10)f, (H = 2) ] ,[9(2,)])

= —cf (D@ iz S (1= R(A = 0)(H = )Wov] g3 ). (41)

Since (27ib(2,)) " = —c; (A)(27'i4;'/?), by (40) and (41) we can check

o0

W F gy = J (G ()i

E,

Noticing

S WFLgy = J CEAW) ) (), gl ) el

E,
we obtain the result.

Under the condition of asymptotic completeness and with (14) fulfilled for
all (open) channels we can write, using Theorem 2,

G (1) = 3 S5 (4.

Applying this formula to [ = (H — 4)J,v; ,[g] leads with Lemma 4 3. and (32)
to the identification of X'4,(4) and Sg.(1). However, we will do the identifica-
tion (stated precisely below) under weaker conditions.

Lemma 7. Let ge CF (&, x C)), where (a,Ey,u,) is any channel obeying
(14).  Letting f;—rg = (H - )L)J“v;—ta[g(i, )] the map R > A — f;—rg is a continuous
L2(X)-valued function for some s> 1/2 and

J P lg( a2 = £ w-of i J(R(/l —ie) = RO+ i) f, di. (42)

Proor. I. Thanks to (20), (10) and regularity of the function K, the
map A— f;iq is checked to be a continuous L?(X)-valued function for some
s> 1/2.

Il. Write 27 '(R(A —ie) — R(A+ie)) = P,(A) > 0 and note the familiar

)
j o B(Apddi =g, pe,

— 0
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which follows from Stone’s formula and f:lz RA+iw)pdu—0 as 1 — o
uniformly with respect to 0 <a; <1, j=1,2. By the support properties of
g, familiar LAP bounds (cf. [1]) and Step I we can see that there exists C > 0
such that [* (f P(2) /55, >di < Csup; cqup ol ]l 120r)-  Thus by Cauchy-

Schwarz inequality, for any ¢ € # we have

\<¢j RO, dﬂ»>] <[ 2 om0+ < O

-0 -0

<2 <7Z||€0||2 +C sup |f}jg||L§(X)>'

A€supp ¢

Since |[{/|| = supy 1 [<@,¥>|, we can see that the #-valued function given by
the integral to the right in (42) is bounded in ¢€ (0,1).

ITII. We will consider the minus case only. Taking any f e Z(X) we
compute, using in the second step Lemma 4 1.,

lim J {5 (R(A— i) — R(A+ ie)) [,
= [/, (R(A—i0) — R(A+10)) f; , >d7.
= [ S, Jav; ,[9(4, )] = R(A +i0) f;, >dA

= <f7 P/_ot[g(;“>)]>di

Since #(X) is dense in #, by Step Il we obtain the result.
The following theorem is our main result.

THEOREM 3. Let two channels o= (a,E, u,) and f = (b, Eg,up) with the
decay condition (14) fulfilled for u, as well as ug be given. Then

Spu(2) = et DI 1) S (D) Ry D€ 6,0 6. (43)
In particular, the map
&N Ep3 A Sp(l) e L(L*(C,), L*(Cy)),
is weakly continuous.
ProOF. Let g, € CF (6, x C)) and gge C (& x C;). By Lemma 7 we

have

|7 o na, | Prgati e .
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We compute using Lemma 7,

<JP;7ﬁ[§]ﬁ(l', NdA, Jpga[gx(g’ ')]d/1>

= limJ <JP;7ﬂ[g,;(/1’, Nd' (R(2— ie) — R(A+ ig)) f;,, >di

¢l0

~ lim J J <u,_iﬁ1)p,}[gﬂw -)],fi,gq>di’dﬂ. (44)
In the second step we used
(P 4lap(2 ) ROF ie)f)
=P flop2 ) (X = axie) ), [ eBX),

which follows from (H —1')P}; [g/;(/l )] = 0. Changing the variable as ' =
A+ et we can rewrite the last expresswn in (44) as

2ig
li — P, VN, o Vdi d
‘"lir(l)l” <(2' P42t ’ﬂ[gﬁ( ) f“”> &

. * 2i -
=t [ (o Pt an ) 1, et

(€ 2 . ) B
- Cl‘l—r>nx lglf{)l ch<t2 +1 P/'Hrz:t,ﬂ[gﬂ(/“ + éf, )]7 f}h’gl>dldﬂ
C .
. (—2i)

- —2mj<P; s )]s £y >,
where we used that 1 — P;tﬁ[gﬁ(/l, -)] is a continuous L? (X)-valued function

for any s > 1/2 (cf. the proof of Lemma 5). By (22), (17), (H — A)Pzﬁ[g/;(/l, 9]
=0 and (33) the last expression is equal to

dn [ 412407 P plan(2 ) 0a(2 )

— 4z | 41 ap( ), D))

Summarizing the calculations above we have
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(| 22 lonter N, [ 7 lantinonar)

— 4| 240 ), ZpB)anl ) (45)

On the other hand, applying Lemma 5, the definition (37) of 4f(4) and
Theorem 2 we can see that for any f € # the following holds.

<Jp; slap(2' )2, f> = (W Fi g, /7, (46)

(1. ] Prdantionar) = <owFia. (@)
where

Gp(2) = (=271 ) e (1) gp(h),

G,(2) = 2712, ) e (2) 7 Raga ().

By (45)—(47) and (36) we obtain (43). The second assertion follows from the
first and Lemma 6.

COROLLARY 1. Under the condition of asymptotic completeness and with
(14) fulfilled for all channels (at least for all open channels) the map

&N Ep3 A Sp(l) e L(LX(C,), LX(Cy)),
is strongly continuous.

ProoOF. We mimic [22, Theorem 6.7]. By asymptotic completeness &;a(}v)
is a component of a unitary operator

8(2) : DLHC) — D LHCo).

The strong continuity of a unitary operator follows from weak continuity.
Thus, S(4) is strongly continuous, and therefore, Sg,(1) is also strongly
continuous.

REMARK 3. It is an open problem to show the strong (or weak) continuity
of Corollary 1 for long-range potentials without imposing the decay condition
(14). Note that (14) is not needed for asymptotic completeness for a class of
long-range potentials [2]. For short-range potentials the condition is not needed
for the conclusion of Corollary 1 (see [22]). However, this conclusion is not
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known for example for Schrodinger operators with Coulomb pair-potentials with-
out (implicit) decay assumptions on threshold bound states.

A. Outgoing and incoming properties and the boundedness of functions
and operators

In this appendix we prove (15), (19), Lemmas 2 and 3.

ProoOF OF (15). (15) can be proved under the weaker assumption sy > 1/2
n (14). ||”x”||§;*(xa) can be estimated as

|72,

W= Cspp |,
[xa|<p

p>1

< Cysup p! J J x> ™20 |u(x)) *dx“dx,,
[Xal|<p J X4

p>1

because of ||<x">‘“’ua||iz(xa) < oo by (14). Now for p > 1, let us take J, e N
such that 2/~ < p <2/, Then we have

J J <x”>725“|u(x)|2dx”dxu
[Xa|<p J X4

< “ (x Y20 (X)) 2dxdx,
| Y|<2J,,+l

—2 2
1 S | B T
J=Ip+2

[Xal<p

< JJ |u(x) | 2dx“dx,
|x|<2"/’“

+ Z JZJ 1<\x\<2/ (I+ (2]'71)2 - pz)ﬁo|“(x)‘2dxadxa

J=Jp+2 [xal<p
Jy+1
<3 Il F30 (4 U 1) 2 g
j=,+2 '
Jy+1 ' '
<> 2l £O3 (1 22T 2
J=I+2
I+l

gt Y 27T I ull

J=I,+2

IA

Z 2J
=0



N-body long-range scattering matrix 205

23s0+(Jp+2)(1-250) 5
= (2Jp+2 _ 1 + 41 — 21—72s0 )|u||B*(X)

2—30

2 p1—2so 2
(30 143 Il

Thus

| qul|% <C 18,1 w 2 — Callull?
all|lp+(x,) = 2 SuIIJ P P + 1 — 21-2% [lul B (X) = 3 ul B*(X)
p>

which completes the proof.

Proor oF (19). Thanks to (11) the second term in the right-hand side of
(20) belongs to L2(X) for some s> 1/2. The first term is decomposed as

(13 () + Lo(x) = Lu(x2)) T2 9]
= 1(X) (13 (x) + La(x) = La(x0)) T[]
+ (1= () (1) () + La(x) = L(xa))J201 9], (48)
where supp & C {x : elx,| > |x9} and x(x) =1 in {x:2 Te}x,| > x|} with

some ¢ > 0. Here, we find I,(x) — I,(x,) = fol XV, (tx4, x,)dt. On supp K
we have

|X| < |xa] + [x9] < [Xa] + &l Xal,
and thus
|Xa| > ||, (49)

where c¢:=1/(1+¢). Remembering suppg C Co\Upz, X» and X =
{x:x;=x;}, we deduce that for (ij) £a there exists ¢>0 such that

|xi—xj]
[xa]

c¢|x| on supp kg for (ij) £ @ and |x| sufficiently large. Therefore, we have
VI (1x9, x,)] = O(]x| ") uniformly with respect to 0 <7< 1 on supp ig.
Hence by using (18),

K () (La(x) — [a<xa))']o<vii,x[g] € L12/2+uﬂ;’<X)v (50)

for any ¢ > 0. We can also see that by Assumption I,

> ¢ on supp g N {x:|x,] >1}. Combining these facts yields |x; — x;| >

1;(x) =0, (51)

for |x| large enough on supp xg. Since g =0 near C,\C, = C,N (Upz, Xb)
= Ub;{a{fca €Cy: Hbfca = 0}: by Supp(la(xa) - Ia(xa)) - Ubﬁa{xa : |bea| <
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2(1n<xa>)71<xa>}, and (49) we have
I,(x4) — I(x,) = 0, (52)

for |x| large enough on supp xg. Thanks to (14) and J,v7"[g] = u, ® v}, [g] we
can see that

(1= k() (L3 (x) + La(x) = Lo(xa)) 07 lg) € L3, 1 jp o (X), (53)

for any ¢’ > 0. By (50)—(53) the right-hand side of (48) belongs to L2(X) for
some s > 1/2 which completes the proof.

For the proofs of outgoing and incoming properties in Lemmas 2 and 3,
we collect standard results of pseudodifferential operators. For p; € 2% and
P> € 2% by the theorem of compositions of pseudodifferential operators (see
e.g., [10, Section 18]), there exists g € Z55*" such that

Op(p1)Op(p2) = Op(q). (54)
Moreover g has an expansion (see e.g., [16, Theorem 2.7.4])

g~ 3 VeV (paGem)pae €)acs. (53)

n=<

The meaning of the expansion (55) is that the following holds:

< 1 K, S S —m—
q- ;ﬁ ~V: V) {1 (u,n) pa(x, &)= =y e gl

If pe#*°, by theorem of L? continuity of pseudodifferential operators (see
g., [10, Section 18]) we have

Op(p) € Z(L*(R")). (56)

We frequently use the following: since (x>*e #%* for any s € R, by (54) and
(56), we have (x)>*Op(p)<{x)>~* e L(L*(R")) and therefore,

Op(p) € Z(L(R")), (57)
for any s e IR.
PrOOF OF LEMMA 2. Let pt e #:(t¢), and y € C¥(R") be a function
such that y(x) =1 for |x| < 1. Then we can write with the convergence in the
sense of distribution

Op(p+)v;lgl = I(HBIJ (07)e KO pe (3, g (Pn(v) |~ 2 dyde.
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Choosing & < v/A/2 in the definition of p,, we have
€ F V3> (1E+ V)2, (58)
for (y,¢&) e supp px(»,¢), and we obtain
i€ F VAITHET VI) Ty VIR < kL

Integration by parts yields
Op(p=)vilg] = lim J NNV 1 (51 - pew(y) + 2(69) - V(Few)(¥) Ydydé
—tim [0S 5y V() ()

— Op(pz) - (eVMIVw) + Op((V - ) D ) ey eV (59)

where

p=(1,€) = ilE F VP (EF VD) ps(1.8),

w(x) = —eH g (£ ()| 7,
Using the estimate (7) we have
VIR (s o E VI, ¢ L*,(R"), (60)

for 1/2>s">1/2— 4’ and 13¢,(V~13¢)<y>”/ e #°. Thus by (57) we have
Op(p<), Op((V ~ﬁ1)<y>”/) e Z(L*,(R"). Combining this continuity and (60)
we can see that the right hand side of (59) belongs to L2 ,(R") which shows the
outgoing or incoming property.

The following lemma used in the proof of Lemma 3 is proved in the
similar way as Lemma 2.

LemMma 8. If ¢ € C*(IR) satisfies ¢(t) =0 near L and ¢(t) =1 for t large
enough, we have ¢(—A)v3[g) e L2, (R") for some 0 <s' < 1/2.

ProoF. Instead of (58) we have
& F VA > e,

for some constant ¢ >0 on supp ¢(|¢|*). Thus we can show the assertion in
the same way as in the proof of Lemma 2 with ps(x,&) replaced by ¢(|&|%).

Lemma 3 is concerned with Jv7 [g] = u, ® v}, [g]. Since the energy of
v;7,lg] is 4, and the one of u, is E,, the energy of J,v7 [g] is finite and we
can insert a cut-off function with respect to the energy (Hamiltonian) H, :=
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—A4,+ H® in the proof of Lemma 3 below. Because in pseudodifferential
calculus we need localization with respect to momentum, we need a relation
between the cut-off functions of the energy and those of momentum. Lemma
9 below provides such a relation. Let a be a cluster decomposition and €
C*(R). Let p e C*(R) be a function such that supp ¢ C (1,00) and ¢(7) =1
for t > 2. We define

Ke = p(—4/ COW(H,). (61)
LeMMA 9. [|Kc| g p2(x)) < 1/2, for sufficiently large C.
PrOOF.  Set

G(1, C) i= e p(~4/C)W(H,))*p(~4/C)e'™,

Then we compute for any u e L?*(X)
—%@, G(t, C)uy = 2 Reu, e p(—A4/C)(=A) (Y(H,)) p(— 4/ C)e'u.
Since (—A4)(H, — i)' and (H, — i)y(H,) are bounded operators and

lp(=4/C)eul| < e™"IJu,

we can estimate as
d
=<, G(1, Chup < Cillp(—4/C)eul|* < Cre ™ lul|?, (62)

where C; := 2||(*A)(lﬁ(Hu))2||y<L2(x))-
Noticing G(0, C) = p(—4/C)(Y(H,))*p(—4/C) and integrating (62) with
respect to ¢, we obtain

W (Ha)p(—4/ Chul® < C1(2C) ™ Jul| .

Hence

L(L2(X)) = Y (Ha)p(—4/C)

< c/*0)7 2,

IKell g z2xy) = 1K 2(L2(X))

Thus we have |[Kcl| o(2(x)) < 1/2, for sufficiently large C.

By Lemma 9 the operator (1 —Kc)f1 is well-defined. Here we note
that

T = Ke) Hx) e (LX), (63)
holds for any se R (cf. [6, Lemma 2.3]).
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In the proof of Lemma 3 we insert a cut-off function of momentum using
Lemma 9. However, the operator K¢ remains in the expression, and the com-
mutator of K¢ and a pseudodifferential operator does not have a good decay
property due to the potential V; which does not decay in all directions. We
can overcome this problem by considering functions of a kind of first order
differential operator instead of the pseudodifferential operator. Since the com-
mutator of ¥; and the operator such as } (<—:> (=iV) + (—iV) <—f>) has a good
decay property ignoring the singularity of Vj, in the proof of Lemma 3 we
replace psudodifferential operators by such a differential operator. More pre-
cisely, to allow the singularity of ¥} near the origin we use the Graf vector
field w (see [7]) whose norm is bounded and the operator

B:=(w-(=iV)+ (=iV)-w)/2,

as in [6, page 138]. The commutator of B and (1 —Kc)_l decays and we
have

(B, (1= Ke) ™' [Kn" e 2(L7(X)), (64)

for any #,¢' € R such that 1+ ¢ <1 (cf. [6, Lemma 2.3]). To insert a function
of B we need Lemma 10 below. For any 7 >0 we let # (7) (resp., #_(1))
denote the class of functions f € C*(IR) such that supp f C (r,00) and f(7) =1
for ¢ > 27 (resp., supp f C (—0,7) and f(¢) =1 for t < 7/2). As in the proof
of [6, Theorem 2.12], we have the following lemma which is convincing by
the expansion of a product of pseudodifferential operators (55) considering the
product Op(ps)F+(B) as if B were a psudodifferential operator with the symbol
%5+ ¢ and Fy(B) were that with F (<—:>f)

LemMmA 10. Let ¢ be a positive constant.
(1) If p—eR_(¢) and F. € F ,(¢), then

()" Op(p-)Fy(B)<x)" € Z(L*(X)) (65)

for any re R
(2) If preRi(e) and F_ € F_(¢), then

(X Op(p+)F-(B)Xx)" € Z(L*(X)) (66)
for any re R

The proof of (65) is exactly the same as the proof for the boundedness
of A, in the proof of [6, Theorem 2.12], except that we replace the constants
piv/a(4), j=1,2 and py/a(4) with p,p, < p, there by constants ¢é& <éi.
The proof of (66) is similar.
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REMARK 4. Our definition of F 1 is customized to have a convenient form
in the proof of Lemma 11 below. We have 1 — F, € #_(2¢) by our definition.
Lemma 10 holds for more general F. and ¢e R. In fact, only the support
property and \Fik)(l)| < Ce(1+ 1) 7%, are needed.

Using Lemma 10 and taking a commutator of a function of B and
(1 —Kc)f1 we can move a pseudodifferential operator from the left of
(1 —Kc)f1 to the right as in the following lemma. We shall prove only
the outgoing case of Lemma 3, since the proof for the incoming case is
completely analogous. Thus the lemmas below are used for the outgoing case.

Lemma 1. Let p_ e R_(¢), ¢ > 0, 9 € C¥(R) identifying X = R" and K¢
be the operator in (61). Then there exist p_ € R_(6¢) and operators Ty, T, such
that

Op(p-)(1 = Ke)™'¢(=4) = T1Op(p_)§(~4) + T,
and Ty € L(LX(X)), (x)'Toix)" € L(LA(X)) for any se R and t+1 < 1.
ProoF. Let F, € #,(¢). We decompose the operator as
Op(p-)(1 = Ke) ™' @(—=4) = Op(p-)(1 = F+(B))(1 - Kc) ™' §(—4)
+ Op(p-)F(B)(1 — Ke) ™' 4(—4). (67)
As for the second term, by (65), (63) and continuity (57) of @(—4) we have
XY Op(p-)Fi(B)(1 = Ke) 'g(=A)(xy" € 2(LP(X)),
a

for any reR. As for the first term, commuting 1 — F(B) and (1 — K¢)™
we obtain

(1= Fo(B)(1 = Ke)~'6(=4) = (1 = Kc) ™ (1 = Fy(B))§(~4)
—[Fu(B), (1 = Ke)'Jg(=4).  (68)
By (64) and (57) the second term in the right-hand side satisfies

O [F(B), (1= Ke) T g(=A) (0" e 2(L7(X)),

for t+1¢ <1.
Let us consider the first term in the right-hand side of (68). Let f_ €
F_(6e) and ¢ e CX(R) be a function such that ¢(¢) =1 on supp ¢ and set

q-(x,¢) = (- O)p(1E),
g+ (x,€) = (1 = f-(% - 9)a(I¢]?).
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Then we can easily see that g_ € #_(6¢) and ¢, € #,(2¢). We can decompose
the operator as

(1 - F(B)p(=4) = (1 - F(B))Op(q-)p(=4)
+ (1= Fi(B)Op(q+)9(=4). (69)

As for the second term, since (1 — F,) € #_(2¢) and p, € #.(2¢), by (66) and
(57) we obtain

(XY (1 = F(B)Op(q4)d(—4)<{x)" € L(L*(X)),

for any re R.
By (67)—(69), (63) and the estimates of the operators as above we
obtain

Op(p-)(1 — K¢) ™' ¢(—4) = T Op(p_)p(—4) + T,

where T = (1 — Ke) (1= Fy(B)) (~4 — i) ™', p_(x,&) = (|&* — g (x,¢) and
T, satisfying the condition in the lemma. Since we have

GO = Fu(B)) (=4 = 1) )" € (LA (X)),

for any se R (cf. [6, Lemma 2.3]), by (63) T satisfies the condition in the
lemma. It is easy to see that the condition p_(x,&) e Z_(6¢) holds.

In order to utilize the outgoing property of v} [g], we need to replace
the pseudodifferential operator in X by that in X. We achieve this aim by
inserting cut-off functions. In the region where |x“| > d|x| holds for some con-
stant J > 0, using the decay of u, we have a good decay estimate of J,v; [g].
The other region is close to X, and we can introduce the pseudodifferential
operator on X, in such region.

LeMMA 12.  Let ¢ be a positive constant, § € C¥(R) and p_(x,&) € R_(¢).
Then there exist p®(x,,¢,) € R_(4e), {(x) e C*(X) and operators Ty, T», T3
such that

Op(p_)p(—4) = T1Op(p®) + Tr{(x) + T3,

( is homogeneous of degree 0 for |x| >2, supp{N{x:|x| >1} C{x:|x% =
x|} for some & >0, Ty, Ty e L(LX(X)) and {x)'T3(x>" € L(L*(X)) for any
seR and t4+ 1t < 1.

ProorF. We decompose the operator as

Op(p_)§(—4) = Op(p_)§(—A)(x) + Op(p_)§(—4)(1 — {(x))

= Op(p_)g(—A)(x) + To{(x), (70)
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where ((x) e C*(X) satisfies supp ¢ C {x: |x“| < 20|x], |x| > 1}, {(x)=1 in
{x:]x9 <9|x|, |x| > 1} for some 6 >0 and homogeneous of degree 0 for
IX| >2, Tr:=Op(p_)p(—4) and (:=1—C. By the continuity (57) of the
pseudodifferential operator Op(p_)@(—A4) and the support property of & Ty
and ( satisfy the conditions in the lemma.

Set a symbol p_(x,&):=p_(x,&)@(|E[*)¢(x). Then by expansion (55) of
a product of pseudodifferential operators, it follows that the first term in the
right-hand side of (70) is decomposed as

Op(p_)p(=A){(x) = Op(p_) + Op(q), (71)
where g€ #7!, so that
(XY Op(g)<xy" e L(L*(X)), (72)

for any t+ ' < 1. Choosing sufficiently small J, on supp p_ we have |x“| < &
and |§“|2 < 2C, with & > 0 arbitrarily small, so that choosing sufficiently small &

Xg g < x-E+e< 2, (73)

on supp p_, where we used p_ e #Z_(¢) in the second inequality.

Let ¢, € CX(IR) be a function such that ¢,(f) =1 on a interval [-C,C] D
supp §(1) and £ € 7 (4z), and set a symbol p (¥, &) i= (%, - E,)0a(E).
Then it is easily seen that p? € #_(4¢). Moreover, by .7 < |€]* we have

1= 9,(1[%) = 0 on supp ¢(|¢|*), and by (73), 1 = /(%4 -&,) =0 on supp p_.
Combining these support properties we obtain

1 —p%(x4,¢) =0 on supp p_(x,&). (74)

We decompose the first term of (71) as

Op(p-) = Op(p-)Op(p) + Op(p_)(1 — Op(p?)). (75)
By (74), the expansion formula (55) and (56) we have
" 0p(p_)(1 = Op(p?))<x>" € L(L2(X)), (76)

for any re R.
Combining (70), (71) and (75) we obtain

Op(p_)p(—4) = T\ Op(p®) + Tr{(x) + T3,

where T := Op(p_) and T3 := Op(q) + Op(p_)(1 — Op(p®)). Tt follows from
the continuity (57) of the pseudodifferential operator Op(p_), (72) and (76) that
the T and T3 satisfy the conditions in the lemma which completes the proof.

With the above preliminaries we can now prove Lemma 3.
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ProOOF OF LEMMA 3. Our goal is to prove
Op(p+)J.vf,lg] € L? (X)),

for some 0 < s’ < 1/2, where p_e #_(¢) and p; € #.(—¢) for some &> 0
identifying X = R"”. We shall consider the outgoing case. We fix ¢ in the
following and will choose sufficiently small ¢ near the end of the proof. Let
Vo€ CP(R) be a function such that y,(z) =1 near 0. Then by Lemma 8 we
have (1 — (=44 — 4,))v] 9] € L2 ,(X,), and thus,

(1= Who(=Aa = 2))av] ,lg] € L2 (X), (77)
for some 0 < s’ <1/2. By (77) and (57) we have
Op(p-)(1 — (=44 — iot))-]xv:a[g] € LES/(X).

Thus we only need to prove

Op(p-Wro(—Au — 22)J w0} [ ] = Op(p-)¥o(—4 )”avx L9 }GLz (X). (78)
Since Hu, = E,u, and A, = A — E,, we have
lpO(_Aa A )M“U; 1[ ] lpO( - )‘)ul v, oc[g] (79)

where H, = -4, + H' =4+ ., Vy. Using IEG C*(R) satisfying v = 1
near A, the operator y,(H, — /) can be rewritten as ¥(H,). Let p € C*(R) be
a function such that supp ¢ C (1,0) and ¢(f) =1 for r > 2, and y € C¥(IR) be
a function such that ¥ =1 on supp |ﬂ Setting ¢, :=1 — ¢ we have

‘;(Hu) - (KC + ¢0(_A/C)>l/;(Ha)a (80)

where C >0 and K¢ :=¢(—4/C)y(H,). By Lemma 9, [|Kcl|g2x)) < 1/2,

for sufficiently large C. Therefore, by (80) we can write

U(H,) = (1 - Kc) ' po(—4/C)(H,),

and therefore,

Y(Housv) 9] = (1= Ke) ™ oo(=4/ )b (Ha)usv} ). (81)
Since by (77) we have
(1 =¥ (Ha))uv] 9] = (1= Yo~ Ay = &) usv] lg) € L2, (X),

for some 0 < s’ < 1/2, by (63) and (57) we obtain

Op(p-)(1 = Kc) ™ 9o(=4/C)(1 = Y(Ho))u,v] lg) € L2 (X). (82)
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By (79), Wo(H, — A) = y(H,), (81) and (82) we can see that (78) holds if we
show

Op(p-)(1 — Kc) " po(—4/ C)uzv] 9], (83)

belongs to L2 ,(X) for some 0 < s’ < 1/2. Defining functions ¢ and ¥, ;[g] by
@(t) == ¢y(¢/C) and ¥, ,[g] == uavim[g} e L? (X), Vs > 1/2 we can rewrite (83)
as

Op(p-)(1 — K¢) ™' ¢(—4)?,.1[g]. (84)
By Lemma 11, (84) is equal to
T10p(p_)p(=A) ¥, ;[g) + T2 ¥, i[9l

where T7, T, and p_ satisfies the conditions in Lemma 11. As for the second
term, choosing 1/2 < s< 1 we have

T2%, ;9] = { T2 (x> HKx) W, 4lg]} € LA (X).

Therefore, we have only to show first term belongs to L?(X) for some
0<s"<1/2. By Lemma 12 there exist p®(x,,¢&,) € Z_(24¢), { € C*(X) and
operators T, T», Ts such that

T0p(p_)¢(—4) = TV T Op(p*) + Th T>{(x) + Th T, (85)

and satisfying the conditions in the lemma. Using the properties of 7 and T3,
we can easily see that the third term satisfies

T T5¥, ;9] € L*(X). (86)

As for the second term, it follows from the support property of { that there
exists C > 0 such that [{x)>%{(x)| < C|<x?*>*{(x)|. Thus by the decay assump-
tion (14) of u, and v/ [g] € L? (X,), Vs > 1/2 we have

LX)V alg) = Cuan Llg] = o)7L (x)uuv) lg] € LP(X).  (87)
As for the first term, the outgoing property of vza[g] implies
Op(p)v) lg) € L2, (Xa), (88)

for some 0 < s’ < 1/2 and sufficiently small . Since u, is obviously in L?(X %)
and ¥, ;[g] = u,v],[g], by (88) it follows that

Op(p*) ¥, 1lg] € L2 ,(X). (89)
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Combining (85)—(87) (89) and the continuity of Ty, T;, T>» we obtain

Tl OP([),)@(*A) Wa,/l[g} € LES/(X),

for some 0 < s’ < 1/2 which completes the proof. The proof for the incoming
case is similar.
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