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Abstract

In this paper, we have discussed the aspects of invariant sub manifolds of a fλ–Hsu manifold
with complemented frames. The relation between the integrability of Hsu-structure F and that
of manifold having fλ–Hsu structure with complemented frames has been established. Some
other results concerning the normality of fλ–Hsu structure with complemented frames have
also been obtained.
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1 Introduction

In an m-dimensional differentiable manifold M of class C∞, if a non-null tensor field of type
(1, 1) satisfies f3 − λrf =0 , where λ is a non zero complex number and is of constant rank p at
each point of M then f is called fλ - Hsu structure of rank p and M with fλ- Hsu structure an fλ-
Hsu manifold. The integrability conditions of a f λ-structure has been discussed by Upadhyay and
Gupta [3]. If we put

` = f2/λr and m = I − f2/λr (1.1)

where I denotes the unit tensor field, then it is easy to see that

`2 = `, m2 = m, `+m = I, `m = m` = 0. (1.2)

This implies that the tensor fields f2/λr and I - f2/λr are complementary projection operators.
Let L, M be distribution corresponding to the projection operators f2/λr and I - f2/λr respectively.
The distributions corresponding to f2/λr and I - f2/λr , are p and ( m - p ) dimensional. Let
there exist ( m - p ) vector fields Uα (α =1,2,3,...m-p) spanning the distribution corresponding to
I - f2/λr and (m - p) I -form uα satisfying

f2/λr = I −
m−p∑
α=1

[uα
⊗

Uα] (1.3)

and

fUα = 0, uα ◦ f = 0, uα(Uβ) = δαβ , α, β = 1, 2, ....., (m− p), (1.4)

where, δαβ is the Kronecker delta. Then we call the set {fλ, Uα, uα} an f λ -Hsu structure with
complemented frames and the manifold M an f λ - manifold with complemented frames.
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Invariant submanifold

Suppose that an n -dimensional differentiable manifold m̃ is immersed in a manifold m by the
immersion I : m̃ → m. If the tangent space of (m̃) is invariant by the action of f , then I (m̃) is
called an invariant sub-manifold of m.

In the present chapter, we consider a fλ- structure with complement frames such that
r= m - 3.

2 fλ-Hsu structure with complemented frames

Let M be an m -dimensional differentiable manifold of class C∞ and let there be given a tensor
field f of type (1, 1) and of rank (m - 2), two vector fields U, V and two 1-forms u, v . If the set
{fλ,U,V,W, u, v,w} satisfies

f2/λr = I − u
⊗

U − v
⊗

V − w
⊗

W (2.1)

fU = 0, fV = 0, fW = 0, u ◦ f = 0, v ◦ f = 0, w ◦ f = 0....(a)

v(U) = 0, u(V ) = 0, u(W ) = 0, w(U) = 0, v(W ) = 0, w(V ) = 0.....(b) (2.2)

where, λ is any complex number not equal to zero, then we call (fλ, U, V,W, u, v, w) an fλ -
Hsu structure with complemented frames and M and fλ-manifold with complemented frame on an
fλ-Hsu manifold with complemented frame M.

u(U) = 1, v(V ) = 1, w(W ) = 1. (2.3)

Let us define a tensor field S* of type (1, 2, 3) as

S∗(X,Y ) = N(X,Y )− λr(du)(X,Y )U − λr(dv)(X,Y )V − λr(dw)(X,Y )W (2.4)

where du, dv, dw are 3-forms and N is the Nijenhuis tensor formed with f defined by [1] as

N(X,Y ) = [fX, fY ]− f [fX, Y ]− f [X, fY ] + f2[X,Y ]. (2.5)

Definition 2.1. If the tensor field S* vanishes identically then the structure is said to be normal.

In view of Eqs. (2.2), (2.4) and (2.5), we have

S∗(X,U) = −f [X,U ] + f2[X,U ]− λr(du)(X,U)U − λr(dv)(X,U)V − λr(dw)(X,U)W (2.6)

Let £U be called the Lie derivative with respect to a field U. Then we have

−f [fX,U ] + f2[X,U ] = f(f [X,U ])− [fX,U ] = f(£Uf)X

and

du(X,U) = X(u(U))− U(u(X))− u([X,U ]) = −[u([X,U ]− [u(X), U ])] = −(£Uu)(X).

Similarly,
dv(X,V ) = −(£Uv)(X) and dw(X,W ) = −(£Uw)(X)
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Therefore from Eq. (2.6), we obtain

S∗(X,U) = f(£Uf)X + λr(£Uu)(X)U + λr(£Uv)(X)V + λr(£Uw)(X)W (2.7)

We can also prove that

S∗(X,V ) = f(£V f)X + λr(£V u)(X)U + λr(£V v)(X)V + λr(£V w)(X)W (2.8)

and
S∗(X,W ) = f(£W f)X + λr(£Wu)(X)U + λr(£W v)(X)V + λr(£Ww)(X)W (2.9)

Also, as a consequence of Eqs.(2.2), (2.4) and (2.5), we have

u
(
S∗
(
X,Y

))
= U([fX, Y ])− λr(du)(X,Y ) (2.10)

But we have
du(fX, fY ) = (fX)u(fY )− (fY )u(fX)− u(fX, fY ),

which in view of Eq.(2.2) implies that

u([fX, fY ]) = −(du)(fX, fY ).

Thus from Eq. (2.10) we obtain

u(S∗(X,Y )) = −λr(du)(X,Y )− λr(du)(fX, fY ) (2.11)

Replacing X by fX in Eq. (2.11) and using Eq. (2.1), we get

u(S∗(fX,W )) = −λr(du)(fX, Y )− du(λrX − λru(X)U − λrv(X)V, fV − λrW, fW )

= −λr{(du)(fX, Y )− du(X, fY )− u(X)(du)(U, fY )− v(X)(dv)(V, fY )− w(X)(dw)(W, fY )}
(2.12)

But we have
(du)(U, fU) = Uu(fY )− (fY )uU − u([U, fY ])

= u{u([fY, U ])− [u(fY ), U ]} = (£Uu)(fY )

Similarly,
(dv)(V, fY ) = (£V u)(fY ) and (dw)(W, fY ) = (£Wu)(fY )

Hence, from Eq.(2.12), we have

u(S∗(fX, Y )) = −λr[(du)(fX, Y ) + (du)(X, fY )− u(X)(£Uu)(fY ) (2.13)

−v(X)(£V u)(fY )− w(X)(£Wu)(fY )]

We can also see that

v(S∗(fX, Y )) = −λr{(dv)(fX, Y ) + (dv)(X, fY )− v(X)(£Uv)(fY )− v(X)(£V v)(fY )} (2.14)

w(S∗(fX, Y )) = −λr{(dw)(fX, Y ) + (dw)(X, fY )− w(X)(£Uv)(fY )− v(X)(£V v)(fY )} (2.15)
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Theorem 2.1. If an fλ -Hsu structure with complemented {fλ , U , V , W , u , v , w} is normal,
then

£Uf = 0,£Uu = 0,£Uv = 0,£Uw = 0, (2.16)

£V f = 0,£V u = 0,£V V = 0,£V w = 0, (2.17)

£W f = 0,£Wu = 0,£W v = 0,£Ww = 0, (2.18)

duπf = 0, dvπf = 0, dwπf = 0, [U, V,W ] = 0 (2.19)

Proof. Let us suppose that fλ -Hsu structures with complemented frames {fλ, U , V , W , u , v ,
w } is normal. Then from Eq. (2.7), we have

f(£Uf)X + λr(£Uu)(X)U + λr(£Uv)(X)V + λr(£Uw)(X)W = 0,

which in view of Eq.(2.2) and Eq.(2.3) implies that

£Uu = 0, £Uv = 0, £Uw = 0, f(£Uf) = 0 (2.20)

Applying f to the last equation of Eq. (2.20) and using Eq. (2.1), we obtain
λr[(£U f) -u ◦ (£U f)

⊗
U-v ◦ (£U f)

⊗
V-w ◦ (£U f)

⊗
W]=0

or
λr[(£U f) +[(£U u) ◦ f]

⊗
U-[(£U v) ◦ f]

⊗
V-[(£U w) ◦ f]

⊗
W]=0.

λr[(£U f) +[(£U u) ◦ f]
⊗

U+[(£U v) ◦ f]
⊗

V+[(£U w) ◦ f]
⊗

W]=0.
Hence, in view of Eq. (2.20), we have

£Uf = 0, since λ 6= 0 (2.21)

Similarly, from Eq. (2.8), we can prove that

£Uu = 0, £V v = 0, £Ww = 0, £V f = 0 (2.22)

Let us put

(Zπf)(X,Y ) = Z(fX, Y ) + Z(X, fY ),

for a 2-form Z .Then by virtue of Eqs. (2.13), (2.14), (2.20), (2.21) we have
(du) π f = 0 and (dv) π f =0. Now computing £U (fV )=0,we find

£V v=0.
Applying f to Eq. (2.24) and using Eq. (2.1), we get

λr[£UV − u(£UV )U − v(£UV )V − w(£UV )W ] = 0.

and £U (V )=0, which implies [U, V, W ] = 0 . q.e.d.
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3 Hsu-structure F

Let us define a tensor field F of type (1, 1) as follows

FX = fX + λ
r
2 v(X)U + λ

r
2 u(X)V + λ

r
2 u(X)W + λ

r
2w(X)U + λ

r
2 v(X)V + λ

r
2 v(X)W (3.1)

for an arbitrary vector field X.

Theorem 3.1. In order that a manifold M may admit an fλ -Hsu structure with complemented
frames [ fλ , U , V , W , u , v , w ], it is necessary and sufficient that the manifold admits a Hsu-
structure F , a vector field U and an 1-form u such that

u(U) = 1, u(FU) = 0, v(V ) = 1, v(FV ) = 0, w(W ) = 1, w(FW ) = 0.

Proof. In view of Eqs. (2.1), (2.2), (2.3) and (3.1), we have

F 2X = F (FX) = f(FX + λ
r
2 v(X)U + λ

r
2 u(X)V + λ

r
2w(X)U + λ

r
2w(X)V

+λ
r
2 u(X)W + λ

r
2 v(X)W ) + λ

r
2 v(fX + λ

r
2 v(X)U + λ

r
2 u(X)V

+λ
r
2w(X)U + λ

r
2w(X)V + λ

r
2 u(X)W + λ

r
2 v(X)W )U

+λ
r
2 u(fX + λ

r
2 v(X)U + λ

r
2 u(X)V + λ

r
2w(X)U + λ

r
2w(X)V

+λ
r
2 u(X)W + λ

r
2 v(X)W )V + λ

r
2w(fX + λ

r
2 v(X)U + λ

r
2 u(X)V

+λ
r
2w(X)U + λ

r
2w(X)V + λ

r
2 u(X)W + λ

r
2 v(X)W )U

+λ
r
2w(fX + λ

r
2 v(X)U + λ

r
2 u(X)V + λ

r
2w(X)U + λ

r
2w(X)V

+λ
r
2 u(X)W + λ

r
2 v(X)W )V + λ

r
2 u(fX + λ

r
2 v(X)U + λ

r
2 u(X)V

+λ
r
2w(X)U + λ

r
2w(X)V + λ

r
2 u(X)W + λ

r
2 v(X)W )W

+λ
r
2 v(fX + λ

r
2 v(X)U + λ

r
2 u(X)V + λ

r
2w(X)U

+λ
r
2w(X)V + λ

r
2 u(X)W + λ

r
2 v(X)W )U

= f2X + λru(X)U + λrv(X)V + λrw(X)W = λrX.

Therefore, F 2 = λrI. Thus, F defines a Hsu-structure.
Also, by virtue of Eqs. (2.2), (2.3) and (3.1), we can easily verify that

FU = λ
r
2 V, FV = λ

r
2U,FW = λ

r
2U

FW = λ
r
2 V, FU = λ

r
2W,FV = λ

r
2W (3.2)

u ◦ F = λ
r
2 v, v ◦ F = λ

r
2 u,w ◦ F = λ

r
2 u,

u ◦ F = λ
r
2w, v ◦ F = λ

r
2w,w ◦ F = λ

r
2 v, (3.3)

Conversely, suppose that a manifold M admits a Hsu-structure F, a vector field U and a 1-form u
such that

u(U) = 1, u(FU) = 0 (3.4)
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Let us define a vector field V, a 1-form v and a tensor field, f, as

λ
r
2 V = FU, λ

r
2 V = FW (3.5)

λ
r
2 v = u ◦ F, λ r2 v = u ◦ F (3.6)

f = F − λ r2 v
⊗

U − λ r2 u
⊗

V − λ r2w
⊗

U − λ r2w
⊗

V − λ r2 v
⊗

W − λ r2 u
⊗

W. (3.7)

Now as a consequence of Eqs.(3.4), (3.5) and (3.6), we have

u(V ) = 0, v(U) = 0, u(W ) = 0, v(W ) = 0, w(U) = 0,

w(V ) = 0, u(U) = 1, v(V ) = 1, w(W ) = 1. (3.8)

Also, in view of Eqs. (3.4), (3.6), (3.7) and (3.8), we have

fU = 0, fV = 0, fW = 0,

u ◦ f = 0, v ◦ f = 0, w ◦ f = 0. (3.9)

Further, by virtue of Eqs. (3.6), (3.7) and (3.8), we have

f2X = f(fX) = f(fX − λ r2 v(X)U − λ r2 u(X)V − λ r2w(X)U − λ r2w(X)V − λ r2 v(X)W

−λ r2 u(X)W )

= F (FX)− λ r2 v(X)U − λ r2 u(X)V − λ r2w(X)U − λ r2w(X)V

−λ r2 v(X)W − λ r2 u(X)W

= F 2X − λ r2 (v ◦ F )(X)U − λ r2 (u ◦ F )(X)V − λ r2 (w ◦ F )(X)U

−λ r2 (u ◦ F )(X)W − λ r2 (v ◦ F )(X)W − λ r2 (w ◦ F )(X)V

= F 2X − λru(X)U − λrv(X)V − λrw(X)W

= λrX − λru(X)U − λrv(X)V − λrw(X)W

f2/λr = I − u
⊗

U − v
⊗

V − w
⊗

W (3.10)

Equations (3.8), (3.9) and (3.10) show that M admits an fλ -Hsu structure with complemented
frames [ fλ , U , V , W , u , v , w ] . q.e.d.
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4 Integrability conditions

In this section, we shall obtain the relation between the integrability of Hsu-structure F and that
of the manifold having fλ -Hsu structure with complemented frames.

Let N *(X,Y) be the Nijenhuis tensor formed with the help of F . Then we have

N∗(X,Y ) = [FX,FY ]− F [FX, Y ]− [X,FY ] + F 2[X,Y ] (4.1)

Now from Eqs.(2.1), (3.1) and (4.1), we obtain

N∗(X,Y ) = [fX + λ
r
2 v(X)U + λ

r
2 u(X)V + λ

r
2w(X)U + λ

r
2w(X)V + λ

r
2 v(X)W + λ

r
2 u(X)W, fY

+λ
r
2 v(Y )U + λ

r
2 u(Y )V + λ

r
2w(Y )U + λ

r
2w(Y )V + λ

r
2 v(Y )W + λ

r
2 u(Y )W ]− F [fX + λ

r
2 v(X)U

+λ
r
2 u(x)V + λ

r
2w(X)U + λ

r
2w(X)V + λ

r
2 v(X)W + λ

r
2 u(X)W,Y ]− F [X, fY + λ

r
2 v(X)U

+λ
r
2 u(X)V + λ

r
2w(X)U + λ

r
2w(X)V + λ

r
2 v(X)W + λ

r
2 u(X)W ] + F 2[X,Y ]

The above equation as a consequence of Eqs.(2.3), (2.5) and (2.23) reduces to

N∗(X,Y ) = N(X,Y )− λr(du)(X,Y )U − λr(dv)(X,Y )V − λr(dw)(X,Y )W + λ
r
2 (dvπf)(X,Y )U

−λ r2 (duπf)(X,Y )V + λ
r
2 (dwπf)(X,Y )U − λ r2 (dwπf)(X,Y )V + λ

r
2 (dvπf)(X,Y )W

−λ r2 (duπf)(X,Y )W + λ
r
2 {v(X)(£Uf)Y − v(Y )(£Uf)X + u(X)(£V f)Y − u(Y )(£V f)X

+w(X)(£Uf)Y − u(Y )(£Uf)X +w(X)(£V f)Y − u(Y )(£V f)X + v(x)(£W f)Y − v(Y )(£W f)X}

−λr[v(X)(£Uv)Y − v(Y )(£Uv)X + u(X)(£V v)Y − u(Y )(£V v)X

+w(X)(£V w)Y − w(Y )(£V w)X]U + λr[u(X)(£Uu)Y − u(Y )(£Uu)X

+v(X)(£Uu)Y − v(Y )(£Uu)X + w(X)(£Uw)Y − w(Y )(£Uw)X]V − λr[u(X)v(Y )

−u(Y )v(X)− u(X)w(Y )− v(Y )w(X)− v(X)w(Y )− v(Y )w(X)][U, V,W ] (4.2)

Theorem 4.1. If an fλ-Hsu structure with complemented {fλ, U, V, W, u, v, w} is normal, then
Hsu structure defined by Eq.(3.1) is integrable.

Proof. If an fλ -Hsu structure with complemented {fλ, U, V, W, u, v, w} is normal, then from
definition (2.1), S* is zero.

Thus by virtue of Equations (2.4), (2.14), (2.15), (2.16) and (4.2), we have N* ( X, Y) = 0.
Hence the Hsu structure F defined by Eq. (3.1) is integrable. q.e.d.
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5 Invariant submanifold

Let M̃ be an n dimensional (1 < n < m) differentiable manifold of class C∞ and suppose that
M̃ is immersed in M by the immersion I : M̃ → M. Let us denote by B the differential di of the
immersion i. Let us suppose that the vector field U is tangent i(M̃).Then any vector tangent to
i(M̃) annihilates the 1-form v, w and the tangent space to i(M̃) is invariant by f. Therefore, we
have

U = BŨ. (5.1)

For a vector field Ũ of M̃
v(B, X̃) = 0, (5.2)

For a vector field X̃ of M̃
f(B, X̃) = Bf̃X̃, (5.3)

for a tensor field f̃ of M̃ and an arbitrary vector field X̃ of M̃ . For convenience, we call such a
submanifold an invariant submanifold with respect to U and v. Similarly, we can define an invariant
submanifold with respect to V and u.

Theorem 5.1. An invariant submanifold with respect to U and v of a manifold with fλ-Hsu
structure with complemented {fλ, U, V, W, u, v, w} admits {f̃λ,Ũ ,ũ} structure.

Proof. Let M̃ be an invariant submanifold with respect to U and v of a manifold M withfλ -Hsu
structure with complemented {fλ, U, V, W, u, v, w}.

Now applying f to Eq. (5.1) and using Eqs. (2.2) and (5.3), we obtain

0 = fU = f(BŨ) = Bf̃Ũ ,

which gives
f̃ Ũ = 0. (5.4)

Applying f to Eq. (5.3) and using Eq. (2.1), we get

λr(BX̃)− u(BX̃)U − v(BX̃)V = Bf̃2X̃. (5.5)

Let us put
ũ(X̃) = u(BX̃), (5.6)

then by virtue of Eqs. (5.1) (5.2) and (5.6), Eq. (5.5) yields

f̃2X̃ = λr(X̃ − ũ(X̃)Ũ). (5.7)

Also from Eq. (5.3), we have
u(f(BX̃)) = u(Bf̃X̃),

which in consequences of Eqs.(2.2) and (5.6) yields

ũ(f̃ X̃) = 0. (5.8)

Further from Eq.(5.1), we have
ũ(U) = ũ(BŨ),
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which in view of Eqs.(2.3) and (5.6) gives

ũ(Ũ) = 1. (5.9)

Combining Eqs.(5.4), (5.7) and (5.9) , we have

f2/λr = I − ũ
⊗

Ũ ,

f̃ Ũ = 0, ũ ◦ f̃ = 0, ũ(Ũ) = 1. (5.10)

We call a structure satisfying Eq.(5.10), {f̃λ,Ũ ,ũ } – structure. q.e.d.

Theorem 5.2. An invariant submanifold with respect to V and u of a manifold with fλ -Hsu
structure with complemented [ fλ , U , V , W , u , v , w ] admits [f̃λ,Ṽ ,ṽ ] structure.

Proof. The proof is similar to the proof of theorem 5.1. q.e.d.

Theorem 5.3. An invariant submanifold with respect to W and u of a manifold with fλ -Hsu
structure with complemented [ fλ , U , V , W , u , v , w ] admits [f̃λ,W̃ ,w̃ ] structure.

Proof. The proof is similar to the proof of theorem 5.1. q.e.d.

6 Invariant submanifolds of a normal fλ -Hsu manifold with
complemented frames

In this section we shall compute the expression S* (BX̃, BỸ ) for an invariant submanifold with
respect to U,V and W.

By virtue of Eqs.(2.4), (2.5) and (5.3), we have

S∗(BX̃,BỸ ) = [fBX̃, fBỸ ]− f [fBX̃,BỸ ]− f [BX̃, fBỸ ] + f2[BX̃,BỸ ]

−λr(du)(BX̃,BỸ )U − λr(dv)(BX̃,BỸ )V − λr(dw)(BX̃,BỸ )W

= [Bf̃X̃,Bf̃ Ỹ ]− f [Bf̃X̃,BỸ ]− f [BX̃,Bf̃ Ỹ ] + f2[BX̃,BỸ ]

−λr(du)(BX̃,BỸ )U − λr(dv)(BX̃,BỸ )V − λr(dw)(BX̃,BỸ )W

But in view of Eqs.(5.1) and (5.6), we have

(du)(BX̃,BỸ ) = d(ũ)(X̃, Ỹ ), (dv)(BX̃,BỸ ) = 0, (dw)(BX̃,BỸ ) = 0

S∗(BX̃,BỸ ) = B[f̃ X̃, f̃ Ỹ ]− fB[f̃ X̃, Ỹ ]− fB[X̃, f̃ Ỹ ] + f2B[X̃, Ỹ ]− λrdũ[X̃, Ỹ ]U. (6.1)

Thus, in consequence of Eq.(5.1), Eq. (6.1) yields

S∗(BX̃,BỸ ) = B[[f̃ X̃, f̃ Ỹ ]− f̃ [f̃ X̃, Ỹ ]− f̃ [X̃, f̃ Ỹ ] + f̃2[X̃, Ỹ ]− λrdũ[X̃, Ỹ ]Ũ ] (6.2)
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Theorem 6.1. An invariant submanifold with respect to U,V and W of a manifold having normal
fλ-Hsu structure and complemented frames {fλ, U, V, W, u, v, w} admits a normal {f̃λ,Ũ ,ũ}–
structure.

Proof. If a fλ -Hsu structure and complemented frames [fλ U, V,W, u, v, w] is normal then S*=0.
Therefore, form Eq. (6.2), we have

(f̃ X̃, f̃ Ỹ )− f̃ [f̃ X̃, Ỹ ]− f̃ [X̃, f̃ Ỹ ] + f̃2[X̃, Ỹ ]− λrdũ[X̃, Ỹ ]Ũ = 0. (6.3)

Hence, in view Eq.(6.3) and using theorem (5.1) we have the result. q.e.d.

Theorem 6.2. An invariant submanifold with respect to V and u of a manifold having normal fλ
-Hsu structure with complemented frames [fλ , U , V , W , u , v , w ] admits [f̃λ,Ṽ ,ṽ ] structure.

Proof. The proof is similar to that of theorem (6.1). q.e.d.
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