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Abstract

In this paper, we first introduce the notion of an (m,n)-quasi-hyperideal in an ordered semi-
hypergroup and, then, study some properties of (m,n)-quasi-hyperideals for any positive in-
tegers m and n. Thereafter, we characterize the minimality of an (m,n)-quasi-hyperideal in
terms of (m, 0)-hyperideals and (0, n)-hyperideals respectively. The relation Qn

m on an ordered
semihypergroup is, then, introduced for any positive integers m and n and proved that the
relation Qn

m is contained in the relation Q = Q1
1. We also show that, in an (m,n)-regular

ordered semihypergroup, the relation Qn
m coincides with the relation Q. Finally, the notion

of an (m,n)-quasi-hypersimple ordered semihypergroup is introduced and some properties of
(m,n)-quasi-hypersimple ordered semihypergroups are studied. We further show that, on any
(m,n)-quasi-hypersimple ordered semihypergroup, the relations Qn

m and Q are equal and are
universal relations.
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1 Introduction and preliminaries

In 1934, Marty [13] introduced the concept of a hyperstructure and defined a hypergroup which
had been also studied by several authors. In classical algebraic structures, the multiplication of
two elements is an element while in an algebraic hyperstructure the multiplication of two elements
is a set. In [8], Heidari and Davvaz introduced the notion of an ordered semihypergroup as a
generalization of the notion of an ordered semigroup. Many classical notion such as of an ideal, a
quasi-ideal and a bi-ideal defined for an ordered semigroup as well as for a regular ordered semigroup
had been generalized to an ordered semihypergroup.

It is worth noting that the notion of a quasi-ideal is a generalization of the notion of a one sided
ideal. In 1953, Steinfeld introduced quasi-ideals for rings [19] and, in 1956, for semigroups [20].
These notions have been widely studied by several authors in different algebraic structures. The
notion of an (m,n)-ideal for a semigroup was introduced by Lajos [9] (see [10, 11, 12] for related
notions and results on (m,n)-ideals of semigroups). In [7], the notion of an (m,n)-quasi-hyperideal
have been introduced and different characterizations and properties of an (m,n)-quasi-hyperideal
and a minimal (m,n)-quasi-hyperideal have been obtained.

A hyperoperation on a non-empty set H is a map ◦ : H×H → P∗(H) where P∗(H) = P(H)\{∅}
(the set of all non-empty subsets of H). In such a case, H is called a hypergroupoid. Let H be a
hypergroupoid and A, B be any non-empty subsets of H. Then A ◦B is defined as follows:

A ◦B =
⋃

a∈A, b∈B
a ◦ b.
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We shall write, in whatever follows, A◦x instead of A◦{x} and x◦A instead of {x}◦A for any x ∈ H.
Also, for simplicity, throughout the paper, we shall write An for A ◦ A ◦ · · · ◦ A (n − copies of A)
for any n ∈ Z+. Moreover, the hypergroupoid H is called a semihypergroup if, for all x, y, z ∈ H,

(x ◦ y) ◦ z = x ◦ (y ◦ z)

i.e., ⋃
u∈x◦y

u ◦ z =
⋃

v∈y◦z
x ◦ v.

A non-empty subset T of semihypergroup H is called a subsemihypergroup of H if T ◦ T ⊆ T .
Let H be a non-empty set. Then the triplet (H, ◦,≤) is called an ordered semihypergroup if

(H, ◦) is a semihypergroup and (H,≤) is a partially ordered set such that

x ≤ y ⇒ x ◦ z ≤ y ◦ z and z ◦ x ≤ z ◦ y

for all x, y, z ∈ H. Here, if A and B are non-empty subsets of H, then we say that A ≤ B if for
every a ∈ A there exists b ∈ B such that a ≤ b. For more details of ordered semihypergroups, the
reader is referred to [1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 17, 18].

Let H be an ordered semihypergroup and A be a non-empty subset of H. Then A is called a
left(right)-hyperideal [2] of H if

(1) H ◦A ⊆ A(A ◦H ⊆ A); and

(2) (A] ⊆ A.

A is called a hyperideal of H if A is both a left-hyperideal and a right-hyperideal of H.
Let H be an ordered semihypergroup and let (A] = {x ∈ H | x ≤ a for some a ∈ A} for any

non-empty subset A of H. Then H is called a regular (a left-regular, a right-regular) [2] if for each
x ∈ H, x ∈ (x ◦H ◦ x](x ∈ (H ◦ x ◦ x], x ∈ (x ◦ x ◦H]).

Lemma 1.1. [2] Let H be an ordered semihypergroup and A,B be any non-empty subsets of H.
Then

(1) A ⊆ (A];

(2) A ⊆ B ⇒ (A] ⊆ (B];

(3) (A] ◦ (B] ⊆ (A ◦B];

(4) ((A] ◦ (B]] = (A ◦B];

(5) (A] ∪ (B] = (A ∪B].

2 (m,n)-quasi-hyperideals

Definition 2.1. Let H be an ordered semihypergroup and Q be a non-empty subset of H. Then
Q is called a quasi-hyperideal of H if

(1) (Q ◦H] ∩ (H ◦Q] ⊆ Q; and
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(2) (Q] ⊆ Q.

Example 2.2. Let H = {a, b, c, d}. Define hyperoperation ◦ and order ≤ on H as follows:

◦ a b c d
a {a, b} {a, b} {a, b} {a, b}
b {a, b} {a, b} {a, b} {a, b}
c {a, b} {a, b} {a, b} {b}
d {a, b} {a, b} {b} {c}
≤= {(a, a), (b, b), (c, c), (d, d), (a, b)}.

The covering relation ≺ and the figure of H are as follows;

≺= {(a, b)}

a

b

c d

Then H is an ordered semihypergroup. It is easy to verify that Q = {a, b} is a quasi-hyperideal of
H.

Definition 2.3. Let H be an ordered semihypergroup and m,n be any positive integers. Then a
subsemihypergroup Q of H is called an (m,n)-quasi-hyperideal of H if

(1) (Qm ◦H] ∩ (H ◦Qn] ⊆ Q; and

(2) (Q] ⊆ Q.

Clearly, every quasi-hyperideal of an ordered semihypergroup H is a (1, 1)-quasi-hyperideal of
H. It may also be easily verified that every quasi-hyperideal of an ordered semihypergroup H is
an (m,n)-quasi-hyperideal of H for each positive integers m and n provided (Qm ◦H] ∩ (H ◦Qn]
is non-empty, but the converse is not true in general as illustrated by the following examples.

Example 2.4. Let H = {a, b, c, d}. Define hyperoperation ◦ and order ≤ on H as follows:

◦ a b c d
a {a} {a} {a} {a}
b {a} {a} {a} {a}
c {a} {a} {a, b} {a, b}
d {a} {a} {a, b} {a}

≤= {(a, a), (b, b), (c, c), (d, d), (a, b), (a, c)}.

The covering relation ≺ and the figure of H are as follows;

≺= {(a, b), (a, c)}
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a

b c

Then H is an ordered semihypergroup. It is easy to verify that the subset A = {a, d} of H is an
(m,n)-quasi-hyperideal of H for all integers m,n ≥ 2, but not a quasi-hyperideal of H.

Every ordered semigroup can be regarded as an ordered semihypergroup [17]. In fact, if (S, ·,≤)
is an ordered semigroup and we define x ◦ y = {xy} for all a, b ∈ S, then obviously (S, ·,≤) is an
ordered semihypergroup.

Example 2.5. Let H be the set of all strictly upper triangular matrices over the set of all non-
negative real numbers. Define operation ◦ and order relation ≤ on H by the usual matrix multi-
plication and

(aij)4×4 ≤ (bij)4×4 ⇔ aij ≤ bij for all i, j,

with (aij)4×4, (bij)4×4 ∈ H. Clearly, H is an ordered semihypergroup (ordered semigroup) with
operation ◦ and order relation ≤. Let subset

Q =

{
0 0 a 0
0 0 0 b
0 0 0 0
0 0 0 0

 ∣∣ a, b ∈ R+ ∪ {0}
}
.

Then Q is a non-empty subset of H. Clearly (Q] ⊆ Q and

Q ◦Q =

{
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

} ⊆ Q

(Qm ◦H] ∩ (H ◦Qn] =

{
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

} ⊆ Q (m,n ≥ 2),

but

(Q ◦H] ∩ (H ◦Q] =

{
0 0 0 c
0 0 0 0
0 0 0 0
0 0 0 0

 ∣∣ c ∈ R+ ∪ {0}
}

* Q.

Thus Q is an (m,n)-quasi-hyperideal of H for each positive integers m,n ≥ 2, but is not a quasi-
hyperideal of H.
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Theorem 2.6. Let H be an ordered semihypergroup and {Qi, i ∈ I} be a family of (m,n)-quasi-
hyperideals of H. If

⋂
i∈I

Qi 6= ∅, then
⋂
i∈I

Qi is an (m,n)-quasi-hyperideal of H.

Proof. Assume that
⋂
i∈I

Qi 6= ∅. Let x, y ∈
⋂
i∈I

Qi. Then, x, y ∈ Qi for each i ∈ I. As, for

each i ∈ I, Qi is (m,n)-quasi-hyperideal, x ◦ y ⊆ Qi. Therefore x ◦ y ⊆
⋂
i∈I

Qi. Thus
⋂
i∈I

Qi is a

subsemihypergroup of H. Next we show that ((
⋂
i∈I

Qi)
m ◦H] ∩ (H ◦ (

⋂
i∈I

Qi)
n] ⊆

⋂
i∈I

Qi. Now

((⋂
i∈I

Qi

)m ◦H] ∩ (H ◦ (⋂
i∈I

Qi

)n]
⊆((Qi)

m ◦H] ∩ (H ◦ (Qi)
n] (as

⋂
i∈I

Qi ⊆ Qi,∀i ∈ I)

⊆Qi (as Qi’s are (m,n)-quasi-hyperideals).

Thus,
((⋂

i∈I Qi

)m ◦H] ∩ (H ◦ (⋂i∈I Qi

)n] ⊆ ⋂
i∈I

Qi. Finally to show that (
⋂
i∈I

Qi] ⊆
⋂
i∈I

Qi, take

any h ∈ (
⋂
i∈I

Qi]. Then h ≤ x for some x ∈
⋂
i∈I

Qi. As x ∈ Qi for each i ∈ I and Qi’s are

(m,n)-quasi-hyperideals, h ∈ Qi for each i ∈ I. Therefore h ∈
⋂
i∈I

Qi. Thus (
⋂
i∈I

Qi] ⊆
⋂
i∈I

Qi, as

required. q.e.d.

Example 2.7. Let H = [0, 1]. Then H, with hyperoperation defined by x ◦ y = xy and under the
usual order relation, is an ordered semihypergroup (is also an ordered semigroup). Let Qn = [0, 1/n],
where n ∈ N. Clearly Qn is an (m,n)-quasi-hyperideal of H for each n ∈ N and

⋂
n∈N

Qn 6= ∅. Also

it is easy to check that
⋂

n∈N
Qn is an (m,n)-quasi-hyperideal.

In the following example, the statement of the Theorem 2.6 has been verified for an ordered
semihypergroup which is not an ordered semigroup.

Example 2.8. Let H be an ordered semihypergroup of Example 2.2. It is easy to check that all
Q1 = {a, b}, Q2 = {a, b, c}, Q3 = {a, b, d} and Q4 = {a, b, c, d} are (m,n)-quasi-hyperideals of H
for each positive integers m and n. Let F = {Qi | i ∈ {1, 2, 3, 4}}. Then F is a family of (m,n)-
quasi-hyperideals of H. Clearly

⋂
n∈{1,2,3,4}

Qi 6= ∅. Also it is easy to check that
⋂

n∈{1,2,3,4}
Qi is an

(m,n)-quasi-hyperideal of H.

Let H be an ordered semihypergroup and Q be any non-empty subset of H. Let
P = {J |J is an (m,n)-quasi-hyperideal of H containing Q}. As H ∈ P, P 6= ∅. Let [Q]q(m,n) =⋂
J∈P

J . As Q ⊆ J for each J ∈ P,
⋂

J∈P
J(= [Q]q(m,n)) 6= ∅. By Theorem 2.6, [Q]q(m,n)(=

⋂
J∈P

J) is

an (m,n)-quasi-hyperideal of H containing Q. This (m,n)-quasi-hyperideal [Q]q(m,n) of H is called
the (m,n)-quasi-hyperideal of H generated by Q.

Theorem 2.9. Let H be an ordered semihypergroup and Q be a non-empty subset of H. Then
for each positive integers m and n
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[Q]q(m,n) =
(max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]
)
.

Proof. Clearly (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]) 6= ∅. Also

(
(

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]))

)
◦
(

(

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H]

∩ (H ◦Qn])

)

=(

max{m,n}⋃
i=1

Qi] ◦ (

max{m,n}⋃
i=1

Qi] ∪ (

max{m,n}⋃
i=1

Qi] ◦ ((Qm ◦H] ∩ (H ◦Qn])

∪((Qm ◦H] ∩ (H ◦Qn]) ◦ (

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]) ◦ ((Qm ◦H]

∩ (H ◦Qn])

⊆(

max{m,n}⋃
i=1

Qi] ◦ (

max{m,n}⋃
i=1

Qi] ∪ (

max{m,n}⋃
i=1

Qi] ◦ (Qm ◦H] ∪ (H ◦Qn]

◦(
max{m,n}⋃

i=1

Qi] ∪ (Qm ◦H] ◦ (H ◦Qn]

⊆(

max{m,n}⋃
i=1

Qi] ◦ (

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn])

⊆((

max{m,n}⋃
i=1

Qi) ◦ (

max{m,n}⋃
i=1

Qi)] ∪ ((Qm ◦H] ∩ (H ◦Qn]). (1)

Let x ∈ (
max{m,n}⋃

i=1

Qi) ◦ (
max{m,n}⋃

i=1

Qi). Then, x ∈ z1 ◦ z2 for some z1, z2 ∈
max{m,n}⋃

i=1

Qi. As

z1, z2 ∈
max{m,n}⋃

i=1

Qi, z1 ∈ Qp, z2 ∈ Qq for some 1 ≤ p, q ≤ max{m,n}. If p + q ≤ max{m,n},

then z1 ◦ z2 ⊆
max{m,n}⋃

i=1

Qi; otherwise z1 ◦ z2 ⊆ Qm ◦ H and z1 ◦ z2 ⊆ H ◦ Qn. Thus z1 ◦ z2 ⊆
max{m,n}⋃

i=1

Qi ∪ (Qm ◦ H ∩ H ◦ Qn). As x ∈ z1 ◦ z2, x ∈
max{m,n}⋃

i=1

Qi ∪ (Qm ◦ H ∩ H ◦ Qn). So,

(
max{m,n}⋃

i=1

Qi) ◦ (
max{m,n}⋃

i=1

Qi) ⊆
max{m,n}⋃

i=1

Qi ∪ (Qm ◦ H ∩ H ◦ Qn). Therefore ((
max{m,n}⋃

i=1

Qi) ◦

(
max{m,n}⋃

i=1

Qi)] ⊆ (
max{m,n}⋃

i=1

Qi ∪ (Qm ◦ H ∩ H ◦ Qn)] = (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦ H ∩ H ◦ Qn)] ⊆
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((
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦ H] ∩ (H ◦ Qn]). Now, from (1), (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦ H] ∩ (H ◦ Qn]) ◦

(
max{m,n}⋃

i=1

Qi]∪((Qm ◦H]∩(H ◦Qn]) ⊆ (
max{m,n}⋃

i=1

Qi]∪((Qm ◦H]∩(H ◦Qn]). Hence (
max{m,n}⋃

i=1

Qi]∪

((Qm ◦H] ∩ (H ◦Qn]) is a subsemihypergroup of H containing Q. Now

(
(

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn])

)m

◦H

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m

◦H

=

(
(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)
◦H

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦
(

(

max{m,n}⋃
i=1

Qi ◦H] ∪ (Qm ◦H ◦H]

)

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦ (Q ◦H]

=

(
(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)
◦ (Q ◦H]

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦
(

(

max{m,n}⋃
i=1

Qi ◦Q ◦H] ∪ (Qm ◦H ◦Q ◦H]

)

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦ (Q2 ◦H]

...

=(Qm ◦H].

Similarly H ◦
(

(
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn])

)n

⊆ (H ◦Qn]. Therefore

(Pm ◦H] ∩ (H ◦ Pn] ⊆ (Qm ◦H] ∩ (H ◦Qn] ⊆ P,
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where P = (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]). Also

((max{m,n}⋃
i=1

Qi
]
∪
(
(Qm ◦H] ∩ (H ◦Qn]

)]

=

(
(

max{m,n}⋃
i=1

Qi]

]
∪
((

(Qm ◦H] ∩ (H ◦Qn]
)]

⊆
(max{m,n}⋃

i=1

Qi] ∪
(
((Qm ◦H]] ∩ ((H ◦Qn]]

)
=
(max{m,n}⋃

i=1

Qi] ∪
(
(Qm ◦H] ∩ (H ◦Qn]

)
.

Therefore, (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦ H] ∩ (H ◦ Qn]) is an (m,n)-quasi-hyperideal of H containing

Q. So [Q]q(m,n) ⊆
(max{m,n}⋃

i=1

Qi] ∪
(
(Qm ◦ H] ∩ (H ◦ Qn]

)
. For the reverse inclusion, take any

x ∈
(max{m,n}⋃

i=1

Qi] ∪
(
(Qm ◦H] ∩ (H ◦ Qn]

)
i.e., x ∈

(max{m,n}⋃
i=1

Qi] or x ∈
(
(Qm ◦H] ∩ (H ◦ Qn]

)
.

If x ∈
(max{m,n}⋃

i=1

Qi], then there exists z1 ∈
max{m,n}⋃

i=1

Qi such that x ≤ z1. As z1 ∈
max{m,n}⋃

i=1

Qi,

z1 ∈ Qp for some 1 ≤ p ≤ max{m,n}. Therefore, x ∈ [Q]q(m,n). In the other case when x ∈(
(Qm ◦ H] ∩ (H ◦ Qn]

)
i.e., x ∈ (Qm ◦ H] and x ∈ (H ◦ Qn]. Thus there exist z2 ∈ Qm ◦ H and

z3 ∈ H ◦Qn such that x ≤ z2 and x ≤ z3. Now

Qm ◦H ⊆ ([Q]m,n)m ◦H ⊆ [Q]m,n

and
H ◦Qn ⊆ H ◦ ([Q]m,n)n ⊆ [Q]m,n.

Therefore z2 ∈ [Q]q(m,n) and z3 ∈ [Q]q(m,n). Thus x ∈ [Q]q(m,n). Hence, [Q]q(m,n) = (
max{m,n}⋃

i=1

Qi]∪

((Qm ◦H] ∩ (H ◦Qn]), as required. q.e.d.

Theorem 2.10. Let H be an ordered semihypergroup and Q be a non-empty subset of H. Then

(1) (([Q]q(m,n))
m ◦H] = (Qm ◦H] for any positive integer m.

(2) (H ◦ ([Q]q(m,n))
n] = (H ◦Qn] for any positive integer n.
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Proof. (1). We have

([Q]q(m,n))
m ◦H

=

(
(

max{m,n}⋃
i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn])

)m

◦H

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m

◦H

=

(
(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)
◦H

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦
(

(

max{m,n}⋃
i=1

Qi ◦H] ∪ (Qm ◦H ◦H]

)

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−1

◦ (Q ◦H]

=

(
(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)
◦ (Q ◦H]

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦
(

(

max{m,n}⋃
i=1

Qi ◦Q ◦H] ∪ (Qm ◦H ◦Q ◦H]

)

⊆
(

(

max{m,n}⋃
i=1

Qi] ∪ (Qm ◦H]

)m−2

◦ (Q2 ◦H]

...

=(Qm ◦H].

Therefore (([Q]q(m,n))
m ◦H] ⊆ (Qm ◦H]. Reverse inclusion is obvious. Hence (([Q]q(m,n))

m ◦H] =
(Qm ◦H].

On the lines similar to the proof of (1), we may prove (2). q.e.d.

Lemma 2.11. Let H be an ordered semihypergroup and m,n be positive integers. Then[
[a]q(m,n)

]
q(m,n)

= [a]q(m,n)

for each a ∈ H.

Proof. For any a ∈ H, we have

[
[a]q(m,n)

]
q(m,n)

=
(max{m,n}⋃

i=1

[a]iq(m,n)

]
∪
(
(([a]q(m,n))

m ◦H] ∩ (H ◦ ([a]q(m,n))
n]
)
.
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Now, by Theorem 2.10, (([a]q(m,n))
m ◦ H] = (am ◦ H] and (H ◦ ([a]q(m,n))

n] = (H ◦ an]. So(
(([a]q(m,n))

m ◦H] ∩ (H ◦ ([a]q(m,n))
n]
)

= (am ◦H] ∩ (H ◦ an]. Therefore

[
[a]q(m,n)

]
q(m,n)

=
(max{m,n}⋃

i=1

[a]iq(m,n)

]
∪
(
(([a]q(m,n))

m ◦H] ∩ (H ◦ ([a]q(m,n))
n]
)

=
(max{m,n}⋃

i=1

[a]iq(m,n)

]
∪
(
(am ◦H] ∩ (H ◦ an]

)
. (2)

As [a]q(m,n) is an (m,n)-quasi-hyperideal, [a]q(m,n) ◦ [a]q(m,n) ⊆ [a]q(m,n). Therefore ([a]q(m,n))
i ⊆

[a]q(m,n) for each i ∈ {1, 2, ...,max{m,n}}. Thus
max{m,n}⋃

i=1

[a]iq(m,n) ⊆ [a]q(m,n). Now, from (2), we

have

[
[a]q(m,n)

]
q(m,n)

=
(max{m,n}⋃

i=1

[a]iq(m,n)

]
∪
(
(am ◦H] ∩ (H ◦ an]

)
=
(
[a]q(m,n)

]
∪
(
(am ◦H] ∩ (H ◦ an]

)
= [a]q(m,n) ∪

(
(am ◦H] ∩ (H ◦ an]

)
=
(max{m,n}⋃

i=1

ai
]
∪
(
(am ◦H] ∩ (H ◦ an]

)
∪
(
(am ◦H] ∩ (H ◦ an]

)
=
(max{m,n}⋃

i=1

ai
]
∪
(
(am ◦H] ∩ (H ◦ an]

)
= [a]q(m,n).

Hence
[
[a]q(m,n)

]
q(m,n)

= [a]q(m,n), as required. q.e.d.

Let H be an ordered semihypergroup and L be any subsemihypergroup of H. Then L is called
an (m, 0)-hyperideal of H if Lm ◦ H ⊆ L and (L] ⊆ L for any positive integer m. Dually, if
H ◦Rn ⊆ R and (R] ⊆ R, then R is called a (0, n)-hyperideal of H, where n is any positive integer.

Theorem 2.12. Let H be an ordered semihypergroup. Then following conditions hold:

(1) Let {Li, i ∈ I} be a set of (m, 0)-hyperideals of H. If
⋂
i∈I

Li 6= ∅, then
⋂
i∈I

Li is an (m, 0)-

hyperideal of H.

(2) Let {Ri, i ∈ I} be a set of (0, n)-hyperideals of H. If
⋂
i∈I

Ri 6= ∅, then
⋂
i∈I

Ri is a (0, n)-

hyperideal of H.

Proof. (1). Assume that
⋂
i∈I

Li 6= ∅. Let x, y ∈
⋂
i∈I

Li. Then, x, y ∈ Li for each i ∈ I. As, each

Li (i ∈ I) is an (m, 0)-hyperideal, x ◦ y ⊆ Li for each i ∈ I. Therefore x ◦ y ⊆
⋂
i∈I

Li. Thus
⋂
i∈I

Li is
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a subsemihypergroup of H. Also(⋂
i∈I

Li

)m ◦H
⊆(Li)

m ◦H (as
⋂
i∈I

Li ⊆ Li,∀i ∈ I)

⊆Li (as Li’s are (m, 0)-hyperideals).

Finally to show that (
⋂
i∈I

Li] ⊆
⋂
i∈I

Li, take any h ∈ (
⋂
i∈I

Li]. Then h ≤ x for some x ∈
⋂
i∈I

Li. As

x ∈ Li and each Li is an (m, 0)-hyperideal of H for each i ∈ I , h ∈ Li for each i ∈ I. Therefore
h ∈

⋂
i∈I

Li. Thus (
⋂
i∈I

Li] ⊆
⋂
i∈I

Li, as required.

(2). It may be proved similar to the proof of part (1). q.e.d.

Let H be an ordered semihypergroup, A be any non-empty subset of H and let
P = {L|L is an (m, 0)-hyperideal of H containing A}. As H ∈ P, P 6= ∅. Let [A](m,0) =

⋂
J∈P

J .

As A ⊆ J for each L ∈ P,
⋂

L∈P
L(= [A]m,0) 6= ∅. By Theorem 2.12, [A](m,0)(=

⋂
L∈P

L) is an

(m, 0)-hyperideal of H containing A.
The above (m, 0)-hyperideal [A](m,0) of H will be called, in the sequel, as the (m, 0)-hyperideal

of H generated by A. Analogously the (0, n)-hyperideal [A](0,n) of H generated by the subset A of
H may be defined.

Theorem 2.13. Let H be an ordered semihypergroup and let A be any non-empty subset of H.
Then following conditions hold:

(1) [A]m,0 =
( m⋃
i=1

Ai ∪Am ◦H];

(2) [A]0,n =
( n⋃
i=1

Ai ∪H ◦An].

Proof. The proof follows on the lines similar to the proof of Theorem 2.9. q.e.d.

Theorem 2.14. Let H be an ordered semihypergroup and A be a non-empty subset of H. Then

(1) (([A]m,0)m ◦H] = (Am ◦H] for any positive integer m.

(2) (H ◦ ([A](0,n))
n] = (H ◦An] for any positive integer n.

Proof. The proof follows on the lines similar to the proof of Theorem 2.10. q.e.d.

Lemma 2.15. Let H be an ordered semihypergroup and let R,L be an (m, 0)-hyperideal and a
(0, n)-hyperideal of H respectively. Then L ∩R is an (m,n)-quasi-hyperideal of H.

Proof. Let R,L be an (m, 0)-hyperideal and a (0, n)-hyperideal of H respectively. Then L∩R 6= ∅
because (Rm ◦ Ln] ⊆ (Rm ◦H] ∩ (H ◦ Ln] ⊆ (R] ∩ (L] = R ∩ L. Now we have

(L ∩R) ◦ (L ∩R) ⊆ L2 ∩R2 ⊆ L ∩R
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and
((L ∩R)m ◦H] ∩ (H ◦ (L ∩R)n] ⊆ (Rm ◦H] ∩ (H ◦ Ln] ⊆ R ∩ L.

Hence R ∩ L is an (m,n)-quasi-hyperideal. q.e.d.

The following lemma easily follows.

Lemma 2.16. Let H be an ordered semihypergroup, a ∈ H and m,n be positive integers. Then
the following conditions hold:

(1) (am ◦H] is an (m, 0)-hyperideal of H;

(2) (H ◦ an] is a (0, n)-hyperideal of H;

(3) (am ◦H] ∩ (H ◦ an] is an (m,n)-quasi-hyperideal of H.

Theorem 2.17. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H.
Then

(1) For each a ∈ H, [a]q(m,n) = [a]m,0 ∩ [a]0,n; and

(2) Q = [Q]m,0 ∩ [Q]0,n.

Proof. (1). Let a ∈ H. As a ∈ [a]m,0 ∩ [a]0,n and, by Lemma 2.15, [a]m,0 ∩ [a]0,n is an (m,n)-quasi-
hyperideal of H, [a]q(m,n) ⊆ [a]m,0 ∩ [a]0,n. On the other hand, we have

[a]m,0 ∩ [a]0,n = (

m⋃
i=1

ai ∪ am ◦H] ∩ (

n⋃
i=1

ai ∪H ◦ an]

⊆ (

m⋃
i=1

([a]q(m,n))
i ∪ am ◦H] ∩ (

n⋃
i=1

([a]q(m,n))
i ∪H ◦ an]

⊆ ([a]q(m,n) ∪ am ◦H] ∩ ([a]q(m,n) ∪H ◦ an]

= ([a]q(m,n)] ∪ ((am ◦H] ∩ (H ◦ an])

= [a]q(m,n) ∪ ((am ◦H] ∩ (H ◦ an])

= [a]q(m,n).

Therefore [a]q(m,n) = [a]m,0 ∩ [a]0,n, as required.

(2). As Q ⊆ (
m⋃
i=1

Qi ∪Qm ◦H] = [Q]m,0 and Q ⊆ (
n⋃

i=1

Qi ∪H ◦Qn] = [Q]0,n, Q ⊆ [Q]m,0 ∩ [Q]0,n.

To prove the reverse inclusion, take any x ∈ [Q]m,0 ∩ [Q]0,n ⊆ (
m⋃
i=1

Qi ∪Qm ◦H]∩ (
n⋃

i=1

Qi ∪H ◦Qn].

As Q is an (m,n)-quasi-hyperideal of H, Q2 ⊆ Q which implies that Qk ⊆ Q for each positive

integers k. Therefore
m⋃
i=1

Qi ⊆ Q and
n⋃

i=1

Qi ⊆ Q. Thus x ∈ (Q ∪ Qm ◦ H] ∩ (Q ∪ H ◦ Qn] =

(Q] ∪ ((Qm ◦H] ∩ (H ◦Qn]) = Q. Hence Q = [Q]m,0 ∩ [Q]0,n, as required. q.e.d.

Remark 2.18. By the above Theorem, every (m,n)-quasi-hyperideal of H can be expressed as the
intersection of an (m, 0)-hyperideal and a (0, n)-hyperideal of H.
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3 Minimality of (m,n)-quasi-hyperideals

Let H be an ordered semihypergroup, m,n be any positive integers and Q be an (m,n)-quasi-
hyperideal of H. Then, Q is said to be a minimal (m,n)-quasi-hyperideal of H if for every (m,n)-
quasi-hyperideal Q′ of H, Q′ ⊆ Q implies Q′ = Q.

Similarly a minimal (m, 0)-hyperideal and a minimal (0, n)-hyperideal of H are defined.

Theorem 3.1. Let H be an ordered semihypergroup. Then

(1) An (m, 0)-hyperideal R is minimal if and only if (am ◦ H] = R (∀a ∈ R), where m is any
positive integer;

(2) An (0, n)-hyperideal L is minimal if and only if (H ◦an] = L (∀a ∈ L), where n is any positive
integer;

(3) An (m,n)-quasi-hyperideal Q is minimal if and only if (am ◦ H] ∩ (H ◦ an] = Q (∀a ∈ Q),
where m,n are any positive integers.

Proof. Let R be a minimal (m, 0)-hyperideal of H and a ∈ R. Then (am◦H] ⊆ (Rm◦H] ⊆ (R] = R.
As (am ◦H] is an (m, 0)-hyperideal of H, so, by minimality of R, (am ◦H] = R.

Conversely assume that (am ◦H] = R for each element a ∈ R. Let R′ be any (m, 0)-hyperideal
of H such that R′ ⊆ R. Take any x ∈ R′. Then x ∈ R. By hypothesis, R = (xm ◦H] ⊆ (R′ ◦H] ⊆
(R′] = R′. Thus R′ = R. Hence R is a minimal (m, 0)-hyperideal.

Similarly we may prove (2) and (3). q.e.d.

Theorem 3.2. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H.
Then Q is a minimal (m,n)-quasi-hyperideal of H if and only if Q is the intersection of a minimal
(m, 0)-hyperideal and a minimal (0, n)-hyperideal of H.

Proof. Let Q be any minimal (m,n)-quasi-hyperideal of H and x ∈ Q. As (xm ◦H] and (H ◦ xn]
are (m, 0)-hyperideal and (0, n)-hyperideal of H respectively, by Lemma 2.16, (xm ◦H] ∩ (H ◦ xn]
is an (m,n)-quasi-hyperideal of H. Since (xm ◦H] ∩ (H ◦ xn] ⊆ (Qm ◦H] ∩ (H ◦Qn] ⊆ Q, so, by
minimality of Q, (xm ◦H] ∩ (H ◦ xn] = Q. Now to complete the proof, it is sufficient to show that
(xm◦H] and (H◦xn] are minimal (m, 0)-hyperideal and minimal (0, n)-hyperideal of H respectively.
To show that (xm ◦H] is a minimal (m, 0)-hyperideal of H, take any (m, 0)-hyperideal R of H such
that R ⊆ (xm ◦ H]. Then R ∩ (H ◦ xn] ⊆ (xm ◦ H] ∩ (H ◦ xn] = Q. Since R ∩ (H ◦ xn] is an
(m,n)-quasi-hyperideal of H and Q is a minimal (m, 0)-quasi-hyperideal of H, R ∩ (H ◦ xn] = Q.
Therefore Q ⊆ R. Now (xm ◦H] ⊆ (Qm ◦H] ⊆ (Rm ◦H] ⊆ R. Thus (xm ◦H] = R; i.e., (xm ◦H] is a
minimal (m, 0)-hyperideal of H. Similarly we may show that (H ◦xn] is a minimal (0, n)-hyperideal
of H.

Conversely assume that Q = L ∩ R for some minimal (0, n)-hyperideal L and minimal (m, 0)-
hyperideal R of H. Therefore Q ⊆ L and Q ⊆ R. Let Q′ be any (m,n)-quasi-ideal of H such that
Q′ ⊆ Q. Then (Q′

m ◦H] ⊆ (Qm ◦H] ⊆ (Rm ◦H] ⊆ R and (H ◦Q′n] ⊆ (H ◦Qn] ⊆ (H ◦Ln] ⊆ L. As
(Q′

m◦H] and (H ◦Q′n] are (m, 0)-hyperideal and (0, n)-hyperideal of H respectively, by minimality
of L and R, (Q′

m ◦H] = R and (H ◦Q′n] = L. Therefore Q = R∩L = (Q′
m ◦H]∩ (H ◦Q′n] ⊆ Q′.

So Q′ = Q. Hence Q is a minimal (m,n)-quasi-hyperideal of H. q.e.d.

Corollary 3.3. Let H be an ordered semihypergroup. Then H has at least one minimal (m,n)-
quasi-hyperideal if and only if H has at least one minimal (m, 0)-hyperideal and at least one minimal
(0, n)-hyperideal of H.
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Lemma 3.4. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H.
Then Q is a minimal (m,n)-quasi-hyperideal of H if and only if [x]q(m,n) = [y]q(m,n) for each
x, y ∈ Q.

Proof. Let Q be a minimal (m,n)-quasi-hyperideal of H and x, y ∈ Q. Now [x]q(m,n) = (
max{m,n}⋃

i=1

xi]∪

((xm ◦H] ∩ (H ◦ xn]) ⊆ (
max{m,n}⋃

i=1

Qi] ∪ ((Qm ◦H] ∩ (H ◦Qn]) = Q. As Q is minimal (m,n)-quasi-

hyperideal and [x]q(m,n) is an (m,n)-quasi-hyperideal of H, [x]q(m,n) = Q. Similarly [y]q(m,n) = Q.
Hence [x]q(m,n) = [y]q(m,n).

Conversely assume that [x]q(m,n) = [y]q(m,n) for each x, y ∈ Q. Let Q′ be any (m,n)-quasi-
hyperideal of H such that Q′ ⊆ Q. Let x ∈ Q′. Then for each y ∈ Q, [x]q(m,n) = [y]q(m,n). As
y ∈ [y]q(m,n) and [x]q(m,n) ⊆ Q′, y ∈ Q′. Hence Q is a minimal (m,n)-quasi-hyperideal of H. q.e.d.

Let H be an ordered semihypergroup and m,n be positive integers. Define a relation Qn
m on H

as follows:
Qn

m = {(x, y) ∈ H ×H | [x]q(m,n) = [y]q(m,n)}.

In particular when m = 1 = n,

Q1
1 = {(x, y) ∈ H ×H | Q(x) = Q(y)}.

Clearly Qn
m and Q = Q1

1 are equivalence relations on H.

Theorem 3.5. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H.
Then Q is a minimal (m,n)-quasi-hyperideal of H if and only if it is a Qn

m-class.

Proof. Let Q be a minimal (m,n)-quasi-hyperideal of H and x, y ∈ Q. Then, by Lemma 3.4,
[x]q(m,n) = [y]q(m,n). Thus (x, y) ∈ Qn

m. Therefore Q is a Qn
m-class.

Conversely assume that Q is a Qn
m-class. Let Q′ be (m,n)-quasi-hyperideal of H such that

Q′ ⊆ Q. Let x ∈ Q and y ∈ Q′. Then, by hypothesis, [x]q(m,n) = [y]q(m,n). As x ∈ [x]q(m,n) and
[y]q(m,n) ⊆ Q′, x ∈ Q′. Thus Q′ = Q, as required. q.e.d.

Lemma 3.6. Let H be an order semihypergroup and a, b ∈ H. If a and b are Qn
m-related, then,

(am ◦H] = (bm ◦H], (H ◦ an] = (H ◦ bn] and (am ◦H ◦ an] = (bm ◦H ◦ bn].

Proof. Suppose that (a, b) ∈ Qn
m. Then, by definition, [a]q(m,n) = [b]q(m,n). Therefore {a} ⊆

[b]q(m,n) and {b} ⊆ [b]q(m,n). Thus, by Theorem 2.10, (am ◦ H] ⊆ (([b]q(m,n))
m ◦ H] = (bm ◦ H].

Similarly, as {b} ⊆ [a]q(m,n), we have (bm ◦H] ⊆ (am ◦H]. Hence, (am ◦H] = (bm ◦H]. Similarly,
(H ◦ an] = (H ◦ bn]. So (am ◦ H ◦ an] = ((am ◦ H] ◦ an] = ((bm ◦ H] ◦ an] = (bm ◦ H ◦ an] =
(bm ◦ (H ◦ an]] = (bm ◦ (H ◦ bn]] = (bm ◦H ◦ bn], as required. q.e.d.

Corollary 3.7. Let H be an order semihypergroup and a, b ∈ H are Q-related. Then (a ◦ H] =
(b ◦H], (H ◦ a] = (H ◦ b] and (a ◦H ◦ a] = (b ◦H ◦ b].

Definition 3.8. Let H be an ordered semihypergroup and m,n be non-negative integers. An ele-
ment a ∈ H is said to be an (m,n)-regular element if a ∈ (am◦H ◦an]. The ordered semihypergroup
H is said to be (m,n)-regular if each element of H is (m,n)-regular or equivalently for each subset
A of H, A ⊆ (Am ◦H ◦An]. Here, A0 ◦H = H ◦A0 = H.
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Remark 3.9. Let H be an (m,n)-regular ordered semihypergroup, m,n be positive integers and
A be any subset of H. Then

(1) [A]m,0 = (Am ◦H].

(2) [A]0,n = (H ◦An].

(3) [A]q(m,n) = (Am ◦H] ∩ (H ◦An].

Theorem 3.10. Let H be an ordered semihypergroup and m,n be positive integers. Then

(1) Qn
m ⊆ Q.

(2) If H is (m,n)-regular, then Qn
m = Q.

Proof. (1). Let (x, y) ∈ Qn
m. Then [x]q(m,n) = [y]q(m,n). So {x} ⊆ [y]q(m,n) and {y} ⊆ [x]q(m,n).

Also {x} ⊆ [y]m,n = (
max{m,n}⋃

i=1

yi] ∪ ((ym ◦ H] ∩ (H ◦ yn]) ⊆ {y} ∪ ((y ◦ H] ∩ (H ◦ y]) and {y} ⊆

[x]m,n = (
max{m,n}⋃

i=1

xi] ∪ ((xm ◦H] ∩ (H ◦ xn]) ⊆ {x} ∪ ((x ◦H] ∩ (H ◦ x]). Thus

(x ◦H] ⊆ ((y ∪ ((y ◦H] ∩ (H ◦ y])) ◦H]

= (y ◦H ∪
(
((y ◦H] ∩ (H ◦ y]) ◦H

)
]

⊆ (y ◦H].

Similarly (y ◦H] ⊆ (x ◦H]. Therefore (x ◦H] = (y ◦H]. Similarly (H ◦ x] = (H ◦ y]. Now

Q(x) = (x] ∪ ((x ◦H] ∩ (H ◦ x])

⊆ (y ∪ ((y ◦H] ∩ (H ◦ y])] ∪ ((x ◦H] ∩ (H ◦ x])

⊆ (y] ∪ (((y ◦H] ∩ (H ◦ y])] ∪ ((x ◦H] ∩ (H ◦ x])

⊆ (y] ∪ ((y ◦H] ∩ (H ◦ y]) (∵ (x ◦H] = (y ◦H], (H ◦ x] = (H ◦ y])

= Q(y).

Similarly we may show that Q(y) ⊆ Q(x). Thus Q(x) = Q(y). Hence (x, y) ∈ Q.
(2). Let H be an (m,n)-regular ordered semihypergroup and (x, y) ∈ Q. Then Q(x) = Q(y).

So x ∈ (y] ∪ ((y ◦ H] ∩ (H ◦ y]) and y ∈ (x] ∪ ((x ◦ H] ∩ (H ◦ x]). As H is (m,n)-regular,
(y ◦H]∩ (H ◦ y] ⊆ ((ym ◦H ◦ yn] ◦H]∩ (H ◦ (ym ◦H ◦ yn]] ⊆ (ym ◦H]∩ (H ◦ yn] ⊆ (y ◦H]∩ (H ◦ y]
and (x◦H]∩(H ◦x] ⊆ ((xm◦H ◦xn]◦H]∩(H ◦(xm◦H ◦xn]] ⊆ (xm◦H]∩(H ◦xn] ⊆ (x◦H]∩(H ◦x].
So (y ◦H]∩ (H ◦y] = (ym ◦H]∩ (H ◦yn] and (x◦H]∩ (H ◦x] = (xm ◦H]∩ (H ◦xn]. As H is (m,n)-
regular, by Remark 3.9, [x]q(m,n) = (xm ◦H] ∩ (H ◦ xn] and [y]q(m,n) = (ym ◦H] ∩ (H ◦ yn]. Thus,
by Corollary 3.7, (x ◦H] = (y ◦H], (H ◦x] = (H ◦ y]. Therefore (x ◦H]∩ (x ◦H] = (y ◦H]∩ (y ◦H].
This implies that [x]q(m,n) = [y]q(m,n). So (x, y) ∈ Qn

m. Therefore Q ⊆ Qn
m, and, hence, by Part

(1), Qn
m = Q, as required. q.e.d.

Lemma 3.11. Let H be an ordered semihypergroup. If the sets of all (m, 0)-hyperideals, (0, n)-
hyperideals and (m,n)-hyperideals are denoted by I(m,0), I(0,n) and I(m,n) respectively, then
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(1) H is (m, 0)-regular if and only if R = (Rm ◦H] (∀R ∈ I(m,0)), where m is any positive integer;

(2) H is (0, n)-regular if and only if L = (H ◦ Ln] (∀L ∈ I(0,n)), where n is any positive integer.

Proof. (1) Let H is (m, 0)-regular ordered semihypergroup and R be any (m, 0)-hyperideal of H.
Then, by definition of (m, 0)-regularity, we have R ⊆ (Rm◦H] and by definition of (m, 0)-hyperideal,
we have (Rm ◦H] ⊆ (R] = R. Hence R = (Rm ◦H].

For the converse, assume that R = (Rm ◦ H] for each R ∈ I(m,0). Take any a ∈ H, so
[a]m,0 ∈ I(m,0). From Theorem 2.14 and by assumption, [a]m,0 = (([a]m,0)m ◦H] = (am ◦H]. As
{a} ⊆ [a]m,0, a ∈ (am ◦H]. Hence H is (m, 0)-regular.

(2) On the similar lines to the proof of (1).
q.e.d.

Theorem 3.12. Let H be an ordered semihypergroup and m, n be non-negative integers. Then
the following are equivalent:

(1) H is (m,n)-regular;

(2) Q = (Qm ◦H ◦Qn] for each (m,n)-quasi-hyperideal Q of H;

(3) [a]q(m,n) = (([a]q(m,n))
m ◦H ◦ ([a]q(m,n))

n] (∀a ∈ H).

Proof. (1) ⇒ (2). If m = n = 0, then the statement is true because I(0,0) = {H}. If m 6= 0 and
n = 0 or m = 0 and n 6= 0, then the statement follows by Lemma 3.11. So, let m 6= 0 and n 6= 0 be
any Q an (m,n)-quasi-hyperideal of H. Then, by definition of (m,n)-regularity, Q ⊆ (Qm◦H ◦Qn].
Also by definition of an (m,n)-quasi-hyperideal, we have (Qm ◦H ◦Qn] ⊆ (Qm ◦H]∩ (H ◦Qn] ⊆ Q.
Hence Q = (Qm ◦H ◦Qn], as required.

(2)⇒ (3). Obvious as [a]q(m,n) is an (m,n)-quasi-hyperideal.
(3) ⇒ (1). Assume that (3) holds. Take any a ∈ H. By hypothesis, [a]q(m,n) = (([a]q(m,n))

m ◦
H ◦ ([a]q(m,n))

n]. Now, by Theorem 2.10, [a]q(m,n) = (([a]q(m,n))
m ◦H ◦ ([a]q(m,n))

n] = (am ◦H ◦an].
As {a} ⊆ [a]q(m,n), a ∈ (am ◦H ◦ an]. Hence H is (m,n)-regular. q.e.d.

4 (m,n)-quasi-hypersimple

An ordered semihypergroup H is said to be (m,n)-quasi-hypersimple ((m, 0)-hypersimple, (0, n)-
hypersimple) if H does not contain any proper (m,n)-quasi-hyperideal ((m, 0)-hyperideal, (0, n)-
hyperideal).

Theorem 4.1. Let H be an ordered semihypergroup. Then

(1) H is (m, 0)-hypersimple if and only if (am ◦H] = H (∀a ∈ H), where m is any positive integer.

(2) H is (0, n)-hypersimple if and only if (H ◦ an] = H (∀a ∈ H), where n is any positive integer.

(3) H is (m,n)-quasi-hypersimple if and only if (am ◦H] ∩ (H ◦ an] = H (∀a ∈ H), where m,n
are any positive integers.



Structural properties for (m,n)-quasi-hyperideals in ordered semihypergroups 161

Proof. (1). Let H be (m, 0)-simple and a ∈ H. By Lemma 2.16, (am ◦ H] is (m, 0)-hyperideal of
H. As H is (m, 0)-simple, (am ◦H] = H.

Conversely assume that (am ◦H] = H for each element a ∈ H. Let R be any (m, 0)-hyperideal
of H. Take an element a ∈ R. Then (am ◦H] ⊆ (Rm ◦H] ⊆ (R] = R. By assumption (am ◦H] = H.
Thus H = (am ◦H] ⊆ R. Hence H is (m, 0)-simple.

The proof of (2) and (3) follows on the lines similar to the proof of (1). q.e.d.

Lemma 4.2. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H. If
Q is (m,n)-quasi-hypersimple semihypergroup, then Q is a minimal (m,n)-quasi-hyperideal of H.

Proof. Let H be an ordered semihypergroup and Q be an (m,n)-quasi-hyperideal of H. Assume
that Q is an (m,n)-quasi-simple semihypergroup. Let Q′ be any (m,n)-quasi-hyperideal of H such
that Q′ ⊆ Q. Now (Q′

m ◦ Q] ∩ (Q ◦ Q′n] ⊆ (Q′
m ◦ H] ∩ (H ◦ Q′n] ⊆ Q′. Therefore Q′ is (m,n)-

quasi-hyperideal of Q. As Q is (m,n)-quasi-simple semihypergroup, Q′ = Q. Hence Q is a minimal
(m,n)-quasi-hyperideal of H. q.e.d.

Theorem 4.3. Let H be an ordered semihypergroup and m,n be positive integers. Then H is
(m,n)-quasi-hypersimple if and only if H is both (m, 0)-hypersimple and (0, n)-hypersimple.

Proof. Assume that H is (m,n)-quasi-hypersimple. If R is an (m, 0)-hyperideal of H, then R
is an (m,n)-quasi-hyperideal of H. Hence R = H i.e., H is (m, 0)-hypersimple. Similarly H is
(0, n)-hypersimple

Conversely assume that H is both (m, 0) and (0, n)-hypersimple. Let Q be an (m,n)-quasi-
hyperideal of H. Since (Qm ◦ H] and (H ◦ Qn] are (m, 0)-hyperideal and (0, n)-hyperideal of H
respectively, by hypothesis, (Qm ◦H] = H and (H ◦Qn] = H. Therefore (Qm ◦H]∩ (H ◦Qn] = H.
As (Qm ◦ H] ∩ (H ◦ Qn] ⊆ Q, it follows that H ⊆ Q. So Q = H. Hence H is (m,n)-quasi-
hypersimple. q.e.d.

Lemma 4.4. Let H be an ordered semihypergroup and m,n be positive integers. If H is (m,n)-
quasi-hypersimple, then H is (m,n)-regular.

Proof. Assume that H is (m,n)-quasi-hypersimple. By Theorem 4.3, H is both (m, 0) and (0, n)-
hypersimple. Thus (am ◦ H] = H and (H ◦ an] = H for each a ∈ H. Now (am ◦ H ◦ an] =
((am ◦H]◦an] = (H ◦an] = H for each a ∈ H. Therefore, for each a ∈ H, a ∈ (am ◦H ◦an]. Hence
H is (m,n)-regular. q.e.d.

Theorem 4.5. Let H be an ordered semihypergroup and m,n be positive integers. If H is (m,n)-
quasi-hypersimple then Qn

m = Q = H ×H.

Proof. Assume that H is (m,n)-quasi-hypersimple and a, b ∈ H. Then [a]q(m,n) and [b]q(m,n) are
(m,n)-quasi-hyperideals of H respectively. As H is (m,n)-quasi-hypersimple, [a]q(m,n) = H and
[b]q(m,n) = H. So [a]q(m,n) = [b]q(m,n). Thus (a, b) ∈ Qn

m and, hence, Qn
m = H ×H. As, by Lemma

4.4 and Theorem 3.10, Qn
m = Q, we have Qn

m = Q = H ×H, as required. q.e.d.
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