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ABSTRACT. Our aim in this paper is to deal with the boundedness of the Hardy-
Littlewood maximal operator and the Hardy operator on non-homogeneous central
Herz-Morrey-Musielak-Orlicz spaces and to establish a generalization of Sobolev’s
inequalities for Riesz potentials of functions in such spaces.

1. Introduction

Let RY be the Euclidean space and let B(x,r) denote the open ball
centered at x € RY with radius r > 0.

In harmonic analysis, the maximal operator is a classical tool when study-
ing Sobolev functions and partial differential equations. This also plays a
central role in the study of differentiation, singular integrals, smoothness of
functions and so on (see [8, 28, 50], etc.). It is well known that the maximal
operator is bounded on the Lebesgue space L”(RY) if p > 1 (see [50]). The
boundedness of the maximal operator was studied on Morrey spaces in [11, 42],
on Orlicz-Morrey spaces in [44], and also on non-homogeneous Herz spaces in
[29]. For Morrey spaces, which were introduced to estimate solutions of par-
tial differential equations, we refer to [40, 46].

One of the important applications of the boundedness of the maximal
operator is Sobolev’s inequality; in classical Lebesgue spaces, we know Sobolev’s
inequality:

||Imf||L1?*(RN) < C”f”Ll’(RN)

for fe LP(RY), 0 <o < N and 1 < p < N/a, where I, is the Riesz kernel of
order  and 1/p* = 1/p — a/N (see, e.g. [2, Theorem 3.1.4]). Sobolev’s inequal-
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ity for Morrey spaces was given by D. R. Adams [1] (also [11, 42]), and then
the result was extended to Orlicz-Morrey spaces in [43]. See also [29] for
non-homogeneous Herz spaces and [20] for non-homogeneous central Morrey
spaces. For local Morrey-type spaces, we refer the reader to [9, 10] and
so on.

Variable exponent Lebesgue spaces and Sobolev spaces were introduced to
discuss nonlinear partial differential equations with non-standard growth condi-
tion. For a survey, see [15, 19]. The boundedness of the maximal and Riesz
potential operators were studied for variable exponent Lebesgue spaces L?()
(see [16, 17, 18]), variable exponent Morrey spaces (see [4, 22, 23, 34, 39]), Herz
spaces with variable exponents (see [3, 27, 47]), local variable exponent Morrey
type spaces (see [23, 24]) and non-homogeneous central Morrey spaces of vari-
able exponent (see [38]).

Recently, the boundedness of the maximal and Riesz potential operators
were studied for Herz-Morrey spaces with variable exponents (see [35, 36]) and
non-homogeneous central Herz-Morrey-Orlicz spaces in the constant exponent
case (see [37]).

Let 2 be a measurable set in RY. Given a general function ®(x,?) sat-
isfying certain conditions, we consider the associated Musielak-Orlicz space
(cf. [41])

22(@) ={ 1 e L@ | @0y < o .
which is a Banach space with respect to the norm
1oy = nt 2> 0: [ @0 Lrirnay <1

(see Section 2 for the definitions of @ and @). For the recent development of
the theory of PDEs in Musielak-Orlicz spaces and Herz spaces with variable
exponents, we refer to [7, 12, 25, 48] and so on. Let w(r) : (0,00) — (0, c0) be
almost monotone on (0, co0) satisfying the doubling condition. Let 0 < ¢ < 0.
Given @(x,t) and o(r), we denote by #%%“(R") the class of locally inte-
grable functions f on R" satisfying

* dr\'/?
||f||,7/"’"‘/“”(R"V) = ||f||m(3(o‘,2)) + <J1 (w(r)lf”L"’(A(O,r)))qr) < 00,

where A(0,r) = B(0,2r)\B(0,r). The space # % %“(R"Y) is referred to as a
non-homogeneous central Herz-Morrey-Musielak-Orlicz space (see Section 2).

Our first aim in this paper is to study the boundedness of the maxi-
mal operator on non-homogeneous central Herz-Morrey-Musielak-Orlicz spaces
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#P42(RY) (Theorem 1 below), as an extension of [36, 37]. To this end,
we apply the boundedness of the Hardy-Littlewood maximal operator on L?
given in [30]. The case when ¢ = oo was treated in [45], as an extension of
[35].

Next we study the boundedness of the Hardy operators ﬁg‘ and ﬁg on
#P42(RN) (Theorems 2 and 3 below). See Section 4 for the definitions of
I-ITIB?O and 1:1/9.

As an application of the boundedness of the maximal operator, we es-
tablish Sobolev’s inequality for Riesz potentials 1,/ of functions in # ? ¢ (R")
(Theorem 4 below), as an extension of [36, 37]. When ¢ = oo, we refer to
[35, 45].

Further, we discuss Sobolev’s inequality for generalized Riesz potentials
L.if of functions in #®%“(R") (Theorem 5 below), as an extension of [35,
36, 37]. See Section 6 for the definition of I, f.

In Section 7, in connection with the study in [21, 24], we investigate the
space #'%*(RY) and its complementary space # (p’q’w(RN ).

In Section 8, we treat the case ¢ is variable.

Throughout this paper, let C denote various positive constants independent
of the variables in question. The symbol g ~ & means that C~'h < g < Ch for
some constant C > 0.

2. Preliminaries
We consider a function
&(x,1) = tg(x,1) : RY x [0, 00) — [0, 0)

satisfying the following conditions (@1)—(®4):
(@1)  ¢(-,1) is measurable on RY for each ¢ >0 and ¢(x,-) is continuous
on [0,0) for each x e R";
(@2) there exists a constant 4; > 1 such that

A7 < p(x, 1) < 4, for all x e RY;

(@3)  ¢(x,-) is uniformly almost increasing; namely there exists a constant
A > 1 such that

d(x, 1) < Arg(x,5) for all x e RY whenever 0 <t < s;
(P4) there exists a constant A3 > 1 such that

d(x,2t) < A3p(x,1) for all xe RY and ¢ > 0.
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Note that (@2), (&3) and (P4) imply

0 < inf ¢(x, 1) < sup ¢(x,1) < oo

I v
veR xeRW

for each ¢ > 0.
If &(x,-) is convex for each x € RY, then (®3) holds with 4, = 1; namely
¢(x,-) is non-decreasing for each x e R".

Let ¢(x,1) = supy_,, ¢(x,s) and

B(x, 1) = Jl Foe, r)dr

0

for xe RY and 7r>0. Then &(x,-) is convex and

ZLA3¢(X7 ) < B(x, 1) < Arb(x, 1) (1)

for all xe RY and 7> 0.
By (®3), we see that

o )gAzacD(x,z) if 0<a<l,
VAN > A5 ad(x,0) if a> 1.

We shall also consider the following conditions for @(x,¢): Let p > 1,
g=1,17n>0 and 7> 0.
(D3;0;p) t+— t7PP(x,t) is uniformly almost increasing on (0, 1], namely
there exists a constant 4>, > 1 such that

47D(x, 1) < Az o5, P(x, 1) for all x e RY whenever 0 <1 < £, < 1;

(D3;00;q) t+ t79®(x,t) is uniformly almost increasing on [l,c0), namely
there exists a constant 4, ., , > 1 such that

19D (x, 1)) < Az 0 g1, 1D(x, 1) for all xe RY whenever 1 <1, < t;
(D5;7) for every y > 0, there exists a constant B,, > 1 such that
&(x,t) < B, , P(y,1)

whenever x,y e RY, |x — y| <yt and t > 1;
(D6;7) there exist a function g on RY and a constant B, > 1 such that
0<g(x) <1 for all xeRY, ge L*(R") and

B'®(x,1) < &(x',1) < B, D(x,1)

whenever x,x’ e RV, |x/| > |x| and g(x) <t < 1.
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Note that (@3;0;1) 4 (P3;00;1) = (D3). If d(x,r) satisfies (D3;0;p),
then it satisfies (@3;0;p’) for 1 < p’ < p; if @(x,¢) satisfies (P3;c0;¢), then
it satisfies (@3;00;¢’) for 1 <¢' <gq.

If @(x,1) satisfies (@D3;0; p), then

@(X, l) < A1A2,0‘plp for 0 <tr<1;
if @(x,1) satisfies (@3; c0;¢q), then
®O(x,1) > (414,00 4) 19 for 1> 1.

If &(x,1) satisfies (D3;7), then it satisfies (D5;7’) for all ' > n; if d(x,1)
satisfies (@6;7), then it satisfies (®6;7’) for all 7/ > 7.
In the following examples, we use the notation

[~ = inf f(x) and  ft:= sup f(x)

N
xeR xeRV

for a measurable function f on RV.

ExampLE 1. Let p;(-), i=1,2 and g¢;;(-), j=1,...,k;, be real valued
measurable functions on RY such that p; >l and ¢q;;> -0, i=12, j=
I,... k.

Set L.(t) =log(c+1t) for ¢>1 and t>0, L§1>(t):LC(t), Lfﬁl)(l):
L(LY(1). Let

®(x, 1) O IR (LY (/)Y i 0<r<1,
X, t) =
O[T (L ()= =1,

Then, @(x,¢) satisfies (@1), (P2) and (P3). It satisfies (P3;0;p) for 1 < p <
py in general and for 1 <p<py in case ¢; ;>0 for all j=1,... ki it
satisfies (@3;00;¢9) for 1 <g < p; in general and for 1 <¢ < p; in case
4,; =0 for all j=1,... k.

Moreover, we see that @(x, 1) satisfies (@5;7) for every n > 0 if py(-) is
log-Hoélder continuous, namely

G

|p2(x) — p2(¥)| < L/ =) (x,yeRY)

with a constant C, >0 and ¢, ;(-) is (j+ 1)-log-Holder continuous, namely

G

— (x,yeRN)
LY/ |1x - y))

|92.5(x) — q2.;(¥)| <

with constants C; >0, for each j=1,... ks.
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Finally, we see that @(x,1) satisfies (P6;7) for every 7 > 0 with g(x) =
(1+ |x)) " YV if pi(.) is log-Holder continuous at oo, namely

/ o
|p1(X) _pl(x )‘ < Leax‘)

whenever |x'| > |x| (x,x" € RY) with a constant C, ., >0, and ¢y ;(-) is (j + 1)-
log-Holder continuous at oo, namely

c!
|91.5(¥) = g1, (") <~ —
' ! LY (Jx)
whenever |x'| > |x| (x,x" e RY) with a constant G/ >0, for each j=1,... k.
In fact, 1f( + [x)"VHDT < < 1, then 1P () ) < eWNHDGw/7 for |x’| > |x]

and (L! o A (1))l < o(N, Cj) for |x’| > |x].

The following example shows that our conditions are satisfied by the
double phase functional with variable exponents.

ExaMpPLE 2. Regarding regularity theory of differential equations, Baroni,
Colombo and Mingione [5, 6, 7, 13, 14] have studied the double phase
functional

D(x, 1) =" +a(x)t?

where 1 < p <gq, a(-) is non-negative, bounded and Holder continuous of
order 0 € (0,1]. 1In [31], we studied the double phase functional with variable
exponents:

D(x, 1) = 'Y 4 a(x)r19), xeRY, t>0,

where p(-) and ¢(-) are real valued functions on R" such that p(x) < g(x)
for xeR", a(-) is non-negative, bounded and Hélder continuous of order
0 e (0,1]. This &(x,1) satisfies (@1), (@2), (P3), (@3;0; p~), (P3;00; p~) and
(@5;1) for 7 > supyys0y(g(x) — p(x))/0 if 1<p” <p" <o, 1<q” <
gt < o, p(-) and ¢(-) are log-Holder continuous. Further it satisfies (P6;7)
with g(x) = (1 + |x|) " ™V/" for every 7> 0 if p(-) is log-Hélder continuous
at oo. See [31] for details.

Let Q be a measurable set in RY. From now on, we assume that ®(x, ?)
satisfies (@1), (P2), (@3) and (P4). Then the associated Musielak-Orlicz
space

L2(0) = {feL,Mm [, 20nbrts >|>dy<oo}
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is a Banach space with respect to the norm

1o = inf{x > 0: [ B0l 2y < 1}

(cf. [41]).

REMARK 1. The Musielak-Orlicz spaces L%(2) include the following
spaces:
* Orlicz spaces defined by Young functions satisfying the doubling con-
dition;
* variable exponent Lebesgue spaces.

ReEMARK 2. The dominated convergence theorem and (®4) yield

o,
Jf(y’nfnm))y '

We consider a function w(r) : (0,00) — (0,00) satisfying the following
conditions (wl) and (w2):
(wl) () is almost monotone on (0, o0); that is, w(-) is almost increas-
ing on (0, c0) or w(-) is almost decreasing on (0, c0); namely there
exists a constant ¢; > 0 such that

o(r) < cio(s) forall 0 <r<s

or
o(s) < co(r) for all 0 <r<s
respectively;
(w2) o(-) is doubling on (0, c0); that is, there exists a constant ¢, > |
such that

e;'o(r) < o(2r) < co(r) for all r> 0.

Let 0 <g<o. Given @(x,f) and w(r) as above, we denote by
#P42(RN) the class of locally integrable functions f on RY satisfying

r

0 dr 1/q
”f“gffd’“/“”(RN) = ||f||L¢(B(0,2)) + (Jl (w(r)|f||L‘7’(A(0,r)))q> < 00,
where A(0,r) = B(0,2r)\B(0,r). The space # % %*(R"Y) is referred to as a
non-homogeneous central Herz-Morrey-Musielak-Orlicz space.

RemARK 3. The non-homogeneous central Herz-Morrey-Musielak-Orlicz
spaces .# 4 ?(R") include the following spaces:
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* non-homogeneous Herz spaces introduced in [26];

* local Morrey-type spaces introduced in [9];

* non-homogeneous central Herz-Morrey-Orlicz spaces introduced in [37]
where @(x,t) = @(1);

¢ non-homogeneous central Herz-Morrey spaces with variable exponents
introduced in [36] where @(x,t) = 1Y),

LemMAa 1. For 1/2<a<1<b <2 with 2a > b, there exists a constant
C >0 such that

bt
J (w(r)”fHL‘b(A(O,r)))q? = C(w(l)”fHL"’(A(O,z)))q (2)

at

for all t> 0.

Proor. For 1/2 <a<1<b<2 with 2a > b, we have

Y

t dr
J (w(r)”fHL"’(A(Oﬁr)))qT C(w(f)||f||m(3(o,2az)\3(0‘,r)))q

at

and

bt
) dr
J (w(r)HfHL‘Z’(A(OAr)))q? = C(w(t)Hfl|L"’(B(0721)\B(0,b1)))qv

t

so that we obtain
(@IS o a,0)”
< (@O f (80,200 80,50) T CONS N Lo B0, 2000 510, z)))q

bt . d p . p
< of [ @O siaon) F+ [ @O o0

r at r

bt dr
= | @I owon) =

at

LEMMA 2. For a bounded measurable set Q, there exist constants Co and
C}, such that

|, oy < CallFlore) < Coll oo ®)

for all e #®4*RN)

Proor. If ||f||L"’(.Q) < 1, then

JQ [/ (x)ldx < || + 24145 JQ P(x, | f(x))dx < |Q] + 24,45
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by (®2), convexity of @(x,-) and (1), where |Q| denotes the Lebesgue measure
of Q. This shows the first inequality in (3).
Next, suppose f e #%%“R") and Q C B(0,2) (k>1). Then

k-1
1/l Le@) < 1 F1lLos0,2)) + Z 1N Leac0,29))
Jj=1

k-1

< 1/ Logso.2) + Ce Y @S Loga0.21):
=

where C ! =inf,_, - o+1 @(r) > 0. Then, using Lemma 1, we obtain the
second inequality in (3). O

LemMa 3 (cf. [30, Lemma 5.1]). Let F(x,t) be a positive function on
RY x (0, 0) satisfying the following conditions:
(F1) F(x,-) is strictly increasing and continuous on (0,00) for each
xeRY;
(F2) there exists a constant K; > 1 such that

K ' < F(x, 1) <K for all xeR";
(F3) tw— t7*F(x,t) is uniformly almost increasing for & > 0; namely there
exists a constant K> > 1 such that
17°F(x,1) < Kps7°F(x, ) for all x e RY whenever 0 < t < s,
(F4) there exists a constant Kz > 1 such that

F(x,2t) < K3F(x,1t) for all xeR" and t > 0.

Let F~\(x,-) be the inverse function of F(x,-). Then:
(1) F~Y(x,-) is strictly increasing.
(2)
F~'(x, 1) < (Ko ) /PF = (x, 1)

for all xeRY, t>0 and ). > 1.
3)
F~'(x, 1) < 22 /lee ks p=1(x 4)

for all xeRY, t>0 and 0 <) < 1.

4)

1/¢
. t _ &
rmn{l, <K1K2) } < F(x,1) < max{1, (K, K>1)"/*}

for all xeRY and t > 0.
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REMARK 4. F(x,1) = @(x,t) satisfies (F1), (F2), (F3) and (F4) with K| =
A1 max{A2,2A3}, K2 = 1, K3 = 2A3 and ¢=1.

We also consider a convex function @, (¢) = t¢(t) : [0,00) — [0, c0) such
that ¢_ (#) > 0 for £ > 0, ¢, (¢) is increasing on [0, o) and satisfies the doubling
condition and

(D,1) there exists a constant Q > 1 such that

QO '®(x,1) < D, (1) < QD(x,t)  whenever g(x) <t <1
for g in condition (®6;7).

REMARK 5. Note from (@, 1) that for ¢j,¢; > 0, there exists a constant
0O > 1 such that

QO '®(x,1) < D, (1) < OD(x,1)  whenever cjg(x) <t<c
for g in condition (&6;7).
REMARK 6. Suppose &(x,?) satisfies (P6;7). Set

@, (1) =limsup @(x,7) and ¢, (1) = D, (1)/t.

|x|— 00

Then note that ¢ (¢) > 0 for ¢ > 0, ¢ (¢) is increasing on [0, 00) and satisfies
the doubling condition. Further, by (®6;7), we find that @, (7) satisfies (D, 1).

We denote by y the characteristic function of E and by @_!(¢) the inverse
of @ (1).

LemMmA 4. Assume
(Ds2) there exists a constant Q > 1 such that

D (g(x)) < Q1+ |x) "

for all xeRY.
Then there is a constant C > 0 such that

so.n oy < L@ ()}
for all r> 1.
Proor. Note from (®,2) and Lemma 3 (2) that
g(x) < CON (1 +|x) ™) < Co (1)

for all xeRY.
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Let R>1/2. We have by (&3), (¥4), Lemma 3 (2) and (1)

J o, &) R VNdy<C | @(nd (1 + 1))y
A(0,R) A(0,R)
<c| e @) ey
A(0,R)
<C (1+]y))Vay
A(0,R)
< C.

Hence we obtain

1 p—Nyy -1
1 xa0.mllLo@y) < c{o, (RY)}
for all R >1/2.

Here note from Lemma 3 (4) that

&' (RV) <max{l,CR™V} < C,

0

so that
max{{®,'(R"")} ', 1} < C{o ' (R7V)} !

for all R >1/2.

Fix r>1. Let j, be the largest integer such that 27*!y > 1. Now we
see from Lemma 3 (3) that 7 +— t’g{cbgol(t’N)}*l is almost increasing on (0, o0)
for some constant ¢ > 0, so that

Jo
1809l Lo@y) < Z 140,20 o™y + X80, 1)l Lo @Y
=1

< C{i{%‘((ﬂrﬂ)}l + 1}

=1

as required. O

REMARK 7. If g(x) < C(1+|x|)™", then (&.,2) holds by convexity of
D,
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REMARK 8. Let @(x,¢) and g(x) be as in Example 1. Then there exist
constants pi(o0) > 1 and ¢; ;(c0) eR for j=1,...,k such that

lim pi(x)=pi(0)  and lim q1,;(x) = q1,;(0)-

a0 e
Set ¢..(1) = Supos‘vst{spl(oc)il HJQI(L(EJ—A)I(I/S))WLI@O)} and
Lo dr
@.0)= b.0)F.
0 r

Then @ (t) satisfies (@,1) and (D,.2) for 0 <7< (N +1)p;(0)/N.

LEMMA 5. Suppose that @, (t) satisfies (D,2). Then there is a constant
C >0 such that

1

—_ lfD)dy < CD ™S N oo
T o, VO S ooy

when r =1 and || f1| o4, < o

Proor. Fixr>1. Let f be a nonnegative measurable function on 4(0,r)
satisfying ||/l o4, < 1. Then we have by (&3)

1
4(0.7)] Lw,r)f (»)dy
—1 r,N A2 (ﬂ(yvf(y))
<P () |A(07V)|L(o,r) y)qo(y,cbgcl(r*N))dy
— (N A @ (r ™) 1 -Ny -1
R I O A Gl

Since
g(y) < COH((1+ )Y < Col () < € (1)
for all y e A(0,r) by (@,2), we have by (1)
Py, @, () = Cr Y

for all y e A(0,r). Hence we obtain

1 -1 r*N -1 1"7N
TG0, SO =0l R ol [ o

as required. O
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3. Boundedness of the maximal operator

For a locally integrable function f on RY, the Hardy-Littlewood maximal
function Mf is defined by
1

The mapping f — Mf is called the maximal operator.

By [31, Theorem 3.1], we have the following result.

LEMMA 6. Suppose that ®(x,t) satisfies (93;0; p), (D3;00;q), (P5;%) and
(D6;7) for p>1,q¢>1,n>0 and © > 0 satisfying n < q/N and © < p. Then
the maximal operator M is bounded from Ld’(RN ) into itself; namely, there is
a constant C >0 such that

[MfllLe@yy < ClS M owy)
for all feL®RY).
For a nonnegative function f e L} (R") and a real number f, set
0 =o' |
RY\B(0,2r)

LemmA 7. For a real number [, suppose that @, (t) satisfies (®@,,2) and
(Dool;p) tﬁl’ﬂw(t)flé;l(t’N) is almost decreasing in [1, c0) for some & > 0.
If 0 < e <e, then there exists a constant C > 0 such that

RN dr\'/*
7 10) < &0 ) (|00l s a00)' )
for all r>1 and nonnegative functions f e L} (RY).
Proor. Let feL) (RY) be a nonnegative function on R"Y. Let r>1
and 0 < ¢ < ¢g.
First we consider the case 1 < ¢ < oo. Then we have by Lemma 5 and
Holder’s inequality

HEf(r) = 1" j N G)ay
A(0,27r)
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” 1/q'
< Crﬁ <Z((2_/’r) Sflf’w<2j,,)71¢o—ol ((2_/,,) N))tl’>

© . 1/q
X( ((2’7)sw(2’r)||f||m(A(o,zfr)))q> :

=1
Here note from (@, wl;f) that

- 1/q'
(Z((Z’ oo, (2 V)N))"/>

J=1

. 1/q'
< Cr’:liﬂw(}’)_lé;l (},—N) <Z(2jr) (ﬂ—ﬂl)q’>
j=1
< For) o (r ).

0

By (2), we have

% 1/q
(Z((zj”) Sw(zjr)”f“L‘i’(A(O‘Z/'r)))q)

<c i(zfrwj @O a0,

(2/3)20r t

2+l d »
< C(Z JZ/lr(t_gw(t)||f|L(b(A(O’t)))th)

(@/3)27r dt)l/q

© o an\'/?
| ol oo ,w—) .

r ’ t

Hence

0 1/q
H710) < oo ) ([0l T)

, t

For the case 0 < ¢ < 1, by the fact that (a+b)? < a?+ b4 for all a,b >0
instead of Holder’s inequality, we obtain the required inequality. O

For a nonnegative function f e L} (R") and a real number f, set

HYf(r) = r”j AP ()dy.
B(0,)\B(0,1)



Boundedness of maximal operator, Hardy operator and Sobolev’s inequalities 27

LEMMA 8. For a real number f, suppose that @, (t) satisfies (®,2) and
(D,w2; ) 72 Pw(t) '@ (V) is almost increasing in [1,00) for some
& > 0.
If 0 < &< &, then there exists a constant C >0 such that

t

' ar\"
HYf(r) < Créo(r) " @ () (L/z( OO Sl Lo (a0, )

for all r =1 and nonnegative functions f € L}OC(RN).

PrOOF. We show only the case 1 < ¢ < oo since the remaining case is
easily treated. Let f e L) (R") be a nonnegative function on RY. Let r > 1
and 0 < e <e. Let jo be the largest integer such that 20+ > 1. We have
by Lemma 5, Holder’s inequality, (@, w2;f) and (2)

HOA(r) = rﬁzj Y ()

(0,27r)\B(0, 1)

Jo ) 1
<Nt 7J
_,;( ) 1A(0,277r)] J 40,2770\ 800,1)

f(y)dy
< Crﬂz (27r (27r)~ )HfXRN\B(O,l)”L"’(A(O,Z*/r))
Jo /g
< (Z((z—jr) _e_ﬁw(Z_jr)_l(D;OI((Z_jV)_N))q )
Jo /g
X <Z((2_'/")sw(2_'/")||fXRN\B(0,1)|L¢(A(o.,2fr)))q>

Jo /4’
< Cr‘”a)(r)léwl(rlv)<2(2 ) (e >

=1

i 1/q
Jo
X <Z((2]V)gw(217)||f)(n“’\3<0,1) |L@(A(0,2fr)))q>

J=1

< Cr_‘"'w(r)fldfl (V_N)

o0

) 1/q
Jo
X <Z((2]r)ew(z]r)”fXRN\B(O,l)|L“°(A(0,2fr)))q>

J=1
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1/q
e IR . dt
< Cr o) @) (r N)<Jl/4(1'w(f)|fXRN\B(o,l)|L¢(A<o,t)>)q—>

1/q
g dt
_ I )
< Cro(r) @ (r N)<L/2(Zew(f)|f||L¢(A(o,t)))q7> ;
which gives the required result. O
We present the boundedness of the maximal operator in # ¢ (RY).

THEOREM 1. Suppose that ®(x,t) satisfies (D3;0;p), (D3;0;q), (D5;n)
and (®6;7) for p>1, ¢g>1, n>0 and 7> 0 satisfying n < q/N and 7 < p.
Assume that @ (t) satisfies (@,2), (@®,w1;0) and (Pw2;—N). Then the
maximal operator M is bounded from # % 4°(R™N) to itself, that is,

IMf || povomry < CIf N ypvaogyy — for all fes®4°RY).

REMARK 9. Let &(x,7) be as in Example 1 and let @, (f) be as in
Remark 8. If w(r) =r", then (@,wl;0) and (P,w2;—N) hold when

=N/pi(0) <v < N(1 = 1/pi(0)).

PrOOF (Proof of Theorem 1). Let f be a nonnegative measurable func-
tion on R such that /1l o.0o@yy < 1. First we show

« d
|, @M1 < @)

For r > 2, set
S = Faso.) T Fxso,r2\80,1) + S 280,490\B0,r/2) T T ARM B0,4r)
= fO + fl,r + fZA,r + f3,r-

For fy, by Lemma 2 we have

mesawWL Sy < Clf ™

s

for xe RY\B(0,r). By Lemmas 6 and 4

N
M- 2o @™\ 50,1 < CIM x50, /2|l Lo R\ B(0,1))

< Cliso,rmllLomy) < c{o; My (5)

Hence

IMfoll pogao.ry < Cr ¥ {@S)! =t
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Since r2 Ve (r){®;'(r)} " is almost decreasing in [I, ) by (@,w2;—N),

it follows that

| @Ml oo E < € [ 0V o ez ) 1

2 2 r

<C.

For fi,, we find for x e R¥\B(0,r)

Mfi(x) < Clx| ™ S)dy < C(xl/r) " Hy /(r/2)

JB(O,r/2)\B(0, 1)

t

1/q
N N—g IR T dt
< Clx| o) e (7 Y) (Jl/z(l'Zw(l)||f||Lw(A(0,t)))q—>

for 0 < &) <& by Lemma 8. Hence, using (5), we have

= dr
J (@) IMfi oo )
2 r
© , r , dt| dr
<C a4 J t200(t ® —5—
2 { 00l ueo.) ,} &
c © L dr\ dt
<[ Bl flowon)” (j . )
1/2 ' r;)t
* g dt
<C 1/2(w(t)||f”Lq’(A(0,t))) ~ =<C

For f;,, by Lemma 6
(| Mf>, VHL‘P A(0,r)) = < Cllfarllpe RY) = C||f||m B(0,4r)\B(0,r/2))>
which implies
@ g dr
, ([ Mf2,ll Lo a0,r) - S C.
For f;,, we find for x e B(0,2r)

Mf () < CJRN\M SO < crgg )

()

. 1/4
scwfwu)@;](r‘fv)(J (Sl o (a00.0) ?) (10)

7
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for 0 < ¢f <e by Lemma 7. Hence, by Lemma 4

[ Mf3,0ll Lo aqo,ry) < IMF30ll Logs0,20))

< cyﬂamr>l(if< (LS o

so that

0 dr
L (@M.l Loga,r)’ —

<c| o[ ol nS)

2 r t

* L ogdr\d
< | o0 luoon (] 057) G
2 2

dt 1/‘1
) _) ’

t

r)t
* . qdt
<C ) (@O S Lo a0,0) ~ =C (11)
Combining (6), (8), (9) and (11), we obtain (4).
Finally we show
[Mf |l Lopo,ay < C
since
2 dr 1/q
1Moo + (|, @O sia0)*E) = CLM o
Set
S = Txs0.8) + S ar¥\Bo,8) = Sat+ S5
By Lemmas 6 and 2,
[ MfallLopo,4) < CIS Nl Los0,8)) < €
and
[ M| o 0,4y = (B(0,4))
0 dr 1/q
< ([} @O o) <€
by (10). O
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4. Boundedness of the Hardy operator

For a locally integrable function f on RY and f € R, the Hardy functions
I;T‘ﬁx‘f and Hﬂo f are defined by

A f ) =1 | I )y
RY\(B(0, [x)UB(0, 1))
and
R (),
B(0,[x[)\B(0, 1)
respectively.

LEMMA 9. For a real number [, suppose that ®(x,t) satisfies (P3;0;q)
and (D5;n) for q =1 and n > 0 satisfying n < q/N. Assume that
(Dw; f) Z“'”/”{@_I(O, NN is almost increasing in (0,1] for some & > 0.
Then there exists a constant C > 0 such that

1 lomon < €@ (0.7}
for all 0 <r<1.
Proor. Let 0 <r<1. First note from (1), (®2) and (P3;0;q) that
PN < x| Y <2445 0 4 AsB(0, x| N9
for x € B(0,r), so that we have by Lemma 3 (2) and (4)
< @7 (0, r )y

for x e B(0,r) and

@ '(0,r V) >d '(0,1) > 0.

Therefore we find by (&5;7) and # < ¢/N

(0,7 V))dx < CJ @(0,& (0,r ))dx < C,
B(0,r)

so that

1

5= Ny -1
1 x80,nllLowyy < C{® (0,1 M

Hence we have by (®w;f)
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0

17l zoao. ) Z Vo a0.2m)

I/\

SICRULAERE S

[e¢]
<C 78‘“’){@1 (0,7~ Z

<t (!

(0, )37

as required. O

THEOREM 2. For a real number f, suppose that ®@(x,t) satisfies (D3; 0;q)
and (®5;n) for ¢ > 1 and n > 0 satisfying n < q/N. Assume that ®(x,t) sat-
isfies (DPw;f) and D (t) satisfies (D2) and (Pwl;f). Then there exists a
constant C > 0 such that

”ﬂﬁwf”.#“’"”‘”(RN) < Cllfllpo0omn)
for all fen#®42RNY),

PrOOF. Let f be a nonnegative measurable function on RY such that
I/l 4osomyy <1. Let r>2. Then we have by Lemmas 4 and 7

IE S | oo < CHES (/211 Loao,n)

0 dt Vi
SCre:w(rw(j ()11l o >—>

r/2 t
for 0 <& <e&. Therefore, as in the proof of Theorem 1, we obtain

« oo g dr
L (@)A1 oion) o < €

Finally we show

||H/?Of||L4>(B(074)) <C.

Note from Lemmas 7 and 2 that

HE£(x) < 2P HE £(1/2)

B ” qﬂ Vi
< Cly {(J @O w0 ) +L<o,2>\g<o,l)f(y)dy}

< Clx)”.
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Hence we obtain by Lemma 9
HFI/;’)Cf”L@(B(OA)) < (- \ﬁ||m(3(o,4)) <C,
as required. ]

In the same manner, using Lemma 8§ instead of Lemma 7, we can prove
the following result.

THEOREM 3. For a real number f, suppose that ®(x,t) satisfies (®3; c0;q)
and (®5;n) for ¢ > 1 and n > 0 satisfying n < q/N. Assume that ®(x,t) sat-
isfies (DPw;f) and D (t) satisfies (D2) and (DP,w2; ). Then there exists a
constant C > 0 such that

1HRf | oaomyy < ClLf Lpoaomy)
for all fen#®4?RN),

In fact, note that

f(x) < C|x|ﬂj )y < Cl?
B(0,4)\B(0,1)

for x e B(0,4) and f e #®%*(R"Y) with /1 oo gyy < 1.

5. Sobolev’s inequality

For 0 < o < N, the Riesz potential I,/ is defined by

L10 = | b=l )y

for a locally integrable function f on RY.

LemMA 10.  Assume that @, (t) satisfies (@2) and (P,wl; —a) for & > 0.
Then, for 0 < ¢ < &, there exists a constant C > 0 such that, for all x € B(0,2r)
with r > 1 and nonnegative functions f € L}UC(RN),

(S X\ 30,41 (%))

-1 1 N ” dt Y
< el 0,16 ) ([ @ o0 o))

Proor. Let fe L)l (RY) be a nonnegative function on R"Y. Let r>1,
x€ B(0,2r) and 0 <& <e¢. Note from Lemma 7 with f = —a that
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1L(f xr\ 5(0,4r)) (¥)]

<c| N )y
RY\B(0,4r)

e+o -1 5-1/ —N . —& - di V4
< o) 007 (| o lsiaon)'F)
as required. O

LemMmA 11. Assume that @, (t) satisfies (@y2) and (P,w2;—N) for
& > 0. Then, for 0 < &< &, there exists a constant C >0 such that for all
x € RV\B(0,7) with r > 1 and nonnegative functions f e L} (RY),

L 20,120 800.1) ()] < COX|/r) N o(r) @ ! ()

' dr\"
X o) f;» 1 .
(jm( O 2o(0.0) Z)

Proor. Let fe L)l (RY) be a nonnegative function on R"Y. Let r>1,
xeRY\B(0,r) and 0 <& <. Note that

L Xm0 0. ()] < C|x|“—NJ F(3)dy
B(0,r/2)\B(0, 1)

= C(x|/r)* N HOy £ (r)2),
so that Lemma 8 with f = —N gives the required result. O
We consider a function
Y(x, 1) = tp(x, 1) : RY x [0, 0) — [0, o0)

satisfying the conditions (®1)—(®4) with ¢ replaced by .
Now we consider the following conditions:
(©,,2") there exists a constant Q > 1 such that

Do (97 (x) < O(1 + )"

for all x e RY, where g*(x) = max{g(x), Mg(x)};
(®a) r— r#t2@ ' (x,r~V) is uniformly almost decreasing on (0, o) for
some ¢ > 0;
(YD) there exists a constant Q > 1 such that
¥(x,1®(x, 1)) < 0d(x, 1)

for all xeRY and ¢ > 0.
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ReEMARK 10. Let @(x,7) be as in Example 1 and let @, (¢) be as in
Remark § with 7=1. Assume

inf (N —api(x)) >0 and inf (N —oaps(x)) > 0.
xeRY xeR”

Then @(x,1) satisfies (@a) and @, (¢) satisfies (D27).
Set

B0 = i 18 (LY (1/0) @ ip 0 < < 1
T I (LY () P RO )
where
L
p,-*(X) pi('x) N
for i=1,2. Then ¥(x,?) satisfies (¥ Px).

As Sobolev’s inequality for Riesz potentials of functions in Musielak-Orlicz
spaces L?(R"), we give the following lemma ([30, Corollary 6.5]). Here we
shall state our result without assumptions

(@,.3) r— '@ (r~V) is almost increasing on [, ) for some 0 < y <

N and
(Do) 11D N(r is almost decreasing on [1, 00) for some ¢ > 0,

(=)
which are assumed in [30] (see Remark 11 below).

LEMMA 12.  Suppose ®@(x,t) satisfies (@3;0; p), (P3; 00;q), (PS;n), (P6;7)
and (Do) for p>1,q> 1,1 >0 and t > 0 satisfying n < q/N and T < p. For
the function @ (t), assume (@,2') holds. Further, assume that ¥ (x,t) satisfies
(YPa). Then there exists a constant C > 0 such that

[ e vy < ClAllLowy)
for all feL®RY).

REMARK 11. Assumptions (®3;0;p) and (@3;00;¢q) imply (@,3) and
(Do) implies (D,0).
In fact, we see from (@3;0;p) and (P3;00;¢q) that there exist constants
¢>0 and &> 0 such that
D (x 1) < es D (x, 5)
for all 0 < ¢<s, so that for 0 < ¢ < s <max{l,®_!(1)}, there exists a point
xo € R such that g(xo) << s <max{l,®,'(1)} and

l7(1+{:)@w(l‘) < Ql7(1+§;)¢(XO, )<CQS (14¢) @(XO’ )<CQ2 1+1)¢%(S)
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by (®..1) and g € LT (R"), where Q is the constant appearing in (®.,1). Since
@ '(rV) <@ (1) for all r > 1, we see that (®.,3) holds with y = N/(1 +e).
Similarly we can show that (®o) implies (@, ).

Further, as the definition of @, (), we consider a convex function ¥, () =
W, (1) 1 [0,00) — [0, 00) such that ¥ () >0 for >0, ¥ (¢) is increasing on
[0,00) and satisfies the doubling condition and

(P, 1) there exists a constant Q > 1 such that

O 'W(x,1) < W, (1) < Q¥(x,1) whenever g(x) <t <1,

where g is the function appearing in (P6;7).
Now we show the Sobolev type inequality for Riesz potentials of functions
in #%%°RY).

THEOREM 4. Suppose ®@(x,t) satisfies (@3;0; p), (D3; 00;q), (D5;71), (6;7)
and (Do) for p>1,q>1,n>0 and © > 0 satisfying n < q/N and © < p. As-
sume that W(x,t) satisfies (Pdo). For the function @ (1), assume (D2'),
(DPowl; —a) and (Pyw2;—N) hold.  Then there exists a constant C > 0 such
that

[ e vwo @y < CllfLpoaomy)
for all fen#®42RN),

REMARK 12. Suppose @(x,?) satisfies (Po) and P(x,?) satisfies (¥ Pa).
For the function @ (), assume (@.,,2') holds.

To show Theorem 4, we need to verify that the following conditions hold:
(¥,.2) there exists a constant Q > 1 such that

Y (g(x) < Q1+ |x) "

for all xeRY;
(P, Do) there exists a constant Q > 0 such that

sup 1@ () {w, () < 0.

t>1

First we show that (%,2) holds. Since we have by (P®a) and (¥,1)
D(x,9(x)) = C¥(x,g(x)P(x,g(x) ")
> C¥(x,g(x)®(x, 1)) = C¥(x,g(x)) = CP.,(9(x)),
we find by (&,1) and (@,2)

¥, (9(x)) < CO(x,g(x)) < CP(9(x)) < C(1 +|x[) 7.
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Next we show that (¥, @) holds. For 0 << max{l,®_!'(1)}, there
exists a point xop € RV such that g(xo) <¢<max{l,®;!(1)} by ge L7 (R").
Then note that

1@(xo, 1) N = Ct = Cg(xo)

and 1@(xo,1) " < C by (), so that we find by (®.,.1) and (¥,1)
v, (19, (1)) < CP., (1).

Since @' (rV) < @_!(1) for all r > 1, we obtain that (¥, ®..«) holds.

PrOOF (Proof of Theorem 4). Let f be a nonnegative measurable func-
tion on RY such that £l po0oryy < 1. For r>2 set

S = fxpo,n) + S xB0.r/20\80.1) T S XB0,400\80,r/2) + SR \B(0,4r)

:fO +f1,r+f2,r+f3,r~

For fy, we see that
) < Oy <
B(0,1

for xe R¥\B(0,r) by Lemma 2. By Lemmas 12 and 4

o—N
VN|| |- ||LW(RN\B(0,r))

< ClLxso,r2) |l L7 ®¥\ B0, )
“1/. Ny -1
< Cllxp.llLomyy < {2, ()} (12)
Hence
1ol o a0,y < Cr (@) "
and using (&, w2; —N), we have (cf. (6))

« dr
|, @L< € (13)

For fi, by Lemma 11 and (12), we have

1/q
. ! _ r & d[
IEfr.ll v (a0, < Cr20(r) lOl/z(f'Zw(’)||f||Ld’<A(0-,t>>>q_>

t
for 0 < &) < &, which implies (cf. (8))

dr

o0
|, @OILAN 00" < C. (14
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For f,,, we use Lemma 12 and have

2 /2,0l v a0,ry) < ClUS N Lo (810,47 B(0,7/2))-
Hence

« dr
|, @A) E < C (15)

To treat f3,, we remark that Lemma 4 holds for ¥ by (¥,2) and
hence

Il v 0,0 < CLPL )} < Crofa, )y
by (WY, ®Pra). Thus, we find by Lemma 10
||Iaf3‘r||L'1’(A(0ﬁr))

< S50l v g0,

PNV AL A\
< crtol) ([ (00l a0 0% (16)
for 0 <& <e&. It then follows that
« dr
|, @A N0 E <. (1)

Combining (13), (14), (15) and (17), we obtain
g dr

|, @O i) <.

Finally, Lemma 12 and (16) with r =2 yield

2 dr 1/q
||IfoLW(B(0,2)) + (L (w(r)”IOCf|L”’(A(O‘r)))q7>
< ClLS | v (50,4

: * : dt
< C(Ifllmasy + | @O lusuon*§) < €

which proves the theorem. O

REMARK 13. Let @ be as in Example 1 and let &, (¢) be as in Remark 8.
If w(r)=r", then (®,wl;—a) and (P,w2; —N) hold when

o—N/pi(0) <v<N(l—-1/pi(0)).



Boundedness of maximal operator, Hardy operator and Sobolev’s inequalities 39

REMARK 14. Let &(x,1), @ () and ¥(x,?) be as in Example 1, Remark
8 and Remark 10. Assume

inf (N — api(x)) > 0.
xeRW

Set Y., (1) = supy o, {571 T T (LY (1/s)) P12y and

where

Then ¥, () satisfies (¥,1).

6. Sobolev’s inequality for the generalized Riesz potential

To obtain general results, for 0 < o < N and an integer k > 1, we define
the generalized Riesz potential I, xf of order « of a locally integrable function
f on RY by

Laf(x) = j L(x = ) f(»)dy
B(0,1)

X/t
8 IR P D S AT e s
RM\B(0, 1) el =h1y 2
where I,(x) = |x|*™" (see [32, 33]).
Set

Li(x,y) =L{(x—y)— Y (D L)(-y)
(i1 4

and
L) =] | Lalso)f )y
RY\B(0,1)
for a locally integrable function f on RY.
The following estimates are fundamental (see [32], [33] and [49]).

Lemma 13. (1) If 2|x| < |y|, then \fm(x, y)| < C|x|k|y|“_N_k‘
(2) If [xl/2 < [yl < 2Ix], then |Lk(x, y)| < Clx |‘ - e
(3) If 1<yl <|xl/2, then |Lx(x,y)| < Clx| [y N ED.
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LEMMA 14. Assume that @ (1) satisfies (@2) and (Powl;k — o) for
e > 0. Then, for 0 < e <eg, there exists a constant C > 0 such that, for all
x € B(0,2r) with r > 1 and nonnegative functions f e L} (R"),

loc

Lk (f 2m ™ 3(0,4r) (%))

—1 1 N OO dt Y
< el 0,16 ) ([ @ o0 o))

Proor. Let feL] (RY) be nonnegative, r>1 and xe B(0,2r). By
Lemma 13 (1),

7 k
)] < x|
RM\B(0,

< Cr*H” ,f(2r),

" N (v)dy

so that we obtain the required inequality by Lemma 7. O

LemMa 15. Assume @ (1) satisfies (D,2) and (Ppw2;k—1—0a) for
& > 0. Then, for 0 <e< e, there exists a constant C >0 such that for all
x € B(0,2r) with r > 1 and nonnegative functions f e L} (R"),

Lk (%310, 1x12)) (%))

g dt v
SCr”“w(r)l%l(rN)O (t‘gw(t)llfILm<A<oA,,>>)"—> -

1/2 t

Proor. Let feL} (RY) be nonnegative, r>1 and xe B(0,2r). By
Lemma 13 (3),

Lk (2810, 1x2)) (X)] < C|x|"*‘J VT I () dy
B(0,|x]/2)\B(0,1)

< Cr"‘H,?_l_%f(r),
so that we obtain the required inequality by Lemma 8. O

Now we give the Sobolev type inequality for generalized Riesz potentials
of functions in #®¢“(RY).

THEOREM 5. Suppose @(x,t) satisfies (D3;0; p), (P3; 00;q), (P5;7), (P6; 1)
and (@o) for p>1,qg>1,n>0 and v > 0 satisfying n < q/N and © < p. As-
sume that ¥(x,t) satisfies (P ®a). Assume D@ (t) satisfies (@,2'), (Ppowl;
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k—a) and (D,w2;k —1 —a). Then there exists a constant C > 0 such that

[ Lt f | e vao@yy < CIf N povomm
for all fe#®42RY),
PrOOF. Let f be a nonnegative measurable function on RY such that

/1l 4o0oryy <1. For r>2 and fixed x € A4(0,r), set

S = Fxso.) T SxB0,1x/20\B0,1) T S XB0,49\80,1x1/2) T F AR B(0,4r)
= fo+ fix + forx + far
For fy, we note
Licfo(x) = Lifo(x) < Clx "™
For f5,x, by Lemma 13 (1), (2), we see that

o ke fo,r x(X)] = |ix,kﬁ,r.x(x)| < CIa(fXB(oAr)\B(o,r/z))(x)-

Since L i fix = Lk (/0. 2) and Lofsr = Lok(fxrm po.an)s it follows
from Lemmas 15 and 14 that

Lo/ (x) < C 11N + L(fZ500.40\50.r/2)) (X)

t

- 1/q
el a1 T dt
() T o ) (L/z(t Zw(t)”fHL‘P(A(O,t)))q)

I S LD dn\'"
o) o 07 (| o0 o)) 08

for xe 4(0,r), with 0 <& <e and 0 <e&) < &.
Then, we obtain

x© dr
L (@O Lk v aion) o < €

B
by the same arguments as in the proof of Theorem 4.

By Lemma 13, we see that |I, x(x, y)| < CL(x — y) for |x| <4 and |y| > 1.
Hence, as in the proof of Theorem 4 we can show that ||L, /||, »(g0,4) < C,
which implies

2
dr
Lot S\l v (80,2) + Jl (w(r)||Io<,kf||L"’(A(07r)))q7 <C. [
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REMARK 15. Let @ be as in Example | and let @, (¢) be as in Remark 8.
If o(r) =r", then (@, wl;k—0a) and (P,w2;k — 1 —a) hold when

o—N/pi(0) —v<k<oa—N/pi(0)—v+1.

7. #%4°R"Y) and 77" RY)

We further consider the space # %4 “(R") of locally integrable functions
f on RY satisfying

1/q

” dr
oy = ([} @O um ))<=

and the space e%ds’q’w(RN ) consisting of all measurable functions f on R
satisfying

: : * dr\'
WH%”’""”(R”) = 1 og0,2)) + (Jl (w(r)||f|L¢<RN\B(o,r)>)q7> < 0.

If w(r) satisfies

(w3) Jf a)(r)q? < o,

then
LYRYN) = 717 (RY) — P40 RY) s P 00(RY) (19)
and if o satisfies
) | o=,

then

{0} = #P+RY) ¢ A" RY) — #P¢RY) N LO(RY).
Therefore, it is natural to assume (w3) when we treat the space # % %“(R"Y);
and we assume (w4) when we treat the space # q)’q’w(RN ).

ProposITION 1. (1) Suppose w(r) satisfies

(w5a) 1w rw(r) is almost decreasing on [1,0) for some a > 0.
Then, #*%*RY) = #®4*RY).

(2)  Suppose w(r) satisfies

(wSb) 1 r~bw(r) is almost increasing on [1,0) for some b > 0.
Then, #7"°(RY) = #®4oRY).

PrOOF. (1) Assume (w5a). Let X = #®%“R"Y) and Y = #®+*(RY).
Since Y — X in general, we have to show X — Y.
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Let £ € X and let K be a compact set in RY. Then note from Lemma 2
and (w5a) ((w5a) implies (w3)) that || fyklly < . Set F(r) =

. 4(0,1))
and G(r) = || fxxll (50, Then
G(2r) < F(r)+ G(r). (20)
Set w.(r) = r % inf| <5<, s?w(s) for r > 1. Then
0. (r) < o(r) < Cowy(r) (21)
by (w5a) with a constant Cy > 1.
Set
© dn\/1
a=([ wwrors)
2 d 1/q 0 a4
B = (J (w*(r)G(r))'f{> and By = (J (w*(r)G(r))qTr) .
1 2
All of these are finite values.
By (20)
” Ve [ A+ (BE+BHYT if g>1
(J ( ()G(Zi’)) dr) < +(1+ 2)1 mqg=1,
! r (49 + B!+ BT if 0<gq< 1.
Since rw,(r) is decreasing, w.(r/2) >2%w,.(r) for r>2, so that
| @06 = | (@060 = 2781
1 2
Hence
q nl/a
20, < A+(Bl+Bz)1 if g=>1,
(49 + B!+ BN if 0<g<1,
which implies
(B! + BV < C(A+2°B)) (22)

with € >0 depending only on a and g. Note that By < Ci||fxkllpe(50,2)
with Ci = a(1)(log2)""”. By (21) < Co(BY+ BNV and |zl >
A+ fxxllzopo,2) Hence (22) 1mpl1es

1 xxlly < Cllf xkllx

with a constant C > 0 independent of K. By the monotone convergence
theorem, we obtain the required result.
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(2) Assume (w5h). Let X be as above and Z:%(p’q’w(RN). Since
Z — X in general, we shall show X — Z.
Let f € X and let K be a compact set in RY. Then note from Lemma 2

that || fxkll, < 0. Set F(r)=|/xkllpea0,, and H(r) =[xk
Then

|L¢(R‘V\B(O,r))'

H(r) < F(r) 4+ H(2r). (23)
Set w*(r) =’ sup;_,, sPw(s) for r>1. Then
o(r) <w*(r) < Go(r) (24)
by (w5b) with a constant C, > 1. Since r?w*(r) is increasing, w*(r/2) <
27%w*(r) for r =2, so that
J (w*(r)H(Zr))q? < 27}”1] (w*(r)H(r))q?.
I 2
Hence, by (23), we have
« d @ d
| @ ome et <c| @ ore,
I 1

which implies || x|, < C||fxklly in view of (24) with a constant C > 0 inde-
pendent of K. Hence, by the monotone convergence theorem, we obtain the
required result. O

The following example shows that there are w(r) satisfying (w3) for which
LPRY) # %22 RYN) # #%%*(RY); and also there are w(r) satisfying (w4)

for which {0} # Z77“RN) = #®¢oR").

ExampLE 3. Let &(x,¢) =", p>1 and

wo(r) ~log(e+r)’, veR.
(1) If v< —1/q, then w(r) satisfies (w3) and
LYRY) # P00 RY) # 400 RV),
(2) If v>—1/q, then w(r) satisfies (w4) and
{0} # ZD9RY) £ #P00RV).
In fact, consider the function
Ja(x) = x| M7 (log(e + 1)) ™“rm 50,2 (%)

for aeR. Then, ||/

Lr(A(0,r)) ™~ (log(e +r)) ™ for r>2, so that
fue APE(RY) if (and only if) a >v+1/q.



Boundedness of maximal operator, Hardy operator and Sobolev’s inequalities 45

On the other hand, for r >3, || full Lo, ~ (log(e + )~ in case a < 1/p,
(log(log(e—i—r)))l/p in case a = l/p and ~ C in case a > 1/p, so that

fue HPEORY) if and only if a>v+1/p+1/g

when v< —1/q. Thus, f,e #PTORYN\APL*RY) if v+1/g<a<v+
1/p+1/q when v < —1/q.

Since f, e L?(RY) if and only if ap>1, f, e #P¢*RV)\L?(RY) if
v+1/p+1/g<a<1/p. Such a exists when v < —1/q.

Next, for r>2, || fall;» (R¥\B(0,1) ~ (log(e + 7)) """ in case a > 1/p and
= oo incase ¢ < 1/p. Hence, incase v > —1/q, f, ejf‘p"“’(RN)\%’ ORN)
if v+1/g<a<v+1/p+1/q. Since ygq e " ’(RM), c%”(pqw(RN);é
{0}.

REMARK 16. Since # ?4?(RY) — #?4*(R"), the second inequality (3)
also holds with [|f1| ¢.c.0gy) replaced by || f1| yo.0.0gn).

Analogous 1nequahty is trivial for ||f]| zo.so
L?RY).

vy Since T RY) —

For the boundedness of the maximal operator, we have the following
results (cf. [9]).

THEOREM 6. Suppose that @(x,t) satisfies (D3;0;p), (@3;00;q), (P5;7)
and (®6;7) for p>1, ¢g>1, n>0 and ©> 0 satisfying n < q/N and 7 < p.
Assume that @, (t) satisfies (D,2) and (P,w1;0). Then the maximal operator
M is bounded from #®%*RYN) to itself

PrOOF. Let f be a nonnegative measurable function on RY such that
||f”(%)4{q.w<RN) S 1. For r Z 1, Set

=T, + fXRN\B(()Jr) =d1,r T g2,r-

By Lemma 6,

) =< Cllgirllpewyy = Clf Lo s0,20)
so that

o0 d oo dr
|| @M1 om0, < €| @O o) F < €.

For g, ,, we argue as for f3, in the proof of Theorem 1 to obtain

I T A L , dn\'"
Moz, () < o)™ ) ([l o)) )

t
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for x € B(0,r) with 0 < ¢] < ¢, which implies

d)

B r ” dr
[ b0 omo ) <

(W(V)Hf||L¢(B(0,2r)))q_

IA

C. O
1
THEOREM 7. Suppose that ®(x,t) satisfies (D3;0;p), (D3;0;q), (DP5;n)
and (®6;7) for p>1, g>1, n>0 and 7> 0 satisfying n < q/N and © < p.
Assume that @, (t) satisfies (P,2) and (D,w2;—N). Then the maximal oper-
ator M is bounded from ,}’7¢’q’w(RN) to itself.

PrOOF. Let f be a nonnegative measurable function on RY such that
1Sl oo gy < 1. Then [|f]| oy, < C.
For r > 2, set
S = Fxso.) T Fxso,r2\80,1) T S AR B0,r/2) = Jo + Sir + hayye
By (5), we see that

- “1/,-Ny -1
IMfoll o g0, < Cr {2 (™)}
and using (D, w2; —N), we have

@ g dr
, ((r)[[Mfoll Lo®™ 50, ) P C

by the same arguments as to obtain (6) in the proof of Theorem 1.
In view of (7) in the proof of Theorem 1, we see

dr

0
|, @M o o)

«© dr
< CJ w\r @ ” 7_
1/2( DS Mz ac0.) "

©
= C{Hf”L“’(B<0,2>) + J] (“)(V)||f||L¢(R~’V\B(o,,~)>)q?}
<C.
By Lemma 6,
M, o 0.0y < Clloll Loy = ClLE Lo 50,
so that

dr dr

o0 o0
L (60(’)||M/12,r”Lw(RN\B(o,r)))q7 = CL (w(r)”fHL"’(RN\B(O,r)))q7

<C.
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Thus,
« g dr
) ((r)[| Mf | Lo®™\ B0, ) - S C.
Finally, since ||Mf] ogy) < C||f]|po®y) < C by Lemma 6,
2 g dr
IMF 1l Lo(B0,2)) + l(w(r)”Mf”L"’(RN\B(O,r))) - < C. O

As to Sobolev’s inequalities, we have the following results (see also [10]).

THEOREM 8. Suppose ®@(x,t) satisfies (93;0; p), (D3; 0;q), (D5; 1), (P6;7)

and (Po) for p>1, ¢ > 1, 5> 0 and © > 0 satisfying n < q/N and t < p. As-
sume that ¥(x,t) satisfies (Y ®@a). For the function @, (1), assume (D,,2") and
(Ppwl;—a) hold  Then there exists a constant C >0 such that

IS | vao@yy < ClISllpooomn)
for all fenx®4?RY),

PrROOF. Let f be a nonnegative measurable function on R”Y such that

I/l goaomyy < 1. For r=1, set

/= fXB(o,zr) + fXRN\B(o,zr) =g1,r T g2,r-
By Lemma 12,

12:91,1] L?(B0,r) = C”gl,l‘”L‘P(RN) = C”f”L"’(B(O,Zr))?

so that

* dr * dr
| @O sim0.0) " < €| @0 Noiman) 5 < €

IA

For g, ,, we argue as for f3, in the proof of Theorem 4 to obtain

! 71 o
1ga. o) < Crien(r) (j

r

» dn\'/
(t 1w<z>||f||Lm<A<0,l))>‘f—)

t
for 0 < & <&, which implies

« g dr « g dr

| (60(”)||Imgz,r||L'I/(B(o,r))) " <C | (w(r)HfHL‘”(B(O,Zr))) - <C. O
THEOREM 9.  Suppose @(x,t) satisfies (D3;0; p), (P3; 00;q), (P5;7), (P6; 1)
and (@o) for p>1,qg>1,n>0 and v > 0 satisfying n < q/N and t < p. As-
sume that ¥ (x,t) satisfies (Y ®@a). For the function @ (1), assume (D,2') and
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(Ppow2; —N) hold. Then there exists a constant C >0 such that
”Ixf”]?"‘%‘“(R»v) = C”f“ﬁ"’-r‘/““(RN)

for all fe """ RY).
PrOOF. Let f be a nonnegative measurable function on RY such that

||f|\y7¢,q,¢,)<k,v) <1 and for r > 2, set
S = fxmo.n) T FxB0.r20\80,1) T SIRNB(0,r/2) = S+ fir + hare
Since [y 1) S (»)dy < C[ £l 2(g0,1) < C, we see that
1L foll v o,y < Cr M { @) CRbI I

and hence

« X g dr
) (@M L foll » ™\ 5(0,r))) 5 S C

in the same way as in the proof of Theorem 4.
Also, as in the proof of Theorem 4, we see

. g dr
5 (w(r)”I@fl,r”L‘!’(RN\B(o_,r))) i <C.

For h,,, we use Lemma 12 to obtain

”Iahz-f”L“’(RN\B(O,r)) = C||h2-,r||L®(RN) = CHf”L"’(RN\B(O,r/Z))’

which implies
- dr
|| @l v o) < €
Finally, since |\Iaf||L.,,(RN) < CHfHL"’(RN) <,

2
A vimon + | @ONEA Lm0 <€ o
THEOREM 10. Suppose @(x,t) satisfies (@3;0;p), (D3;00;q), (P5;7),
(D6;7) and (Do) for p>1, g>1, >0 and © >0 satisfying n <q/N and
1< p. Assume that ¥(x,t) satisfies (P®o). For an integer k > 1, assume
@, (1) satisfies (D2, (Powlik—a) and (Pw2;k—1—a). Then there
exists a constant C > 0 such that

o fll a0y < ClLF N oo mmy

for all fex®+*RN)
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PROOF. Let f be a nonnegative measurable function on RY such that
/1| #0o®yy < 1. Noting that

L,k (f X B0, 410\ B0, [xi/2)\800,1)) | < CL(f X B(0,4r)\B0, 1))

for r > 1 and |x| < r, by the same arguments as to obtain (18) in the proof of
Theorem 5, we have

L f(x) < CQ L(f250,4r)) (X)
1/q
’ — r ’ . d
+r 2 o(r) ]d);' (r™) <Jl/2(l82w(l)||f||L¢<A(0,t)))q_l>

N . o ' dn\/e

r ’ Z

for r>1 and xe B(0,r), with 0 <¢] <¢ and 0 <¢; < é.
Now, by Lemma 12

12/ 30,40 L e (80,1 < CIS N Lo (800,40

Thus, in the same way as in the proof of Theorem 4 (with 4(0,r) replaced by
B(0,r)), we obtain

© dr
Jl (w(r)Hlac.kaL"’(B(O,r)))q7 <C. 0

8. Variable exponent H-M-M-O spaces

Let ¢(r) be a measurable function on [1,00) satisfying

Q1) 0< g™ :=essinf,cp o) q(r) <esssup,py o) ¢(r) =1 ¢ < ©.
Given @(x,1), o(r) and ¢(r) as above, we denote by #%4)RN),

AP0 2(RYY and %@’qm’w(RN) the classes of locally integrable functions f
on RY satisfying

||f||y/"7’~"(')'“'(RN) = ”f”L‘P(B(O,z)) + Hw(’)||f”L4’(A(O,~))||L‘1('J((l,oo),dr/r) < 00,

1100y = HeoCILS a0,y s 1, oy sy < 0

and

171 o000 vy = 1 zogsio,2)) + NS Nz o@e g0, | oo (1, 0,/ < 20
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respectively, where

. [ (la\"dr
||g||Lq<»>(<1,oc),dr/r) = 1nf{/1 > 0; Jl (T - <1;.

PROPOSITION 2.  Suppose q(r) satisfies
(Q2) there exists a constant q(o0) € (0,00) such that

CqA 0

lq(r) —gq(o0)| < m

whenever r =1 with a constant C, ,, > 0.
Then

%@,q(w),w(RN) _ %tﬁ,q(»),w(RN)’

zd&q(o@),w(RN) _ %Qq(%w(RN)
and

I ORN) = PO RY),

ProOF. We only prove that #®40):@RN) c #®4):*RN), since the
remaining assertions can be proved similarly. Let f be a measurable function
on RY satisfying | f|| woavogyy < 1. Then note that there exists a constant
¢ >0 such that

«© o dr
(M L oca0.m) = <.
J, A O st

First we show that
w(r)HfHL‘D(A(O,r)) < C fOI‘ r > 1 (25)

Let J(r) = o)l f | op0,varnm0.r)- I r/vV2 <t <r, then B(0,v2r)\B(0,r) C
A(0,1), so that

J(r) < cta@ 1l Lo,
by (w2). For r=>1, if J(r) > cicz, then

4 dt _ log?2 -
> t 10 > e ()
c= Jr/\/z(w( )”f”L‘P(A(O,I))) r = 2 (c; ey J(r)?

which implies
J(r) < crea(2¢/log 2)V4" .

Therefore,
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60(’)||f||L¢(A(o,r)) = w(r)||f||m(3<o,\/Er)\B(o.r)) + w(’)Hme(B((),zr)\B(o. V2r))
<J(r) +aeJ(V2r) < C,

which shows (25).
If 1" < o(r)|[fl| Lo, then we have by (Q2)

(@SNl Lo ga0.0) " < C@M)IS N Logago.n) ™
for r > 1, which gives

* o) dr
| @00

* o dr © dr
= CJ1 (w(V)Hf”m(A(o,r)))q(’)7+J r q(M? <C.

Thus, we obtain the required result. O

By this proposition, Theorems 1, 2, 3, 4 and 5 are valid with #%%*(R")
replaced by #®90):@(RY), provided that ¢(r) satisfies (Q2), namely we have
the following corollaries.

COROLLARY 1. Assume that q(r) satisfies (Q2). Suppose that ®(x,t) sat-
isfies (@3;0; p), (@3;00;q), (PS;n) and (P6;7) for p>1, ¢g>1, >0 and
>0 satisfying 1 <q/N and ©<p. Assume that @, (t) satisfies (P2),
(Dow1;0) and (Doyw2;—N). Then the maximal operator M is bounded from
H P12 RNY 10 itself.

COROLLARY 2. Assume that q(r) satisfies (Q2). For a real number [,
suppose that ®@(x,t) satisfies (D3; c0;q) and (D5;n) for g = 1 and n > 0 satisfy-
ing n < q/N. Assume that @(x,t) satisfies (Pw;[f) and D (t) satisfies (D,2)
and (Pywl;f). Then there exists a constant C > 0 such that

LB S| sty < CIFIlgpo.aom)
for all fejf‘p-,q(-).w(RN).

COROLLARY 3. Assume that q(r) satisfies (Q2). For a real number f3,
suppose that ®@(x,t) satisfies (D3; 00;q) and (D5;n) for g =1 and n > 0 satisfy-
ing n<q/N. Assume that ®(x,t) satisfies (Pw; ) and D, (1) satisfies (D,2)
and (Py,w2;f). Then there exists a constant C > 0 such that

70
||Hﬁf||”rb.q(-),m(RN) < C||f||#(b.q<-).w(RN>

for all f e #®1)RN),
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COROLLARY 4. Assume that q(r) satisfies (Q2). Suppose ®(x,t) satisfies
(@3;0; p), (D3;00;q), (DP5n), (P6;7) and (Do) for p>1, ¢>1, n>0 and
7> 0 satisfying n < q/N and © < p.  Assume that V(x,1) satisfies (W ®a). For
the function ®@ (1), assume (@,2"), (Pwl;—a) and (Pyw2;—N) hold.  Then
there exists a constant C > 0 such that

||11f||”¥’,z/(v),w<Rl\/> < C”fH%ql.q(v),w(RN)
for all e #P1) RN,

COROLLARY 5. Assume that q(r) satisfies (Q2). Suppose ®(x,t) satisfies
(D3;0; p), (D3;00;q), (P5;n), (®6;7) and (Do) for p>1, ¢g>1, n>0 and
7> 0 satisfying n < q/N and © < p.  Assume that ¥(x,t) satisfies (¥ o). For
an integer k > 1, assume @,(t) satisfies (9,2'), (Prwl;k — o) and (Do,w2;
k—1—a). Then there exists a constant C >0 such that

||Ioc.kf||_,~,¢¥’,q(-),w<RN) < C||f||_%¢¢,q(-),w(RN)
for all e x®1) RN,

Also, Theorems 6, 8 and 10 hold with #®%“(R") replaced by
AP0 2(RY) and Theorems 7 and 9 hold with # (D"q’w(RN ) replaced by

ny@q(')?w(RN), when ¢(r) satisfies (Q2).
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