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Abstract

This paper deals with the existence of mild and integral solutions for a class of functional
differential equations. The technique used is a generalization of the classical Darbo fixed point
theorem for Fréchet spaces associated with the concept of measure of noncompactness.
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1 Introduction

Differential equations on infinite intervals frequently occur in mathematical modelling of various
applied problems see [2, 21, 22]. For example, in the study of unsteady flow of a gas through a
semi-infinite porous medium Agarwal and O’Regan [3], Kidder [17], analysis of the mass transfer
on a rotating disk in a non-Newtonian fluid Agarwal and O’Regan [4], heat transfer in the radial
flow between parallel circular disks Na [20], investigation of the temperature distribution in the
problem of phase change of solids with temperature dependent thermal conductivity Na [20], as
well as numerous problems arising in the study of circular membranes Agarwal and O’Regan [2],
Dickey [9, 10], plasma physics Agarwal and O’Regan [4], nonlinear mechanics, and non-Newtonian
fluid flows Agarwal and O’Regan [2].

Measures of noncompactness are very useful tools in functional analysis, for instance in metric
fixed pint theory and in the theory of operator equations in Banach spaces. They are also used
in the studies of functional equations, ordinary and partial differential equations, fractional partial
differential equations, integral and integro-differential equations, optimal control theory, and in the
characterizations of compact operators between Banach spaces. The first measure of noncompact-
ness, denoted by α, was defined and studied by Kuratowski [18] in 1930. In 1955, Darbo [8] used
the function α to prove his fixed point theorem. Darbo’s fixed point theorem is a very important
generalization of Schauder’s fixed point theorem, and includes the existence part of Banach’s fixed
point theorem.

In the present paper, we consider the following class of semilinear differential equations:

y′(t) = Ay(t) + f(t, y(t)), t ∈ [0,∞), (1)

with the initial condition
y(0) = y0 ∈ E, (2)
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where f : R+×E → E is given function, (E, ‖·‖) is a (real or complex) Banach space. The theory of
semilinear differential equations has emerged as an important branch of nonlinear analysis, existence
and uniqueness of mild, integral, strong and classical solutions of semilinear differential equations
has been studied extensively by many authors using the semigroup theory, fixed point argument,
degree theory and measures of noncompactness. We mention, for instance, the books of Abbas and
Benchohra [1], Ahmed [5], Engel and Nagel [13], Kamenski et al. [15], Pazy [23] and Wu [24].

This paper initiates the existence of solutions for differential equations with an application
of a generalization of the classical Darbo fixed point theorem, and the concept of measure of
noncompactness in Fréchet spaces.

The paper is organized as follows. In Section 2 some preliminary results are introduced. The
main results is presented in section 3, we discuss the existence of mild solutions of the problem
(1)-(2), in the case where A is densely defined operator generating a C0-semigroup (T (t))t≥0 on
E, while in Section 4, we discuss the existence of integral solutions of the problem (1)-(2), in the
case where A is a Hille–Yosida operator and nondensely defined on E generating an integrated
semigroup (S(t))t≥0 on E. Section 5 is devoted to illustrative examples. A conclusion is presented
in Section 6.

2 Preliminaries

Let I =: [0, T ]; T > 0. A measure function y : I → E is Bochner integrable if and only if ‖y‖ is
Lebesgue integrable. For properties of the Bochner integral, see for instance, Yosida[25].
By B(E) we denote the Banach space of all bounded linear operators from E into E, with the norm

‖N‖B(E) = sup
‖y‖=1

‖N(y)‖.

As usual, L1(I, E) denotes the Banach space of measurable functions y : I → E which are Bochner
integrable and normed by

‖y‖L1 =

∫ T

0

‖y(t)‖dt.

As usual, C := C(I) we denote the Banach space of all continuous functions from I into E with
the norm ‖ · ‖∞ defined by

‖y‖∞ = sup
t∈I
‖y(t)‖.

It is well known that the operator A generates a semigroup if A satisfies:

(ii) D(A) = E.

(ii) The Hille-Yosida condition, that is, there exists M ≥ 0 and τ ∈ R such that (τ,∞) ⊂
ρ(A), sup{(λI − τ)n|(λI −A)−n| : λ > τ, n ∈ N} ≤M,

where ρ(A) is the resolvent operator set of A and I is the identity operator. Existence and unique-
ness, among other things, are derived. See, for example, the books of Heikkila and Lakshmikantham
[14], Pazy [23].

Let C(R+) be the Fréchet space of all continuous functions v from R+ into E, equipped with
the family of seminorms

‖v‖n = sup
t∈[0,n]

‖v(t)‖; n ∈ N,
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and the distance

d(u, v) =

∞∑
n=1

2−n
‖u− v‖n

1 + ‖u− v‖n
; u, v ∈ C(R+).

We recall the following definition of the notion of a sequence of measures of noncompactness
[11, 12].

Definition 2.1. Let MX be the family of all nonempty and bounded subsets of Fréchet space
X. A family of functions {µn}n∈N where µn :MX → [0,∞) is said to be a family of measures of
noncompactness in the Fréchet space X if it satisfies the following conditions for all B,B1, B2 ∈
MX :

(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,

(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,

(c) µn(ConvB) = µn(B) for n ∈ N,

(d) If {Bi}i=1,... is sequence of closed sets from MX such that Bi+1 ⊂ Bi; i = 1, . . . and if
limi→∞ µ(Bi) = 0, for each n ∈ N, then the intersection set B∞ := ∩∞i=1Bi is nonempty.

Some Properties:

(e) We say that the family of measures of noncompactness {µn}n∈N is homogeneous if µn(λB) =
|λ|µn(B), for λ ∈ R and n ∈ N.

(f) If the family {µn}N satisfies the condition µn(B1 + B2) ≤ µn(B1) + µn(B2), for n ∈ N, it is
called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.

(h) We say that the family of measures {µn}n∈N has the maximum property if

µn(B1 ∪B2) = max(µn(B1), µn(B2)),

(i) The family of measure of noncompactness {µn}n∈N is said to be regular if and only if the
conditions (a), (g) and (h) hold; (full sublinear and has maximum property).

Definition 2.2. A nonempty subset B ⊂ X is said to be bounded if

sup
υ∈X
‖υ‖n <∞ for n ∈ N.

Lemma 2.3. [6] If Y is a bounded subset of Fréchet space X, then for each ε > 0, there is a
sequence {yk}∞k=1 ⊂ Y such that

µn(Y ) ≤ 2µ({yk}∞k=1) + ε; for n ∈ N.
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Lemma 2.4. [19] If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then µn({uk}∞k=1) is measurable for
n ∈ N, and

µn

({∫ t

0

uk(s)ds

}∞
k=1

)
≤ 2

∫ t

0

µn({uk(s)}∞k=1)ds,

for each t ∈ [0, n].

Definition 2.5. Let Ω be a nonempty subset of a Fréchet space X, and let A : Ω → X be
a continuous operator which transforms bounded subsets of onto bounded ones. One says that
A satisfies the Darbo condition with constants (kn)n∈N with respect to a family of measures of
noncompactness {µn}n∈N, if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N, then A is called a contraction with respect to {µn}n∈N.

In the sequel we will make use of the following generalization of the classical Darbo fixed point
theorem for Fréchet spaces.

Theorem 2.6. [11, 12] Let Ω be a nonempty, bounded, closed, and convex subset of a Fréchet
space X and let V : Ω→ Ω be a continuous mapping. Suppose that V is a contraction with respect
to a family of measures of noncompactness {µn}n∈N. Then V has at least one fixed point in the set
Ω.

3 Existence of mild solutions

In this section, we present the main results for the global existence of solutions for our problem.
Let us introduce the definition of the mild solution of the problem (1)-(2).

Definition 3.1. We say that a continuous function y(·) : R+ → E is mild solution of the problem
(1)-(2), if y satisfies the following integral equation

y(t) = T (t)y0 +

∫ t

0

T (t− s)f(s, y(s))ds, t ∈ [0,+∞). (3)

We will consider the hypotheses (1)-(2) and we will need to introduce the following one which
is assumed hereafter:

(H1) The operator A is the infinitesimal generator of a C0-semigroup T (t), t ∈ R+ in E and there
exists a positive constant M ≥ 1 such that

‖T (t)‖B(E) ≤M, t ≥ 0.

(H2) The function t→ f(t, y) is measurable on R+ for each y ∈ E, and the function y 7→ f(t, y) is
continuous on E for a.e. t ∈ R+.

(H3) There exists a continuous function p : R+ → (0,∞) such that

‖f(t, y)‖ ≤ p(t)(1 + ‖y‖) for a.e. t ∈ R+ and each y ∈ E.
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(H4) For each bounded and measurable set B ⊂ E and for each t ∈ R+, we have

µ(f(t, B)) ≤ p(t)µ(B),

where µ is a measure of noncompactness on the Banach space E.
For n ∈ N, let

p∗n = sup
t∈[0,n]

p(t),

and define on C(R+) the family of noncompactness by

µn(D) = sup
t∈[0,n]

e−4Mp∗nτtµn(D(t))

where D(t) = {v(t) ∈ E : v ∈ D}; t ∈ [0, n] and τ > 1.

Theorem 3.2. Assume that the hypotheses (H1)- (H6) are satisfied, and

ln := nMp∗n < 1; for each n ∈ N.

Then the problem (1)-(2) has at least one mild solution.

Proof. Consider the operator N : C(R+)→ C(R+) defined by:

(Ny)(t) = T (t)y0 +

∫ t

0

T (t− s)f(s, y(s))ds, t ∈ [0,+∞). (4)

For any n ∈ N, let Rn be a positive real number with

Rn ≥
M‖y0‖+ nMp∗n

1− nMp∗n
,

and we consider the ball

BRn
:= B(0, Rn) = {y ∈ C(R+) : ‖y‖n ≤ Rn}.

For any n ∈ N, and each y ∈ BRn
and t ∈ [0, n] we have

‖(Ny)(t)‖ ≤ ‖T (t)‖B(E)‖y0‖+

∫ t

0

‖T (t− s)‖B(E)‖f(s, y(s))‖ds

≤ M‖y0‖+M

(∫ t

0

p(s)(1 + ‖y(s)‖)ds
)

≤ M‖y0‖+M(1 + ‖y‖n)

∫ t

0

p(s)ds

≤ M‖y0‖+Mnp∗n(1 +Rn)

≤ Rn.

Thus
‖N(y)‖n ≤ Rn. (5)



74 A. Arara, M. Benchohra, F. Mesri

This proves that N transforms the ball BRn
into itself. We shall show that the operator

N : BRn → BRn satisfies all the assumptions of Theorem 3.2. The proof will be given several steps.
Step 1. N : BRn → BRn is continuous.
Let {yk}k∈N be a sequence such that yk → y in BRn

. Then, for each t ∈ [0, n], we have

‖(Nyk)(t)− (Ny)(t)‖ ≤
∫ t

0

‖T (t− s)‖B(E)‖f(s, yk(s))− f(s, y(s))‖ds

≤ M

∫ t

0

‖f(s, yk(s))− f(s, y(s))‖ds.

Since yk → y as k →∞, the Lebesgue dominated convergence theorem implies that

‖Nyk −Ny‖n → 0 as k →∞.

Step 2. N(BRn
) is bounded.

Since N(BRn
) ⊂ BRn

is bounded, then N(BRn
) is bounded.

Step 3. For each equicontinuous subset D of BRn , µn(ND) ≤ lnµn(D).
From lemmas 2.3 and 2.4 , for any D ⊂ BRn and any ε > 0, there exists a sequence {yk(s)}∞k=1 ⊂ D,
such that for all t ∈ [0, n], we have

µ(ND)(t)) = µ

({
T (t)y0 +

∫ t

0

T (t− s)f(s, y(s))ds; y ∈ D
})

≤ 2µ({
∫ t

0

T (t− s)f(s, yk(s))ds}∞k=1) + ε

≤ 2µ

({∫ t

0

T (t− s)f(s, yk(s))ds

}∞
k=1

)
+ ε

≤ 4M

∫ t

0

µ({f(s, yk(s))}∞k=1)ds+ ε

≤ 4M

∫ t

0

p(s)µ({yk(s)}∞k=1)ds+ ε

≤ 4Mp∗n

∫ t

0

µ({yk(s)}∞k=1)ds+ ε

≤ 4Mp∗n

∫ t

0

e4Mp∗nτse−4Mp∗nτsµ({yk(s)}∞k=1)ds+ ε

≤ 4Mp∗nµn(D)

∫ t

0

e4Mp∗nτsds+ ε

≤ e4Mp∗nτt

τ
µn(D) + ε.

Since ε > 0 is arbitrary, then

µ(ND)(t) ≤ e4Mp∗nτt

τ
µn(D).
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Thus

µn(ND) ≤ 1

τ
µn(D).

As a consequence of steps to 1 to 3 together with Theorem 3.2, we can conclude that N has a least
one fixed in BRn

which is a mild solution of problem (1).

4 Existence of integral solutions

In this section we give our main existence result for problem (1)-(2) in the case when the operator
A is nondensely defined. Before that, we present some examples of nondensely defined linear
operators. We refer to [7] for more details.

Example 1. Let E = C([0, 1],R) and A : D(A)→ E the operator defined by

Ay = y′,

where
D(A) = {y ∈ C1([0, 1],R) : y(0) = 0}.

We have
D(A) = {y ∈ C1([0, 1],R) : y(0) = 0} 6= E.

Example 2. Let E = C([0, 1],R) and A : D(A)→ E the operator defined by

Ay = y′′,

where
D(A) = {y ∈ C2([0, 1],R) : y(0) = y(1) = 0}.

We have
D(A) = {y ∈ C2([0, 1],R) : y(0) = y(1) = 0} 6= E.

Example 3. Let β ∈ (0, 1),

E = Cβ0 ([0, 1],R) = {y : [0, 1]→ R; y(0) = 0 and sup
0≤t, s≤1

|y(t)− y(s)|
|t− s|β

< +∞}

and the operator A : D(A)→ E defined by

Ay = −y′,

where
D(A) = {y ∈ C1+β([0, 1],R) : y(0) = y′(0) = 0}.

Then

D(A) = hβ0 ([0, 1],R)

= {y : [0, 1]→ R; lim
δ→0

sup
0≤|t−s|≤δ

|y(t)− y(s)|
|t− s|β

= 0, y(0) = y′(0) = 0} 6= E.

Here
C1+β([0, 1],R) = {y : [0, 1]→ R; | y′ ∈ C1([0, 1],R)}.
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The elements of hβ([0, 1],R) are called Holderien functions and the closure of C1([0, 1],R) in
Cβ([0, 1],R) is hβ([0, 1],R).

Before starting and proving this result, we give the definition of the integral solution.

(P1) A satisfies the Hille–Yosida condition, namely, there exist M ≥ 0 and ω ∈ R such that
(ω,∞) ⊂ %(A) and

|(λI −A)−n| ≤ M

(λ− ω)n
for n ∈ N and λ > ω,

where %(A) is the resolvent set of A, for more details (see [16]).

Definition 4.1. We say that y : [0,∞)→ E is an integral solution of (1)-(2) if

(i) y ∈ C([0,∞), E),

(ii)
∫ t

0
y(s)ds ∈ D(A) for t ∈ J,

(iii) y(t) = y0 +A
∫ t

0
y(s)ds+

∫ t
0
f(s, y(s))ds, t ∈ J.

From the definition it follows that y(t) ∈ D(A), t ≥ 0, in particular y0 ∈ D(A).
Moreover, y satisfies the following variation of constants formula:

y(t) = S′(t)y0 +
d

dt

∫ t

0

S(t− s)f(s, y(s))ds, t ∈ [0,+∞). (6)

We will consider the hypotheses (1)-(2) and we will need to introduce the following one which
is assumed hereafter:

(P2) Let (S(t))t≥0, be the integrated semigroup generated by A such that

‖S′(t)‖B(E) ≤ M̃, t ≥ 0.

Theorem 4.2. Assume that the hypotheses (P1)- (P2) and (H2)-(H4) are satisfied, and

ln := nM̃p∗n < 1; for each n ∈ N.

Then the problem (1)-(2) has at least one mild solution.

Proof. Consider the operator Q : C(R+)→ C(R+) defined by:

(Qy)(t) = S′(t)y0 +
d

dt

∫ t

0

S(t− s)f(s, y(s))ds, t ∈ [0,+∞). (7)

For any n ∈ N, let Rn be a positive real number with

Rn ≥
M̃‖y0‖+ nM̃p∗n

1− nM̃p∗n
,
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and we consider the ball

BRn
:= B(0, Rn) = {ω ∈ C(R+) : ‖ω‖n ≤ Rn}.

For any n ∈ N, and each y ∈ BRn
and t ∈ [0, n] we have

‖(Qy)(t)‖ ≤ ‖S′(t)‖B(E)‖y0‖+

∥∥∥∥ ddt
∫ t

0

S(t− s)f(s, y(s))ds

∥∥∥∥
≤ M̃‖y0‖+ M̃

(∫ t

0

p(s)(1 + ‖y(s)‖)ds
)

≤ M̃‖y0‖+ M̃(1 + ‖y‖n)

∫ t

0

p(s)ds

≤ M̃‖y0‖+ M̃np∗n(1 +Rn)

≤ Rn.

Thus
‖Q(y)‖n ≤ Rn. (8)

This proves that Q transforms the ball BRn
into itself. We shall show that the operator Q : BRn

→
BRn satisfies all the assumptions of Theorem 3.2. The proof will be given several steps.
Step 1. Q : BRn → BRn is continuous.
Let {yk}k∈N be a sequence such that yk → y in BRn

. Then, for each t ∈ [0, n], we have

‖(Qyk)(t)− (Qy)(t)‖ ≤
∥∥∥∥ ddt

∫ t

0

S(t− s)(f(s, yk(s))− f(s, y(s)))ds

∥∥∥∥
≤ M̃

∫ t

0

‖f(s, yk(s))− f(s, y(s))‖ds.

Since yk → y as k →∞, the Lebesgue dominated convergence theorem implies that

‖Qyk −Qy‖n → 0 as k →∞.

Step 2. Q(BRn) is bounded.
Since Q(BRn) ⊂ BRn is bounded, then Q(BRn) is bounded.

Step 3. For each equicontinuous subset D of BRn
, µn(QD) ≤ lnµn(D).

From lemmas 2.3 and 2.4 , for any D ⊂ BRn
and any ε > 0, there exists a sequence {yk(s)}∞k=1 ⊂ D,
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such that for all t ∈ [0, n], we have

µ(QD)(t)) = µ

({
S′(t)y0 +

d

dt

∫ t

0

S(t− s)f(s, y(s))ds; y ∈ D
})

≤ 2µ

(
{ d
dt

∫ t

0

S(t− s)f(s, yk(s))ds}∞k=1

)
+ ε

≤ 4M̃

∫ t

0

µ({f(s, yk(s))}∞k=1)ds+ ε

≤ 4M̃

∫ t

0

p(s)µ({yk(s)}∞k=1)ds+ ε

≤ 4M̃p∗n

∫ t

0

µ({yk(s)}∞k=1)ds+ ε

≤ 4M̃p∗n

∫ t

0

e4M̃p∗nτse−4M̃p∗nτsµ({yk(s)}∞k=1)ds+ ε

≤ 4M̃p∗nµn(D)

∫ t

0

e4M̃p∗nτsds+ ε

≤ e4M̃p∗nτt

τ
µn(D) + ε.

Since ε > 0 is arbitrary, then

µ(QD)(t) ≤ e4M̃p∗nτt

τ
µn(D).

Thus

µn(QD) ≤ 1

τ
µn(D).

As a consequence of steps to 1 to 3 together with Theorem 4.2, we can conclude that Q has a least
one fixed in BRn

which is an integral solution of problem (1)- (2).

5 Examples

Example 1. We consider the following problem

∂z

∂t
(t, x) =

∂2z

∂x2
(t, x) +Q(t, z(t, x)), ; t ∈ R+, x ∈ [0, π],

z(t, 0) = z(t, π) = 0; t ∈ R+,

z(0, x) = Φ(x); x ∈ [0, π],

(9)

where Q : R+ × R→ R and Φ : [0, π]→ R are continuous functions.

Consider E = L2([0, π],R) and define A by Aw = w′′ with domain

D(A) = {w ∈ E : w,w′ are absolutely continuous, w′′ ∈ E, w(0) = w(π) = 0}.
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Then

Aw =

∞∑
n=1

n2(w,wn)wn, w ∈ D(A),

where (·, ·) is the inner product in L2 and wn(s) =
√

2
π sinns, n = 1, 2, . . . , is orthogonal set of

eigenvectors of A. It is well known (see [23]) that A is the infinitesimal generator of an analytic
semigroup T (t), t ≥ 0, in E and is given by the relation

T (t)w =

∞∑
n=1

exp(−n2t)(w,wn)wn, w ∈ E,

and there exists a positive constant M such that

‖T (t)‖B(E) ≤M.

For x ∈ [0, π], we have
y(t)(x) = z(t, x); t ∈ R+,

f(t, y(t))(x) = Q(t, z(t, x)); t ∈ R+,

y0(x) = Φ(x).

Then the system (9) can be represented by the abstract problem (1)- (2), and conditions (H1)−
(H4) are satisfied. Consequently, Theorem 3.2 implies that the problem (9) has a mild solution.

Example 2. We consider the following problem

∂z

∂t
(t, x) =

∂z

∂x
(t, x) +Q(t, z(t, x)), ; t ∈ R+, x ∈ [0, π],

z(t, 0) = 0; t ∈ R+,

z(0, x) = Φ(x); x ∈ [0, π],

(10)

where Q : R+ × R→ R and Φ : [0, π]→ R are continuous functions.

Consider E = C([0, π],R) and define A by Aw = w′ with domain

D(A) = {w ∈ C1([0, π],R) w(0) = 0}.

It is well known (see [7]) that the operator A satisfies the Hille–Yosida condition with (0,+∞) ⊂
%(A), ‖(λI −A)−1‖ ≤ 1

λ for λ > 0, and

D(A) = {w ∈ E, w(0) = 0} 6= E.

It follows that A generates an integrated semigroup (S(t))t≥0 and ‖S(t)‖ ≤ 1 for t ≥ 0. We can
show that problem (1)- (2) is an abstract formulation of problem (10).
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For x ∈ [0, π], we have
y(t)(x) = z(t, x); t ∈ R+,

f(t, y(t))(x) = Q(t, z(t, x)); t ∈ R+,

y0(x) = Φ(x).

Then the system (10) can be represented by the abstract problem (1)- (2), and conditions (P1)-
(P2) and (H2)-(H4) are satisfied. Consequently, Theorem 4.2 implies that the problem (10) has an
integral solution.

6 Conclusion

In this paper we have provided sufficient conditions for the existence of mild and integral solutions
for a class of semilinear differential equations on infinite dimensional Banach spaces. We have
considered the cases of densely and nondensely defined linear operators. The technique used is a
generalization of the classical Darbo fixed point theorem for Fréchet spaces associated with the
concept of measure of noncompactness.
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