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Abstract

In this paper, we consider exponential change of Finsler metrics. First, we find a condition
under which the exponential change of a Finsler metric is projectively related to it. Then we
restrict our attention to the 4-th root metric. Let F = 4

√
A be an 4-th root Finsler metric on

an open subset U ⊂ Rn and F̄ = eβ/FF be the exponential change of F . We show that F̄ is
locally projectively flat if and only if it is locally Minkowskian. Finally, we obtain necessary
and sufficient condition under which F̄ be locally dually flat.
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1 Introduction

Let (M,F ) be a Finsler manifold. For a 1-form β(x, y) = bi(x)yi on M , we have a change of the
Finsler metric F which is defined by F (x, y)→ F̄ (x, y) = f(F, β), where f = f(F, β) is a positively
homogeneous function of F . This is called a β-change of F . If ||β||F := supF (x,y)=1 |β| < 1, then

it is easy to see that F̄ is again a Finsler metric [10]. Indeed, F̄ is positive and strong convex if
||β||F < 1.

There is a special case of β-change, namely

F̄ (x, y) = e
β
F F (x, y) (1)

which is called the exponential change. Here, we assume that β 6= 0. If F = α is a Riemannian

metric, then F̄ = e
β
αα is the exponential Finsler metric. Due to this reason, the transformation (1)

has been called the exponential change of Finsler metrics. For other β-changes, see [21], [23] and
[25].

For a Finsler metric F = F (x, y), its geodesics curves are characterized by the system of ODE
c̈i + 2Gi(ċ) = 0, where the local functions Gi = Gi(x, y) are called the spray coefficients. Two
Finsler metrics F and F̄ on a manifold M are called projectively related if any geodesic of the first
is also geodesic for the second and vice versa. In this case, there is a scalar function P = P (x, y)
defined on TM0 such that Ḡi = Gi +Pyi, where Ḡi and Gi are the geodesic spray coefficients of F̄
and F , respectively.

In this paper, we find a condition under which the exponential change of a Finsler metric is
projectively related to it. Let (M,F ) be a Finsler manifold and β = bi(x)yi a 1-form on M . Put

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i), r00 = rijy

iyj ,

where “ | ” denotes the horizontal derivation with respect to the Berwald connection of F . Then
we have the following.
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Theorem 1.1. Let (M,F ) be Finsler manifold. Suppose that F̄ = eβ/FF be the exponential
change of F . Then F̄ is projectively related to F if only if β satisfies

sij =
1

2

[
Ajrik −Airjk

]
yk, (2)

where Ai := (β/F )yi . In this case, the projective factor is given by P = 1
2F r00.

The theory of m-th root Finsler metric has been developed by Shimada and Matsumoto and
applied to Biology as an ecological metric [7, 11]. Let M be an n-dimensional C∞ manifold,
TM its tangent bundle. Let F = m

√
A be a Finsler metric on M , where A = A(x, y) is given by

A := ai1...im(x)yi1yi2 . . . yim with ai1...im symmetric in all its indices. Then F is called an m-th root
Finsler metric (see [11, 14, 16, 17, 18, 19, 20, 22, 25]). The special m-th root Finsler metric in the

form F = m
√
y1y2 . . . ym is called the Berwald-Moór metric [4, 5, 7]. Recently, physical studies due

to Asanov, Pavlov and their co-workers emphasize the important role played by the Berwald-Moór
metric in the theory of space-time structure and gravitation as well as in unified gauge field theories
[2, 12, 13]. In [3], Balan prove that the Berwald-Moór structures are pseudo-Finsler of Lorentz type
and for co-isotropic submanifolds of Berwald-Moór spaces present the Gauss-Weingarten, Gauss-
Codazzi, Peterson-Mainardi and Ricci-Kühne equations.

A Finsler metric is said to be locally projectively flat if at any point there is a local coordinate
system in which the geodesics are straight lines as point sets. It is known that a Finsler metric
F (x, y) on an open domain U ⊂ Rn is locally projectively flat if and only if Gi = Pyi, where
P = P (x, y) is called the projective factor and is a C∞ scalar function on TM0 = TM \ {0}
satisfying P (x, λy) = λP (x, y) for all λ > 0.

Theorem 1.2. Let F = 4
√
A be an 4-th root Finsler metric on an open subset U ⊂ Rn. Suppose

that F̄ = eβ/FF be the exponential change of F . Then F̄ is locally projectively flat if and only if
F is locally Minkowskian.

In [1], Amari-Nagaoka introduced the notion of dually flat Riemannian metrics when they study
the information geometry on Riemannian manifolds. In Finsler geometry, Shen extends the notion
of locally dually flatness for Finsler metrics [9]. A Finsler metric F on a manifold M is said to be
locally dually flat if at any point there is a coordinate system (xi) in which the spray coefficients
are in the form Gi = − 1

2g
ijHyj , where H = H(x, y) is a positively homogeneous scalar function on

TM0.

Theorem 1.3. Let F = 4
√
A be an 4-th root Finsler metric on an open subset U ⊂ Rn. Suppose

that F̄ = eβ/FF be the exponential change of F . Then F̄ is a locally dually flat Finsler metric if
and only if the following hold

16(β0l − 2βxl)A
2 + 4(Alβ0 +A0bl)A− 4β(A0l − 2Axl)A+A0Alβ = 0, (3)

2(A0l − 2Axl)A−A0Al = 0, (4)

16blβ0A
2 − 4β(A0bl + β0Al)A+ β2A0Al = 0. (5)

Moreover, suppose that A is irreducible. Then, there exists a 1-form γ = γiy
i on U such that (3),
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(4) and (5) reduce to following

Axl =
1

6

[
2Aγl + γAl

]
, (6)

βxl =
1

12

[
2blγ + βγl

]
. (7)

2 Preliminary

Given a Finsler manifold (M,F ), then a global vector field G is induced by F on TM0, which in a
standard coordinate (xi, yi) for TM0 is given by

G = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where

Gi :=
1

4
gil
[ ∂2F 2

∂xk∂yl
yk − ∂F 2

∂xl

]
, y ∈ TxM. (8)

G is called the spray associated to (M,F ). In local coordinates, a curve c(t) is a geodesic if and
only if its coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0. Then two Finsler metrics F and F̄ on a
manifold M are called projectively related if any geodesic of the first is also geodesic for the second
and vice versa. In this case, Gi = Ḡi + Pyi, where Gi and Ḡi are the geodesic spray coefficients
of F and F̄ , respectively, and P = P (x, y) is a positively homogeneous scalar function on TM0.
Indeed, two regular metric spaces are projectively related if there is a diffeomorphism between them
such that the pull-back metric is pointwise projective to another one. The following lemma plays
an important role.

Lemma 2.1. (Rapcsák [8]) Let F and F̄ be two Finsler metrics on a manifold M . Then F̄ is
projectively related to F if and only if F̄ satisfies

F̄|k,ly
k − F̄|l = 0. (9)

where “|” denotes the horizontal derivation with respect to the Berwald connection of F . In this
case, the spray coefficients are related by Ḡi = Gi + Pyi, where

P =
F̄|ky

k

2F̄
. (10)

The P = P (x, y) is called the projective factor of F (x, y).

It is known that a Finsler metric F (x, y) on U ⊂ Rn is projective if and only if its geodesic
coefficients Gi are in the form Gi(x, y) = P (x, y)yi, where P : TU = U × Rn → R is positively
homogeneous of degree one with respect to y. Much earlier, in [6], G. Hamel proved that a Finsler
metric F on U ⊂ Rn is projectively flat if and only if it satisfies

Fxkyly
k = Fxl . (11)

See [15], [22] and [24].
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A Finsler metric F = F (x, y) on a manifold M is said to be locally dually flat if at any point
there is a coordinate system (xi) in which the spray coefficients are in the form Gi = − 1

2g
ijHyj ,

where H = H(x, y) satisfying H(x, λy) = λ3H(x, y) for all λ > 0. Such a coordinate system is
called an adapted coordinate system. In [9], Shen proved that the Finsler metric F on an open
subset U ⊂ Rn is dually flat if and only if it satisfies

(F 2)xkyly
k = 2(F 2)xl . (12)

In this case, H = − 1
6 [F 2]xmy

m.

3 Proof of the Theorem 1.1

Throughout this paper, we use the Berwald connection and the h- and v- covariant derivatives of a
Finsler tensor field are denoted by “ | ” and “, ” respectively. Now, let (M,F ) be a Finsler manifold
and β = bi(x)yi a 1-form on M . Put

sij :=
1

2
(bi|j − bj|i), rij :=

1

2
(bi|j + bj|i),

ri0 := rijy
j , r00 := rijy

iyj , si0 := sijy
j ,

where “|” denotes the horizontal derivation with respect to the Berwald connection of F .

Proof of Theorem 1.1: The following hold

bi|j =
∂bi
∂xj
− bsΓsij , Γsij = Γsji,

where Γijk = Γijk(x, y) are the Christoffel symbols of the Berwald connection of F . Then we have

sij :=
1

2
(bi|j − bj|i) =

1

2

( ∂bi
∂xj
− ∂bj
∂xi

)
, (13)

rij :=
1

2
(bi|j + bj|i) =

1

2

( ∂bi
∂xj

+
∂bj
∂xi
− 2bsΓ

s
ij

)
. (14)

By (13) and (14), we get

β|l = bi|ly
i =

( ∂bi
∂xl
− Γsilbs

)
yi, (15)

β|ky
k = bi|ky

iyk = (rik + sik)yiyk = r00, (16)

β|k,ly
k =

( ∂bl
∂xk
− bsΓslk

)
yk. (17)

(15) and (17) imply that
β|k,ly

k − β|l = slky
k = 2sl0. (18)

For F̄ = eβ/FF , we have

F̄|l = β|le
β
F , (19)

F̄|k,ly
k =

[
β|k,ly

k +
( β
F

)
l
β|ky

k
]
e
β
F . (20)
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Then by (16), (18), (19) and (20), we get the following

F̄|k,ly
k − F̄|l =

[
β|k,ly

k +
( β
F

)
l
β|ky

k − β|l
]
e
β
F

=
[
2sl0 +

( β
F

)
l
r00

]
e
β
F . (21)

By the Lemma 2.1, F̄ is projectively related to F if and only if

2sl0 +
( β
F

)
l
r00 = 0. (22)

Taking a vertical derivation of (22) yields

sli = −1

2

[( β
F

)
li
r00 + 2

( β
F

)
l
r0i

]
. (23)

Since sli = −sil, then by (23) we get( β
F

)
li
r00 + 2

( β
F

)
l
r0i = −

( β
F

)
il
r00 − 2

( β
F

)
i
r0l

or ( β
F

)
li
r00 = −

( β
F

)
i
r0l −

( β
F

)
l
r0i. (24)

By (23) and (24), we have

sij =
1

2

[( β
F

)
j
r0i −

( β
F

)
i
r0j

]
. (25)

By (25), we get (2).
Now, by (10) and (19) it follows that

P =
F̄|ky

k

2F̄
=
β|ky

ke
β
F

2F̄
=

1

2F
r00.

This completes the proof. q.e.d.

4 Proof of the Theorem 1.2

In this section, we are going to prove the Theorem 1.2. First, we remark the following.

Lemma 4.1. Let F = 4
√
A be an 4-th root Finsler metric on an open subset U ⊂ Rn. Suppose

that the equation holds

ΨA
7
4 + ΞA

5
4 + ΦA

3
4 + ΘA

1
4 + ΥA

−1
4 + Ω = 0, (26)

where Φ,Ψ,Θ,Υ,Ω,Ξ are homogeneous polynomials in y. Then

ΨA2 + ΦA+ Υ = 0, (27)

ΞA+ Θ = 0, (28)

Ω = 0. (29)
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Proof. By contracting (26) with 4
√
A we get

ΨA2 + ΦA+ Υ + (ΞA
5
4 + ΘA

1
4 + Ω)A

1
4 = 0, (30)

Thus

ΨA2 + ΦA+ Υ = 0, (31)

ΞA
5
4 + ΘA

1
4 + Ω = 0 (32)

Multiplying (32) with A
3
4 implies that

(ΞA+ Θ)A+ ΩA
3
4 = 0 (33)

Then

ΞA+ Θ = 0, (34)

Ω = 0 (35)

This completes the proof. q.e.d.

For an 4-th root metric F = 4
√
A, let us put

Ai =
∂A

∂yi
, Aij =

∂2A

∂yj∂yj
, Axi =

∂A

∂xi
, A0 = Axiy

i, A0l = Axkyly
k =

∂2A

∂xi∂yl
yk.

Proof of the Theorem 1.2: The following holds For F̄ = eβA
− 1

4 4
√
A, the following hold

[F̄ ]xl =
1

4

[
AxlA

− 3
4 − βAxlA−1 + 4βxl

]
eβA

−1
4 , (36)

[F̄ ]xkyly
k =

1

4

[
1

4
β2A0AlA

− 9
4 − 3

4
A0AlA

− 7
4 − β(Alβ0 +A0bl)A

− 5
4 +A0lA

− 3
4

+4blβ0A
− 1

4 +
3

4
βA0AlA

−2 − βA0lA
−1 + 4β0l

]
eβA

− 1
4 , (37)

where

βxi :=
∂β

∂xi
, βi :=

∂β

∂yi
= bi, β0 := βxiy

i, β0l := βxiyly
i.

Since F̄ is locally projectively flat metric, then (11) holds

[F̄ ]xkyly
k − [F̄ ]xl = 0. (38)
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By putting (36) and (37) in (38) and multiplying the result with A2, we get

−3

4
A0AlA

1
4 +A0lA

5
4 + βA0Al −A0lAβ + 4β0lA

2

−1

4
A0Alβ + 4β0blA

7
4 − ββ0AlA

2A
3
4 − βblA0A

3
4

+
1

4
β2A0AlA

− 1
4 −AxlA

5
4 − 4βxlA

2 + βAAxl = 0, (39)

Simplifying (39) results that

16blβ0A
7
4 +4(A0l −Axl)A

5
4 − 4β(β0Al + blA0)A

3
4 − 3A0AlA

1
4

+β2A0AlA
− 1

4 + 16(β0l − βxl)A2 − 4β(A0l −Axl)A+ 3βA0Al = 0. (40)

By Lemma 4.1 and (40), we have

16blβ0A
2 − 4β(β0Al + blA0)A+ β2A0Al = 0, (41)

4(A0l −Axl)A = 3A0Al, (42)

16(β0l − βxl)A2 − 4β(A0l −Axl)A+ 3βA0Al = 0. (43)

By (42) and (43), we obtain
β0l − βxl = 0. (44)

Since β0l − βxl = 2sl0, then by considering (22) it follows that r00 = 0 and then P = 0. Thus
Gi = 0 and F reduces to a locally Minkowskian metric. q.e.d.

5 Proof of the Theorem 1.3

In this section, we are going to characterize locally dually flat Finsler metrics which is obtained by
an exponential change of m-th root metrics. First, we remark the following.

Lemma 5.1. Let F = 4
√
A be an 4-th root Finsler metric on an open subset U ⊂ Rn. Suppose

that the following equation holds

ΘA
9
4 + ΦA

3
2 + ΨA

5
4 + ΥA

1
2 + ΞA

1
4 + Ω = 0, (45)

where Φ,Ψ,Θ,Υ,Ω and Ξ are homogeneous polynomials in y. Then

ΘA2 + ΨA+ Ξ = 0, (46)

ΦA+ Υ = 0, (47)

Ω = 0. (48)

Proof. By contracting (45) with A
3
4 we get

ΘA3 + ΦA
9
4 + ΨA2 + ΥA

5
4 + ΞA+ ΩA

3
4 = 0, (49)

Thus

ΘA2 + ΨA+ Ξ = 0, (50)

ΦA
6
4 + ΥA

2
4 + Ω = 0 (51)

By (51), we have (47) and (48). q.e.d.
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Proof of the Theorem 1.3: The following holds

[F̄ 2]xl =
1

2

[
AxlA

− 1
2 + 4βxlA

1
4 − βAxlA−

3
4

]
e2βA− 1

4 , (52)

[F̄ 2]xkyly
k =

1

2

[
− 1

2
AlA0A

− 3
2 +A0lA

− 1
2 +Alβ0A

− 3
4 + 4β0lA

1
4 − blA0A

− 3
4

+
3

4
AlA0βA

− 7
4 −A0lβA

− 3
4 + 2A0blA

− 3
4 − 1

2
βA0AlA

− 7
4

−2ββ0AlA
−1 − 2blβA0A

−1 +
1

2
β2A0AlA

−2 + 8blβ0

]
e2βA− 1

4 . (53)

Since F̄ is locally dually flat metric, then

[F̄ 2]xkyly
k − 2[F̄ 2]xl = 0. (54)

Putting (52) and (53) in (54) and multiplying the result with A2 imply that

16(β0l − 2βxl)A
9
4 + 4(A0l − 2Axl)A

3
2 + 4

[
Alβ0 +A0bl + β(2Axl −A0l)

]
A

5
4

−2A0AlA
1
2 +A0AlβA

1
4 + 32blβ0A

2 − 8β(A0bl + β0Al)A+ 2β2A0Al = 0. (55)

Then by Lemma 5.1 and (55), we get (3), (4) and (5).
Now, suppose that A is irreducible. By (4), irreducibility of A and deg(Al) = 3, it follows that

there exists a 1-form γ = γly
l on U such that

A0 = γA. (56)

Taking a vertical derivative of (56) implies that

A0l = Aγl + γAl −Axl . (57)

By putting (56) and (57) in (4), we get (6), and by putting (56) in (5), we obtain

(4β0 − βγ)(4blA− βAl) = 0. (58)

If 4blA− βAl = 0, then A is reducible which contradicts with our assumption. Then, we get

β0 =
1

4
βγ. (59)

Putting (4), (56) and (57) in (3) yield

16(β0l − 2βxl)A+ (4β0 − βγ)Al + 4γAbl = 0. (60)

By (59) and (60), we have
4(β0l − 2βxl) + blγ = 0. (61)
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On the other hand, taking a vertical derivation of (59) implies that

β0l + βxl =
1

4

[
blγ + βγl

]
. (62)

By (61) and (62), one can obtain

βxl =
1

12

[
2blγ + βγl

]
. (63)

This completes the proof. q.e.d.
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