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Abstract

The purpose of this work is to give modified definitions of Apostol-Euler polynomials and
numbers of higher order. We establish their elementary properties, sums, explicit relations,
integrals and differential relations. A number of new results which introduced are generalization
of known results and their special cases lead to the corresponding formulas of the classical Euler
numbers and polynomials.
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1 Introduction and definitions

The classical Euler polynomials En(a), Euler polynomials of higher order E
(µ)
n (a) and Apostol-

Euler polynomials En(a;x) are defined by the following generating function(see [13, p. 63-66, Eq
(39),(40),(64)]), also (see [14]):

2eaz

ez + 1
=

∞∑
n=0

En(a)
zn

n!
, (|z| < π), (1.1)

(
2

ez + 1

)µ
eaz =

∞∑
n=0

E(µ)
n (a)

zn

n!
, (|z| < π), (1.2)

2eaz

xez + 1
=

∞∑
n=0

En(a;x)
zn

n!
, (|z + log x| < π), (1.3)

respectively.
In [7] Luo introduced analogous definitions for the classical Euler numbers and polynomials of
higher order by using Apostol’s idea as follows (see [2, p. 165 (3.1)]):

Definition 1.1. (Luo [7]). Apostol-Euler polynomials of higher order E(µ)n (a;x) are defined by
means of the generating function:(

2

xez + 1

)µ
eaz =

∞∑
n=0

E(µ)n (a;x)
zn

n!
, (|z + log x| < π), (1.4)
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with, of course,

E(µ)
n (a) = E(µ)n (a; 1), En(a) = E(1)n (a; 1) and En(a;x) := E(1)n (a;x), (1.5)

Definition 1.2. Apostol-Euler numbers of higher order E(µ)n (x) are defined by means of the gen-
erating function: (

2ez

xe2z + 1

)µ
=

∞∑
n=0

E(µ)n (x)
zn

n!
, (|2z + log x| < π). (1.6)

with, of course,
E(µ)
n = E(µ)n (1), En = E(1)n (1) and En(x) := E(1)n (x), (1.7)

where E
(µ)
n , En and En(x) denote the so-called Euler numbers of higher order, classical Euler

numbers and Apostol-Euler numbers respectively.
Certain properties of the Apostol-Euler polynomials such as asymptotic estimates, fourier expan-
sions, multiplication formulas etc. are studied by several researchers, see for example [3, 5, 7, 8,
9, 11]. In this work we similarly give the analogous and modified definitions for the classical Euler
numbers and polynomials of higher order by using Apostol’s idea as follows

Definition 1.3. A Modified Apostol-Euler polynomials of higher order E(µ;λ)n (a;x) are defined
by means of the generating function:(

2

xeλz + 1

)µ
eaz =

∞∑
n=0

E(µ;λ)n (a;x)
zn

n!
, (λ 6= 0; |z + log x| < π), (1.8)

It easily follows from (1.8) that

E(µ;λ)n (a;x) = 2µ
∞∑
k=0

(µ)k(a+ λk)n
(−x)k

k!
(1.9)

In its special cases when λ = 1, (1.8) reduces to (1.4).
Whereas, for µ = λ = 1, (1.8) reduces to (1.3). For x = µ = λ = 1, (1.8) reduces to (1.1). For
x = λ = 1, (1.8) reduces to (1.2).

Definition 1.4. A Modified Apostol-Euler numbers of higher order E(µ;λ)n (x) are defined by means
of the generating function:(

2ez

xe2λz + 1

)µ
=

∞∑
n=0

E(µ;λ)n (x)
zn

n!
, (λ 6= 0, |2z + log x| < π). (1.10)

It easily follows from (1.10) that

E(µ;λ)n (x) = 2µ+n
∞∑
k=0

(µ)k

(µ
2

+ λk
)n (−x)k

k!
(1.11)
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which, in the special case when λ = 1, (1.10) reduces to (1.6).
The principal object of this paper is to present a natural further step toward the mathematical
properties and presentations concerning the modified Apostol-Euler polynomials and numbers of
higher order defined in (1.8) and (1.10). Some elementary properties, sums, explicit relations and
expansions involving classical functions and hypergeometric series for these functions are estab-
lished. Some particular cases and consequences of our main results are also considered.

2 Some elementary properties

In the present section we can readily proof of the following results in a straightforwad way by using
the formulas (1.8)-(1.11).

Theorem 2.1. For the Modified Apostol-Euler polynomials and numbers defined by (1.8) and
(1.10) the following result holds

E(µ;λ)n (x) = 2nE(µ;λ)n

(µ
2

;x
)
. (2.1)

where µ 6= 0.
Proof. If in formula (1.8), we replace a by µ

2 , and z by 2z, then in view of definition (1.10) we get
(2.1).�
In its special cases when λ = 1, (2.1) reduces to the formula (see [7, p. 918 (3)]):

E(µ)n (x) = 2nE(µ)n

(µ
2

;x
)
. (2.2)

It is easily seen that
E(0;λ)n (a;x) = an. (2.3)

Corollary 2.1. ∫ β

α

E(µ;λ)n (a;x) da =
E(µ;λ)n+1 (β;x)− E(µ;λ)n+1 (α;x)

n+ 1
. (2.4)

Proof. Integrating both the sides of equation (1.9) with respect to a, from α to β, we get (2.4).�
Theorem 2.2. (Additionformula). If n is positive integer, then

E(µ+ν;λ)n (a+ b;x) =

n∑
k=0

(
n
k

)
E(µ;λ)k (a;x)E(ν;λ)n−k (b;x). (2.5)

Proof. The generating relation (1.8) yields

∞∑
n=0

E(µ+ν;λ)n (a+ b;x)
zn

n!
=

(
2

xeλz + 1

)µ+ν
e(a+b)z

=

(
2

xeλz + 1

)µ
eaz.

(
2

xeλz + 1

)ν
ebz
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=

∞∑
n=0

∞∑
k=0

E(µ;λ)k (a;x)E(ν;λ)n (b;x)
zn+k

n!k!

=

∞∑
n=0

[
n∑
k=0

(
n
k

)
E(µ;λ)k (a;x)E(ν;λ)n−k (b;x)

]
zn

n!
. (2.6)

We now compare the coefficients of zn

n! on both side of (2.6), and we obtain the formula (2.5)
immediately.�
For λ = 1, (2.5) reduces to the formula (see [7, p. 919 (9)]):

E(µ+ν)n (a+ b;x) =

n∑
k=0

(
n
k

)
E(µ)k (a;x)E(ν)n−k(b;x). (2.7)

Corollary 2.2. If n is a positive integer. Then

E(µ;λ)n (a+ b;x) =

n∑
k=0

(
n
k

)
bn−kE(µ;λ)k (a;x). (2.8)

For λ = 1, (2.10) reduces to the formula (see [14, p. 95 (38)]):

E(µ)n (a+ b;x) =

n∑
k=0

(
n
k

)
bn−kE(µ)k (a;x). (2.9)

Theorem 2.3. (Difference equation). Let a 6= −λ;λ 6= 0. Then

xE(µ;λ)n (a+ λ;x) + E(µ;λ)n (a;x) = 2E(µ−1;λ)n (a;x). (2.10)

Proof. The generating relation (1.8) yields

∞∑
n=0

[
xE(µ;λ)n (a+ λ;x) + E(µ;λ)n (a;x)

] zn
n!

= x

(
2

xeλz + 1

)µ
e(a+λ)z +

(
2

xeλz + 1

)µ
eaz

=

(
2

xeλz + 1

)µ
eaz
(
xeλz + 1

)
= 2

(
2

xeλz + 1

)µ−1
eaz =

∞∑
n=0

2E(µ−1;λ)n (a;x)
zn

n!
. (2.11)

We now compare the coefficients of zn

n! on both side of (2.11), and we obtain the formula (2.10)
immediately. �
For λ = 1, (2.10) reduces to the formula (see [7, p. 918 (5)]):

xE(µ)n (a+ 1;x) + E(µ)n (a;x) = 2E(µ−1)n (a;x). (2.12)

Next, by combining (2.8) and (2.10) ( with b = λ ), we find that

E(µ−1;λ)n (a;x) =
1

2

[
x

n∑
k=0

(
n
k

)
λn−kE(µ;λ)k (a;x) + E(µ;λ)n (a;x)

]
. (2.13)
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which, in the special cases when λ = 1, (2.13) reduces to the formula (see [14, p. 96 (42)]):

E(µ−1)n (a;x) =
1

2

[
x

n∑
k=0

(
n
k

)
E(µ)k (a;x) + E(µ)n (a;x)

]
. (2.14)

For µ = λ = 1, (2.13) reduces to the formula (see [14, p. 96 (43)]):

an =
1

2

[
x

n∑
k=0

(
n
k

)
Ek(a;x) + En(a;x)

]
. (2.15)

Theorem 2.4. (Two recursion formulas). Let a 6= −λ;λ 6= 0. Then

E(µ;λ)n+1 (a;x) = aE(µ;λ)n (a;x)− λµx

2
E(µ+1;λ)
n (a+ λ;x), (2.16)

E(µ+1;λ)
n (a;x) =

2

λµ
E(µ;λ)n+1 (a;x) +

2(λµ− a)

λµ
E(µ+1;λ)
n (a;x). (2.17)

Proof. Denote, for the convenience, the right-hand side of formula (2.16) by I. Then in view of
formula (1.9), it is easily seen that:

I = a2µ
∞∑
k=0

(µ)k(a+ λk)n
(−x)k

k!
+ λ2µ

∞∑
k=0

(µ)k+1 (a+ λ(k + 1))
n (−x)k+1

k!
. (2.18)

Now, let k → k − 1 in the second summation of (2.18) we get

I = 2µ
∞∑
k=0

(µ)k(a+ λk)n+1 (−x)k

k!
.

Then in view of formula (1.9), we are finally led to the left-hand side of formula (2.16). Similarly,
one can prove the formula (2.17). �
For λ = 1, (2.16) and (2.17) reduce to the formulas (see [7, p. 919 (12), (13)]):

E(µ)n+1(a;x) = aε(µ)n (a;x)− µx

2
E(µ+1)
n (a+ 1;x), (2.19)

E(µ+1)
n (a;x) =

2

µ
E(µ)n+1(a;x) +

2(µ− a)

µ
E(µ+1)
n (a;x), (2.20)

respectively.

Theorem 2.5. Let a 6= λµ. Then

E(µ;λ)n (λµ− a;x) =
(−1)n

xµ
E(µ;λ)n (a;x−1). (2.21)
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Proof. The generating relation (1.8) yields

∞∑
n=0

E(µ;λ)n (λµ− a;x)
zn

n!
=

(
2

xeλz + 1

)µ
e(λµ−a)z

=

(
2eλz

xeλz + 1

)µ
e−az

=
1

xµ

(
2

x−1e−λz + 1

)µ
e−az

=

∞∑
n=0

(−1)n

xµ
E(µ;λ)n (a;x−1)

zn

n!
. (2.22)

We now compare the coefficients of zn

n! on both side of (2.22), and we obtain the formula (2.21)
immediately. �
For λ = 1, (2.21) reduces to the formula (see [7, p. 919 (10)]):

E(µ)n (µ− a;x) =
(−1)n

xµ
E(µ)n (a;x−1). (2.23)

3 Explicit representations

In this section, we geve some explicit formulas for the modified Apostol-Euler polynomials and
numbers of higher order.

Theorem 3.1. If n, is a positive integer and µ and x are arbitrary real or complex parameters,
then we have

E(µ;λ)n (a;x) =

n∑
k=0

(
n
k

)
E(µ;λ)k (x)

2k

(
a− µ

2

)n−k
. (3.1)

Proof. Denote, for the convenience, the right-hand side of formula (3.1) by I. Then in view of
Theorem 2.1 and formula (1.9), it is easily seen that:

I =

∞∑
m=0

2µ(µ)m
(−x)m

m!

n∑
k=0

(
n
k

)(
a− µ

2

)n−k (µ
2

+ λm
)k

=

∞∑
m=0

2µ(µ)m(a+ λm)n
(−x)m

m!
.

Hence, the left-hand side of formula (3.1) follows. �
For λ = 1, (3.1) reduces to the formula (see [7, p. 918 (3)]):

E(µ)n (a;x) =

n∑
k=0

(
n
k

)
E(µ)k (x)

2k

(
a− µ

2

)n−k
. (3.2)
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Theorem 3.2. For {µ, n} ∈ N, we have

E(n;λ)n−1 (a;x) =
1

2(µ−1)n

(µ−1)n∑
k=0

(
(µ− 1)n

k

)
xkE(µn;λ)n−1 (a+ λk;x). (3.3)

Proof. Denote, for the convenience, the right-hand side of formula (3.3) by I. Then in view of
formula (1.9), it is easily seen that:

I =

∞∑
m=0

(µ−1)n∑
k=0

(−1)k
(

(µ− 1)n
k

)
2n(µn)m(a+ λ(k +m))n−1

(−x)m+k

m!
. (3.4)

Now, letting m→ m− k in (3.4) using the formulas(
µ
k

)
= (−µ)k

(−1)kk! ; (µ)m−k = (−1)k(µ)m
(1−µ−m)k

and (−m)k = (−1)km!
(m−k)! we get

I =

∞∑
m=0

2n(µn)m(a+ λm)n−1
(−x)m

m!

(µ−1)n∑
k=0

(n− µn)k(−m)k
(1− µn−m)k

1m

m!
.

Now, using the formulas

n∑
k=0

(a)k(b)k
(c)k

1k

k!
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

;
Γ(a− k)

Γ(a)
= (a)−k

and (a)−k = (−1)k
(1−a)k , gives us the left-hand side of formula (3.3). �

For s = λ = 1, (3.3) reduces to the formula (see [6, p. 8 (2.9)]):

E(n)n−1(a;x) =
1

2(µ−1)n

(µ−1)n∑
k=0

(
(µ− 1)n

k

)
xkE(µn)n−1 (a+ k;x). (3.5)

Theorem 3.3. If n is a positive integer and µ and x are arbitrary real or complex parameters,
then we have

E(µ;λ)n

(a
2

;x
)

=

n∑
k=0

(
n
k

)(
−a

2

)n−k
E(µ;λ)k (a;x). (3.6)

Proof. The generating relation (1.8) yields

∞∑
n=0

E(µ;λ)n (
a

2
;x)

zn

n!
=

(
2

xeλz + 1

)µ
e

a
2 z

=

(
2

xeλz + 1

)µ
eaz.e−

a
2 z
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=

∞∑
n=0

(
−a

2

)n ∞∑
k=0

E(µ;λ)k (a;x)
zn+k

n!k!
.

=

∞∑
n=0

[
n∑
k=0

(
n
k

)(
−a

2

)n−k
E(µ;λ)k (a;x)

]
zn

n!
. (3.7)

We now compare the coefficients of zn

n! on both side of (3.7), and we obtain the formula (3.6)
immediately. �
For λ = 1, (3.6) reduces to the formula (see [7, p. 922 (27)]):

E(µ)n

(a
2

;x
)

=

n∑
k=0

(
n
k

)(
−a

2

)n−k
E(µ)k (a;x). (3.8)

Theorem 3.4. For k ∈ N0, we have

∞∑
k=0

E(µ;λ)n+k (a;x)
wk

k!
= eawE(µ;λ)n (a;xeλw). (3.9)

Proof. Denote, for the convenience, the right-hand side of formula (3.9) by I. Then, in view of
formula (1.9), it is easily seen that:

I =

∞∑
m=0

2µ(µ)m(a+ λm)n
(−x)m

m!
e(a+λm)w

=

∞∑
k=0

∞∑
m=0

2µ(µ)m(a+ λm)n+k
(−x)m

m!

wk

k!
. (3.10)

Now, with the help of definition (1.9), equation (3.10) gives us the left-hand side of formula
(3.9). �
In its special cases when λ = 1, (3.9) reduces to the formula

∞∑
k=0

E(µ)n+k(a;x)
wk

k!
= eawE(µ)n (a;xew). (3.11)

Theorem 3.5. If n is a positive integer and µ and x are arbitrary real or complex parameters,
then we have

E(µ;λ)n (a;x) = 2µ
n∑
l=0

(
n
l

)(
µ+ l − 1

l

)
(λx)l(x+ 1)−µ−l

×
l∑

k=0

(−1)k
(

l
k

)
kl(a+ λk)n−l2F1

[
l − n, l; l + 1;

λk

(a+ λk)

]
, (3.12)
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where 2F1 denotes the Gaussian hypergeometric funtion [13, p.44 (4)].
Proof. we differentiate both side of the generating relation (1.8) with respect to the variable z. By
using Leibniz’s rule, we get

E(µ;λ)n (a;x) = Dn
z

{(
2

xeλz + 1

)µ
eaz
}∣∣∣∣

z=0

, Dz =
d

dz
.

= 2µ
n∑
s=0

(
n
s

)
an−sDs

z

{[
(x+ 1) + x(eλz − 1)

]−µ}∣∣∣
z=0

. (3.13)

Applying the series expansion:

(x+ ω)−µ =

∞∑
l=0

(
µ+ l − 1

l

)
x−µ−l(−ω)l, (|ω| < |x|), (3.14)

and the well-known formula (see [13, p.58 (15)])

(eλz − 1)l = l!

∞∑
r=l

S(r, l)
(λz)r

r!
, (3.15)

we have

E(µ;λ)n (a;x) = 2µ
n∑
s=0

(
n
s

)
an−s

s∑
l=0

(
µ+ l − 1

l

)
(x+ 1)−µ−l(−x)lλsl!S(s, l). (3.16)

We now change the order of summation in the above double series, and make use of the following
formula:(see [13, p.58 (20)])

S(s, l) =
1

l!

l∑
k=0

(−1)l−k
(

l
k

)
ks, (3.17)

so that

E(µ;λ)n (a;x) = 2µ
n∑
l=0

(
n
l

)(
µ+ l − 1

l

)
(λx)l(x+ 1)−µ−lan−l

×
l∑

k=0

(−1)k
(

l
k

)
kl2F1

[
l − n, 1; l + 1;

−λk
a

]
, (3.18)

in terms of the Gaussian hypergeometric funtion. Finally, if we apply the known transformation [1,
p.284 (23)]:

2F1[a, b; c; z] = (1− z)−a2F1

[
a, c− b; c; z

(z − 1)

]
in (3.18), we are led immediately to the explicit formula (3.12) asserted by Theorem 3.5. �
For λ = 1, (3.12) reduces to the formula (see [7, p. 920 (16)]):

E(µ)n (a;x) = 2µ
n∑
l=0

(
n
l

)(
µ+ l − 1

l

)
xl(x+ 1)−µ−l
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×
l∑

k=0

(−1)k
(

l
k

)
kl(a+ k)n−l2F1

[
l − n, l; l + 1;

k

(a+ k)

]
. (3.19)

Corollary 3.1. If n is a positive integer and µ and x are arbitrary real or complex parameters,
then we have

E(µ;λ)n (x) = 2l+µ
n∑
l=0

(
n
l

)(
µ+ l − 1

l

)
(λx)l(x+ 1)−µ−l

×
l∑

k=0

(−1)k
(

l
k

)
kl(µ+ 2λk)n−l2F1

[
l − n, l; l + 1;

2λk

(µ+ 2λk)

]
. (3.20)

Proof. For a = µ
2 in Theorem 3.5, then in view of Theorem 2.1, we obtain the formula (3.20)

immediately. �
The following extended Hurwitz-Larch Zeta function introduced and studied earlier by Bin-Saad
[4, p.271 (2.7)]

Φ∗µ,λ(x, z, a) =

∞∑
m=0

(µ)n
(a+ λm)z

xm

m!
, µ ∈ C\Z−0 ; a ∈ C\{(−λn)}; |x| < 1. (3.21)

Below we give the following relationships between the modified Apostol-Euler polynomials defined
by (1.8) and Bin-Saad-Hurwitz-Larch Zeta function (3.21).

Theorem 3.6. Let n ∈ N; − 1 < x ≤ 1; µ ∈ C\Z−0 ; λ 6= 0. Then

E(µ;λ)n (a;x) = 2µΦ∗µ,λ(−x,−n, a). (3.22)

Proof. By (1.8) and the generalized binomial theorem, we have

∞∑
n=0

E(µ;λ)n (a;x)
zn

n!
=

(
2

xeλz + 1

)µ
eaz

= 2µ
∞∑
k=0

(µ)k
k!

(−x)ke(a+λk)z

=

∞∑
n=0

[
2µ
∞∑
k=0

(µ)k
k!

(−x)k(a+ λk)n

]
zn

n!

=

∞∑
n=0

[
2µ
∞∑
k=0

(µ)k
(a+ λk)−n

(−x)k

k!

]
zn

n!
. (3.23)

Hence the result (3.22) follows. �
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4 Differential relations

The modified Apostol-Euler polynomials of higher order E(µ;λ)n (a;x) satisfies some differential re-

currence relation. Fortunately these properties of E(µ;λ)n (a;x) can be developed directly from the
formula (1.8). First, by recalling the familiar derivative formula from calculus in terms of the
gamma function [10]

Dm
x x

n =
Γ(n+ 1)

Γ(n−m+ 1)
xn−m, n−m ≥ 0, Dx =

d

dx
, (4.1)

where {m,n} ∈ N, we aim now to derive the following differential relation .

Theorem 4.1. Let λ ∈ C\{0}. Then

∂

∂λ
E(µ;λ)n (a;x) = −nxµ

2
E(µ+1;λ)
n−1 (a+ λ;x). (4.2)

Proof. The generating relation (1.8) yields

∞∑
n=0

∂

∂λ
E(µ;λ)n (a;x)

zn

n!
= 2µeaz

∂

∂λ

(
xeλz + 1

)−µ

= −zxµ
2

(
2

xeλz + 1

)µ+1

e(a+λ)z

= −xµ
2

∞∑
n=0

E(µ+1;λ)
n (a+ λ;x)

zn+1

n!
. (4.3)

Now, letting, n→ n− 1 in the right-hand side of (4.3) and comparing the coefficients of z
n

n! on both
side (4.3) we get connection formula (4.2) immediately. �

Corollary 4.1. Let k ∈ N. Then

∂k

∂ak
E(µ;λ)n (a;x) =

n!

(n− k)!
E(µ;λ)n−k (a;x). (4.4)

For λ = 1, (4.4) reduces to the formula (see [7, p. 918 (6)]):

∂k

∂ak
E(µ)n (a;x) =

n!

(n− k)!
E(µ)n−k(a;x). (4.5)

Theorem 4.2. Let k ∈ N. Then

Dk
xE(µ;λ)n (a;x) =

(
−1

2

)k
(µ)kE(µ+k;λ)n (a+ λk;x). (4.6)
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Proof. By starting from the left-hand side of (4.6) and in view of (1.9) and by using the relation
(4.1), we get :

Dk
xE(µ;λ)n (a;x) = 2µ

∞∑
m=0

(−1)m(µ)m(a+ λm)n
xm−k

(m− k)!
. (4.7)

Now, letting m → m+ k in (4.7), using the formula (µ)m+k = (µ)k(µ + k)m and considering the
formula (1.9), we get the right-hand side of formula (4.6). �
For λ = 1, (4.6) reduces to the formula

Dk
xE(µ)n (a;x) =

(
−1

2

)k
(µ)kE(µ+k)n (a+ k;x). (4.8)

Theorem 4.3. Let <(ν) > 0. Then

Dν−µ
x

[
xν−1E(µ;λ)n (a;x)

]
=

Γ(ν)

Γ(µ)
2µ−νxµ−1E(ν;λ)n (a;x). (4.9)

Proof. By starting from the left-hand side of formula (4.9) and in view of (1.9) and by using the
relation (4.1), we get :

Dν−µ
x

[
xν−1E(µ;λ)n (a;x)

]
= 2µ

∞∑
m=0

(−1)m(µ)m(a+ λm)n
Γ(ν +m)

Γ(µ+m)

xm+µ−1

m!

=
Γ(ν)

Γ(µ)
2µ−νxµ−12ν

∞∑
m=0

(ν)m(a+ λm)n
(−x)m

m!

=
Γ(ν)

Γ(µ)
2µ−νxµ−1E(ν;λ)n (a;x). �

For λ = 1, (4.9) reduces to the formula

Dν−µ
x

[
xν−1E(µ)n (a;x)

]
=

Γ(ν)

Γ(µ)
2µ−νxµ−1E(ν)n (a;x). (4.10)

Closely associated with the derivative of the gamma function is the digamma function defined by
[1,p.74(2.51)]:

ψ(x) =
d

dx
ln Γ(x) =

´Γ(x)

Γ(x)
, x 6= 0,−1,−2, .... . (4.11)

Now, we wish to establish the derivative of the function E(µ)n (a;x) with respect to the parameter µ.

Theorem 4.4. Let µ ∈ C\Z−0 . Then

∂

∂µ
E(µ;λ)n (a;x) = 2µ

∞∑
m=0

(µ)m(a+ λm)n
(−x)m

m!
[log 2 + ψ(µ+m)− ψ(µ)]. (4.12)
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Proof. By starting from the left-hand side of formula (4.12), then according to the result:

d

dµ
[2µ(µ)m] = (µ)m

d

dµ
2µ + 2µ

d

dµ

[
Γ(µ+m)

Γ(µ)

]
= 2µ(µ)m[log 2 + ψ(µ+m)− ψ(µ)],

we obtain the right-hand side of formula (4.12). �

Theorem 4.5. Let n ∈ N. Then

n∑
k=0

(
n
k

)
E(µ;λ)n−k (a;x)yk = ey

∂
∂a E(µ;λ)n (a;x). (4.13)

= E(µ;λ)n (a+ y;x). (4.14)

Proof. Denote, for convenience, the right-hand side of equation (4.13) by I. Then

I = ey
∂
∂a E(µ;λ)n (a;x)

=

∞∑
k=0

yk

k!

∂

∂a
E(µ;λ)n (a;x).

Upon using (4.4), we led finally to the left-hand side of the formula (4.13). Moreover, if we apply
the formula (2.8) ( replace b by y and k by n− k), we get (4.14). �

Theorem 4.6. Let n ∈ N. Then

n∑
k=0

(
n
k

)
(α)kE(µ;λ)n−k (a;x)yk =

(
1− y ∂

∂a

)−α
E(µ;λ)n (a;x), (4.15)

n∑
k=0

(α)k(β)kE(µ;λ)n−k (a;x)
yk

k!
= 2F1

(
α, β;−n;−y ∂

∂a

)
E(µ;λ)n (a;x), (4.16)

where 2F1 is the Gaussian hypergeometric function (see [12] and [13]).
Proof. We refer to the proof of Theorem 4.5. �
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