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Abstract

We introduced several new integral inequalities of the Hermite—-Hadamard type for strongly
n-convex functions via the Katugampola fractional integrals. Some results in the literature are
particular cases of our results.
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1 Introduction

Let I be an interval in R. A function f : I — R is said to be convex on I if

fltz+ (1 =t)y) <tf(z)+ 1A -1)f(y)

for all z,y € T and t € [0,1]. The following inequalities which hold for convex functions is known
in the literature as the Hermite-Hadamard type inequality.

Theorem 1.1 ( [12]). If f: [a,b] — R is convex on [a, b] with a < b, then

() 2 2L [ e 1010

2 b—a 2

Many authors have studied and generalized the Hermite-Hadamard inequality in several ways
via different classes of convex functions. For some recent results related to the Hermite-Hadamard
inequality, we refer the interested reader to the papers [1,4-8,15-17,22].

In 2016, Gordji et al. [10] introduced the concept of n-convexity as follows:

Definition 1.2 ( [10]). A function f: I — R is said to be n-convex with respect to the bifunction
n:RxR—=Rif

fltz+ (1 =t)y) < fly) +tn(f(z), f(y))
for all z,y € I and ¢ € [0, 1].

Remark 1.3. If we take n(z,y) = = — y in Definition 1.2, then we recover the classical definition
of convex functions.
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The following Hermite-Hadamard type inequality holds for n-convex functions.

Theorem 1.4 ( [10]). Suppose that f : I — R is an n-convex function such that 7 is bounded from
above on f(I) x f(I). Then for any a,b € I with a < b,

n(f(a), £0)
e

b
21 (“2) -ty < 2 [ s < )+

where M,, is an upper bound of n on f([a,b]) x f([a,b]).

In 2017, Awan et al. [2] extended the class of n-convex functions to the class of strongly 7-convex
functions as follows:

Definition 1.5 ( [2]). A function f : I — R is said to be strongly n-convex with respect to the
bifunction 1 : R x R — R with modulus p > 0 if

fltz + (1 = t)y) < fy) +tn(f(2), f(y) — pt(1 = t)(z — y)*
for all z,y € I and t € [0, 1].

Remark 1.6. If n(z,y) = = — y in Definition 1.5, then we have the class of strongly convex
functions.

The authors in [2] obtained the following refinement of the Hermite-Hadamard inequality for
strongly n-convex functions.

Theorem 1.7. Let f : [a,b] — R is an 7-convex function with modulus p > 0. If 7 is bounded
from above on f([a,b]) x f([a,b]), then

f(“”) S /abf(a?)dw

2 2 12 b—a
S0, n(f(@). 1)) Zn(f(b),f(a))
- %(b —a)?
AOHIO My i, p

where M,, is an upper bound of n on f([a,b]) x f([a,b]).

For some recent results related to the class of n-convex functions, we refer the interested reader
to the papers [2,9-11,15,18].

Definition 1.8 ( [19]). The left- and right-sided Riemann-Liouville fractional integrals of order
a > 0 of f are defined by

S fe) = g [ -0 o
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and

b
Jg f(z) = ﬁ / (t— 2)* " f(t)dt

with @ < 2 < b and T'(+) is the gamma function given by
I(z) ::/ t" le7tdt, Re(z) >0
0

with the property that I'(z + 1) = zI'(z) .

Definition 1.9 ( [21]). The left- and right-sided Hadamard fractional integrals of order a > 0 of
f are defined by

HE, f(2) == ﬁ /: (1n %)a_l @dt

and

HyY f(z):= ﬁ /: <1n ;)al @dt.

In what follows, X?(a,b) (c € R, 1 < p < o) denotes the set of all complex-valued Lebesgue
measurable functions f for which || f|| x» < oo, where the norm is defined by

b 1/p
||fx5=</ |t0f<t>p‘f> (1<p <o)

and for p = 0o

[fllxge = ess sup [t°f(t)].
a<t<b
In 2011, Katugampola [13] introduced a new fractional integral operator which generalizes the
Riemann-Liouville and Hadamard fractional integrals as follows:

Definition 1.10. Let [a,b] C R be a finite interval. Then, the left- and right-sided Katugampola
fractional integrals of order o > 0 of f € X?(a,b) are defined by

11—« x —1
012, f(z) = 2 /( LR

xP —tp)l—a

and

-« b p—1
IS f(z) = 1[:(04) /z @ _t xp)liaf(t)dt

with @ < x < b and p > 0, if the integrals exist.
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Remark 1.11. It is shown in [13] that the Katugampola fractional integral operators are well-
defined on XP(a,b).

Theorem 1.12 ( [13]). Let & > 0 and p > 0. Then for > a
1l P (@) = T (),

. pro _ o
2. pl_l)%lJr Ia—i— (J)) _Ha-l-f(x)

Similar results also hold for right-sided operators.

For more information about the Katugampola fractional integral and related results, we refer
the interested reader to the papers [3,13,14].

Recently, Chen and Katugampola [3] proved the following Hermite-Hadamard type inequalities
for convex functions via the Katugampola fractional integrals.

Theorem 1.13. Let a,p > 0 and f : [a”,b"] — R be a positive function with 0 < a < b and
f € XFP(a?,bP). If f is a convex on [a”,b"], then the following inequalities hold:

fa?) + f(b°)
2 )

P bP ar
f(a ;_ ) = g(bp(a :;,3)12 [”I;"+f(b”) +Plgtf(ap)} <

where the fractional integrals are considered for the function f(x*) evaluated at a and b, respectively.
Theorem 1.14. Let f : [a”,b’] — R be a differentiable mapping on (a?,b”) with 0 < a < b. If | f'|

is convex on [a”, b”], then the following inequality holds:

‘f(ap) + /7)) pT(a+1)
2 2(br — ar)e

b — aP
1

Przs) o ]| < = @ ).

~2(a+1)

Theorem 1.15. Let f : [a”,b”] — R be a differentiable mapping on (a”,b”) with 0 < a < b. If | f/|
is convex on [a”, b”], then the following inequality holds:

’f(a”) + ) pT(a+1)
2 2(bF — ar)e

Pwﬁwwﬂwﬂwﬂ
b — P

< g (1= 52 ) [[r@n + 1)

Motivated by the above results, the goal of this paper is to introduce some new Hermite—
Hadamard type inequalities for strongly n-convex functions via the Katugampola fractional inte-
grals. The results in Theorems 1.7, 1.14 and 1.15 are particular cases of some of our results.

2 Main results
Our first result is an extension of Theorem 1.13 to the class of strongly n-convex functions.
Theorem 2.1. Let a,p > 0 and f : [a”,b°] — R be a positive function with 0 < a < b and

f € XF(a?,b?). If f is strongly n-convex with modulus g > 0 on [a”,b”] and 7 is bounded from
above on f([a”,b”]) x f([a”,b"]), then the following inequalities hold:

P P M. 2 _ 2
@/;b)_4g+¢&ngij4w_a@

2 p*T(ar+1)
2 dla+1)(a+2)

< S ) )
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_t@) + g ({0 @) +0(16)107)) o — ary?

- 2 2(a+1) (a+1)(a+2)
fle?)+ f(b°) oM, pua(b? — aP)?
= 2 +a+1_(a+1)(a+2)’ M

where M, is an upper bound of n on f([a?,b”]) x f([a”,b"]).

Proof. We start by considering the following computation which follows directly by using change
of variables and the definition of the Katugampola fractional integrals.

1
/ toP L (tPaP + (1 — )bP)dt+/ toPLE (PP + (1 — tP)aP)dt
0

0
p*'T(a)

= W —ar)e RESCORRENICOIE (2)

Since f is strongly n-convex with modulus g > 0 and 7 is bounded from above on f([a”,bp]) X
f([a”,b"]) by M, we have, for any z,y € [a”, b"]

1(55Y) < @)+ gn(sw). @) — e —

2
< fla) + 52 = B —yp? Q
and
755 < 1)+ gn(F@), £@)) — Ba—
< F)+ 5t = By (@

Adding (3) and (4), and rearranging the terms of the resulting inequality, we have

z+y
2/ (550) = My + S(@—y)* < (@) + f(y): (5)
Now, if we choose & = tPa” 4+ (1 — t*)b? and y = tPb° + (1 — t?)a”, for ¢t € [0,1] in (5), we have
1
zf(“ o ) M, + = (b” a?)?(2tF —1)2

< f(tpap—i—(1—t")b”)+f(tpbp+(1—tp)ap). (6)

Multiplying both sides of (6) by t**~1 and integrating the resulting inequality with respect to t
over [0, 1], we have

2 raP+b° M, ple? —a+2)
ap ( 2 ) ap+2ap(a+l)(a+2)(b a”)
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1 1
g/ to"’_lf(t”ap+(1—t”)b”)dt—i—/ 1P F (PP + (1 — t#)aP)dt. (7)
0 0

Multiplying both sides of (7) by % and using (2), we have

a’ + b? M, p®—a+2) .,
(%) 2 i
a1

< W {"121 (b°) + pra—f(ap)]

This proves the first inequality of (1). To prove the second inequality, we note that since f is
strongly n-convex with modulus g > 0, we have

F(taP + (1= )0) < F°) + 17 f(a?), F(0) ) = pt?(1 = 47)(b° — a?)? (8)
and
F(EW + (1= 17)a%) < f(a?) +t2n( (1), f(a?)) = pt? (1 = 7)1 — a®)? (9)
for all ¢ € [0,1]. By adding (8) and (9), we obtain
f(tPa? + (1 —t°)bP) + f(t°b° + (1 — tP)a”)
< f(@) + £+ (n(£0), £(0)) +n(F(0), 09)) )
—2ut? (1 —t°) (b — a’)?. (10)

Multiplying both sides of (10) by t**~1 then integrating the result with respect to t over [0, 1] and
using (2), we have

fan) 4 £or) (050 5@) +0(F@) 500)) e — ary?
< Jp + (ot Dp - p(:+ Dia+2) 1D

The second inequality of (1) follows from (11) by multiplying through by %. The last inequality
follows directly from the second inequality. Q.E.D.

Remark 2.2. If we take @« = p =1 in Theorem 2.1, then we recover Theorem 1.7.
To prove our next results, we need the following lemma obtained by Chen and Katugampola [3].

Lemma 2.3. Let o > 0 and p > 0. Let f : [a®,b°] — R be a differentiable mapping on (a”, b?)
with 0 < a < b. Then the following equality holds if the fractional integrals exist:

af bP (e
. )_2”( - 5@5(_ :p)li [”13+f(bp) + P12 f(a”)

b —af 1
= / [(1 — 7)™ — PP~ (tPaP + (1 — t9)bP)dt.
0
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Theorem 2.4. Let a > 0 and p > 0. Let f : [a”,b”’] — R be a differentiable mapping on (a”, b?)
with 0 < a < b. If |f'|? is a strongly 7-convex function on [a?, b°] with modulus u > 0 for ¢ > 1,
then the following inequality holds:

‘f(a”) +f0°)  p°T(a+1)
2 2(bF — ar)e

<” 2_pap (a i 1 (1 - 21a)> - <a i 1 (1 - %)‘f/(bp”q
+— (1= g (1 @i, 177001
p(b? — ar)2(2°72 —a — 4)\ @
- 20 (a+2)(a+3) >

P12 F ) + 71 f(a)| ]

Proof. Using Lemma 2.3, the Holder’s inequality and the strong n-convexity of |f/|2, we obtain

‘f(a”) +f(?)  pT(a+1)
2 2(bF — ar)e

b —af [t
< / )(1 _ ey — et (1eap 4 (1 — t”)b”)‘dt
0

P _ P 1 =3
b -a (/ ‘(1—15”)&—#“ tp‘ldt)
2 0
1
x(/ )(1—#’)0‘—#’&
0

b — a” ! =3 1
1 — P> _ gPre pld) (/bpq 1 — P> _ ppr
([ a=er—efeta) (1w [ a-ee -

1
nllf )@ [y —ee

1z 107 + 715

Pt

IN

1

P (tPa? + (1 — t")b”)‘th>

tP~Ldt

IA

PP dt

1 1
— (b — a/’)2/ ‘(1 — P> — P PP (1 — tP)dt) !
0

5 () G

+ gy (1= e )0 @ e
(b —aP)2[ 29%2_q—4 ]\7
- p [2a+l<a+2)(a+3>D

)

where

1 1
tPtdt = f/ [(1—w)* —u®|du
P Jo

1
/ [CENOR
0
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p(oz2—|— 1) (1 a 2ia>7

1 1
1
/ R f/ (1= w) — u®fu du
0 P Jo
1 3

:p[/o [(1_u)a_ua}wmr/l1 [ua—(l—u)o‘]udu]

2

:m(“%)

and

tPtP= (1 — tP)dt

/01‘(_1#)&#“
_/01‘(1—u)°‘—u°‘

:/01/2 ((1 —u)® — uO“)u(l —u)du + /11 (u"‘ -(1- u)f")uu _ u)du}

/2
20+2 _ ¢4
|20t (a4 2) (e + 3) |

u(l — u)du}

D= D= D

This completes the proof of the theorem. Q.E.D.

Remark 2.5. If g =1, =0 and n(z,y) = z — y in Theorem 2.4, then we obtain Theorem 1.15.
To prove our next theorem, we need the following lemma which can be found in [20].

Lemma 2.6. For any « € (0,1] and 0 < z < y, we have

(0% (a3

% =yt < (y —x)*

Theorem 2.7. Let 0 < « < 1 and p > 0. Let f : [a”,b”] — R be a differentiable mapping on
(a?,b") with 0 < a < b. If |f']|? is a strongly n-convex function on [a”, b°] with modulus g > 0 for
q > 1, then the following inequality holds:

H IO e Pz o)+ 1 s

b —a”

< B2 (etsam) (1000 + pn(ir @)

pu(b” —a’)? )3‘
(p+1)(2p+1)) 7
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1 1
where — 4+ - =1,
s g
1 -1 1 1 s(p=D+1
C(s,a,p) = ——7 [B(as +1, M) —|—/ x*® (1 + x) ’ d;v] and B(-,-) is the
0

(p—D)+1
s(p - p

beta function defined by
1
B(z,y) = / t"" Y1 —t)¥"'dt,  Re(zx) >0 and Re(y) > 0.
0

Proof. Using Lemma 2.3, the Holder’s inequality and the strong n-convexity of |f’|?, we obtain

’f(a”) + () pT(a+1)
2 2(bF — ar)e

p_ a0 1
< b a / ‘(1_tp)a_tp0’
2 0

1z 10 + 215

Pt

Fl(tPa? + (1 — t”)b”)‘dt

o p 1 s 3 1
b 2“ (/ ‘(1—#)6‘—#’0‘ ts(pl)dt) (/
0 0
bP — P 1 s -3 1
5 (/ ‘(1—#’)‘*—#(} ts(f’—”dt) (f’(bp)|q/ 1 dt
0 0

1 1 H
sl @@ [ ea- e -a? [ e tﬂ)dt)

0

1
a

IN

F(tPa? + (1 — t")b”)‘th)

IN

- 3 - (C(s,a,m)l_a (If’(bf’)lq + ﬁﬁ(\f’(aﬂnq, 7101
Mb”—a’))?);
(p+D2p+1))

where

Sté’(ﬁfl)dt

1
C(s,a,p) ::/ ‘(lftp)o‘ftpa
0

1 1
:7/ ‘(1_“)a—u°‘
P Jo
1 1
< */ ‘1—2u
P Jo
:1|:/1/2 (1_2u)asu(s—1)p(ﬂ—l)du+/1 (Qu_l)asu(s_l)p(p_l)du]
o 1/2

s(p=D+1 4

:1{3(a3+1"wpl)ﬂ) +/Olgg“s<1+x)P d:c].

s(p—D+1
P

S (s=1)(p=1)
u o du

as  (s=1)(p-1)

uw ¢ du (by Lemma 2.6)

This completes the proof of the theorem. Q.E.D.
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Theorem 2.8. Let a > 0 and p > 0. Let f : [a?,b”’] — R be a differentiable mapping on (a”, b?)
with 0 < a < b. If |f'|? is a strongly 7-convex function on [a?, b°] with modulus u > 0 for ¢ > 1,
then the following inequality holds:

‘f(a”) + /(7)) pT(a+1)
2(br — ar)e

(asi 1)i (If’(bﬂ)l" on(If @) 17N ~ 2pr - >> ,

P12 ) + 1 f(a”)] ‘

b? — a”®

2p

<

1 1
where — + — = 1.
s q

Proof. Using Lemma 2.3, the Holder’s inequality and the strong n-convexity of |f’|?, we obtain
g

’f(a”) + /") pT(a+1)
2(b — ar)e

b —af 1
< /ﬂu-%f-#a fmw+a—ﬁwwﬁ
0

p_ p 1 s H 1
- 2a (/’u—wﬂa—ﬂatplﬁ) </‘ﬂ1
0 0
bp_ap 1 s % 1
<— (/’ﬂ—%@“—ﬂ“t”4ﬁ) Oﬁwﬂw/‘ﬁ*ﬁ
0 0

1 1 H
(7 @)1 00)]9) / | t2p1<1tp>dt)

0

Pz 100+ 215 @)]|

2

1
q

fWM+G—ﬂMWﬁ)

1
b —a’

- e 1)) (G + s @7 e - ot = o)

bp_ap(
1

/‘a—ﬁf—ﬁ“
0

1
s

D) (e s @i i@ - gu - a2)”

Q=

where

S
* du

S—1 1 ! o
= ]a—w -
0

1 1 as
- / ’1 - 2u‘ du  (by Lemma 2.6)
0

= ;[/01/2 (1 — 2u)asdu + /1;2 (2u — 1>asdu]

_
plas+1)°

IA

This proves the theorem. Q.E.D.



Hermite-Hadamard type inequalities 127

3 More fractional integral inequalities

Lemma 3.1. Let a« > 0 and p > 0. Let f : [a”,b”] — R be a differentiable mapping on (a”, )
with 0 < a < b. Then the following equality holds if the fractional integrals exist:

fa?) + f(?) _ p*~'I(a)

RES(GERIANICD

ap (br —ar)>
b —ar 1
- / PO = 17)af +175) — f'(t7af + (1= 1)),
o 0
Proof. The proof follows directly by integration by parts. Q.E.D.

Theorem 3.2. Let o > 0 and p > 0. Let f : [a”,b”] — R be a differentiable mapping on (a”,b”)
with 0 < a < b. If | f/|? is strongly n-convex with modulus g > 0 for ¢ > 1, then the following
inequality holds:

‘fap - (abi(f;)li [”I&f(bﬂ)wzs_f(ap)]’

ST ST R —
) (a_lHlf'( i+ (1@ 7o)

) |

Proof. Using Lemma 3.1, the Holder’s inequality and the strong n-convexity of |f’|?, we obtain

fl@)+ ")  p* 'T(a+1)
ap 2(bP — ar)«

1
b’ —a” / tp(a-‘rl)—l |:
o 0
1 1-2 1
< bP — a”f (/ tp(a+1)_1dt) q [(/ olatl)—1
o 0 0
1
n (/ pplat1)—1
0
1 1-1 1
< b —af (/ tp(aJrl)ldt) [(|f/(ap)|q/ trlat)=1 1p
o 0 0

1 1 H
sl @ 1r @) [ e -y - oy | tf’<“+2>-1<1—tf’>dt)
0

0

1 1
+ (If’(b”)lq/0 tf’("+1>—1dt+n(\f’(a”)lq,If’(b”)lq)/0 trlat2)—1gy

VI8 S ) + I f(a”)] ‘

IN

(1 = t7)a? +t”b”)‘ n

f(#af + (1L =)0 |t

£ = t9)a? + t"b")‘th) !

f(tPa” + (1 — t/’)bﬂ)‘th> ' ]
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! :
— (b — aP)Q/ tp(a+2)71(1 —_ tp)dt> }
0

— o ! a 1(hPY|e | £ q
- a : (p(alJr 1)) [(p(alJrl)M (a”)] +mn(|f (V)% 1 (a?)] )
p(b? — ar)? )i

~pla+2)(a+3)
L 1 p(b? — ar)? H
S Py - —— "(@”)|, | (")) — ———— .
+ (s o+ (i@ ) - - LSO
This completes the proof of the theorem. Q.E.D.

Remark 3.3. If g =1, =0 and n(z,y) = z — y in Theorem 3.2, then we obtain Theorem 1.14.

Theorem 3.4. Let « > 0 and p > 0. Let f : [a?,b”] — R be a differentiable mapping on (a”, b?)
with 0 < a < b. If |f/|? is strongly n-convex with modulus g > 0 for ¢ > 1, then the following
inequality holds:

‘ fla?) +f7) _ p°T(a+1)
2 2(bP — ar)™

P, g0 401 g1

< 1)l (1@ + (i@ @)n)

,U'p(bpfap)Z % 1(1.0\19 1 10 p\la 1(1P\|9 :U'p(bp*ap)Q %
(/)‘1‘1)(2/)‘|'1)> +(|f(b )l Jrmﬁ(ﬁ(a N (07)] >(p—|—1)(2p—|—1)> ],

1 1
where — + - = 1.
S q

Proof. Using Lemma 3.1, the Holder’s inequality and the strong n-convexity of |f/|?, we obtain

I ot D e o) + 71 g

1
< b° — af / tp(a+1)—1[
« 0
1 H 1
S bP — aP </ tsp(a+1)8dt) |:</
& 0 0
1
“(/
0
b — P 1 H 1
< (/ ts”(o‘+1)_sdt> K|f’(ap)|‘I/ 1 dt
Q 0 0

Fa(lres @) [Cea-ue e [ oo -ma)’

F (1 —t")a” + tpbp)) +

F(tPa? + (1 — tp)bP)Hdt

F1((1 = tP)a? + t”bp)’th) ’

1
a

Fl(tPa? + (1 — t”)b")’th> ]
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w (1w [ aea(r@rmlronr) [ea- e -ar [ea-ea)

N —" (R I (AT

@ a+l)—s+1

up(b? —ar)? \ @ vonig L L Nl e o pp(b? — a)? \
o men) + (e Sn(irenriren) - A ]

This completes the proof of the theorem. Q.E.D.

4 Conclusion

We have introduced six main results related to the Hermite-Hadamard inequality via the Katugam-
pola fractional integrals for strongly n-convex functions. As noted earlier, some results in the lit-
erature are particular cases of our results and several other interesting results can be obtained
by considering different bifunctions n and/or the modulus p as well as different values for the
parameters o and p.

Acknowledgement

The authors are very grateful to the anonymous referee for his/her valuable comments and sugges-
tions.

References

[1] M. Alomari, M. Darus and S. S. Dragomir, New inequalities of Hermite-Hadamards type for
functions whose second derivatives absolute values are quasiconver, Tamkang. J. Math. 41
(2010), 353-359.

[2] M. U. Awan, M. A. Noor, K. I. Noor and F. Safdar, On strongly generalized convex functions,
Filomat 31(18)(2017), 5783-5790.

[3] H. Chen and U. N. Katugampola, Hermite-Hadamard and Hermite—-Hadamard—Fejr type in-
equalities for generalized fractional integrals, J. Math. Anal. Appl. 446(2) (2017), 1274-1291.

[4] L. Chun and F. Qi, Integral inequalities of Hermite—Hadamard type for functions whose third
derivatives are convex, J. Inequal. Appl. 2013, 2013:451

[5] L. Chun and F. Qi, Integral inequalities of Hermite—-Hadamard type for functions whose 3rd
derivatives are s-convez, Appl. Math. 3 (2012), 1680-1685.

[6] S.S. Dragomir, Two mappings in connection to Hadamards inequalities, J. Math. Anal. Appl.
167 (1992), 49-56.

[7] S. S. Dragomir and R. P. Agarwal, Two inequalities for differentiable mappings and their
applications to special means for real numbers and to trapezoidal formula, Appl. Math. Lett.

11(5)(1998), 91-95.



130

8]

[9]

S. Kermausuor, E. R. Nwaeze

G. Farid, A. U. Rehman and M. Zahra, On Hadamard-type inequalities for k-fractional inte-
grals, Konulrap J. Math. 4(2)(2016), 79-86.

M. E. Gordji, M. R. Delavar and S. S. Dragomir, Some inequalities related to n-convex func-
tions, RGMIA 18 (2015), Art. 8.

M. E. Gordji, M. R. Delavar and M. De La Sen, On @-convex functions, J. Math. Inequal.
10(1)(2016), 173-183.

M. E. Gordji, S. S. Dragomir and M. R. Delavar, An inequality related to n-convex functions
(IT), Int. J. Nonlinear Anal. Appl. 6(2)(2015), 27-33.

J. Hadamard, FEtude sur les properties des fonctions entries et an particular d’une fonction
considree par, Riemann, J. Math. Pures. et Appl. 58 (1893), 171-215.

U.N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput.
218(3)(2011), 860-865.

U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal.
Appl. 6(4)(2014), 1-15.

M. A. Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via
n-convex functions, Acta Math. Univ. Comen. LXXXVT (1)(2017), 153-164.

E. R. Nwaeze, Inequalities of the Hermite—Hadamard type for quasi-convez functions via the
(k, s)-Riemann—Liouville fractional integrals, Fractional Differ. Calc. 8(2)(2018), 327-336.

E. R. Nwaeze, S. Kermausuor and A. M. Tameru, Some new k-Riemann—Liouville Fractional
integral inequalities associated with the strongly n-quasiconvex functions with modulus p > 0,
J. Inequal. Appl. 2018:139 (2018).

E. R. Nwaeze and D. F. M. Torres, Novel results on the Hermite—Hadamard kind inequality for
n-convex functions by means of the (k,r)-fractional integral operators, Advances in Mathemat-
ical Inequalities and Applications (AMIA); Trends in Mathematics; Dragomir, S.S., Agarwal,
P., Jleli, M., Samet, B., Eds.; Birkhuser: Singapore, 2018, 311-321.

I. Podlubny, Fractional differential equations: Mathematics in Science and Engineering, Aca-
demic Press, San Diego, CA. 1999.

A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integral and series. In: Elementary
Functions, vol. 1. Nauka, Moscow (1981).

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives. Theory and
Applications, Gordon and Breach, Amsterdam, 1993.

M. Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite—Hadamards inequalities for fractional
integrals and related fractional inequalities, Math. Comput. Model 57(9-10) (2013), 2403-2407.



