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Abstract

The purpose of the article is to study the certain results on para-Kenmotsu manifolds equipped
with M -projective curvature tensor. Here we investigate para-Kenmotsu manifolds satisfying
some curvature conditions M̃ ·R = 0, M̃ ·Q = 0 and Q ·M̃ = 0, where R, Q and M̃ respectively
denote the Riemannian curvature tensor, Ricci operator and M -projective curvature tensor.
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1 Introduction

In 1976, Sato [22] defined the notions of an almost paracontact Riemannian manifold. An almost
contact manifold is always odd-dimensional but an almost paracontact manifold could be of even
dimension as well. After that, T. Adati and K. Matsumoto [1] defined and studied p-Sasakian and
sp-Sasakian manifolds which are regarded as a special kind of an almost paracontact Riemannian
manifolds. Before Sato, Takahashi [23], defined almost contact manifolds (in particular, Sasakian
manifolds) equipped with an associated pseudo-Riemannian metric. In 1985, Kaneyuki et al. [15]
defined the notion of almost paracontact structure on pseudo-Riemannian manifold of dimension
n = (2m+1). Later Zamkovoy [26] showed that any almost paracontact structure admits a pseudo-
Riemannian metric with signature (n+1, n). The notion of para-Kenmotsu manifold was introduced
by Welyczko [25]. This structure is a analogy of Kenmotsu manifold [14] in paracontact geometry.
Para-Kenmotsu (briefly p-Kenmotsu) and special para-Kenmotsu (briefly sp-Kenmotsu) manifolds
was studied by Sinha et al. [21], Blaga [2] and Sai Prasad et al. [20] and many others. Apart from the
Riemannian curvature tensor, Weyl conformal curvature tensor and concircular curvature tensor,
the M -projective curvature tensor is another important tensor from the differential geometric point
of view. This curvature tensor bridges the gap between conformal curvature tensor, conharmonic
curvature tensor and concircular curvature tensor on one side and H-projective curvature tensor
on the other.

The M -projective curvature tensor M̃ on a (2n+ 1)-dimensional Riemannian manifold is given
by [19]

M̃(X,Y )Z = R(X,Y )Z − 1

4n
[S(Y, Z)X − S(X,Z)Y (1.1)

+g(Y,Z)QX − g(X,Z)QY ],

where R is the Riemannian curvature tensor, S is the Ricci curvature tensor and Q is the Ricci
operator defined by g(QX,Y ) = S(X,Y ), for any X,Y ∈ M . Some properties of M -projective
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curvature in different manifolds have been studied earlier in [5, 8, 9, 10, 11, 17, 18] and many other
researchers.

The paper is organized as follows. Section 2 deals with some preliminaries of para-Kenmotsu
manifold. In section 3, we study a para-Kenmotsu manifold satisfies M̃ ·R = 0, then the manifold
is an Einstein manifold. In section 4, we prove that if a para-Kenmotsu manifold satisfies the
curvature condition M̃ · Q = 0, then the square of the Ricci tensor S is the linear combination of
the Ricci tensor S and the metric tensor g. In the last section, it is shown that if a para-Kenmotsu
manifold satisfies the curvature condition Q · M̃ = 0, then the trace of the square of the Ricci
operator of a para-Kenmotsu manifold is equal to −2n times of the trace Ricci operator.

2 Preliminaries

In this section, we mention some basic formula and definitions which will be used later.
Let M be an (2n+1)-dimensional smooth manifold equipped with an almost paracontact metric

structure (ϕ, ξ, η, g) that is, ϕ is a tensor field of type (1, 1), ξ is a vector field, η is a 1-form and g
is a pseudo-Riemannian metric on M of signature (n+ 1, n) such that [26]

∇Xξ = X − η(X)ξ, (2.1)

ϕ2 = I − η ⊗ ξ and η(ξ) = 1, (2.2)

ϕξ = 0, η ◦ ϕ = 0 and rank(ϕ) = 2n, (2.3)

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ), (2.4)

ϕ induces on the 2n-dimensional distribution D := kerη an almost para-complex structure P ; i.e.
P 2 = 1 and the eigen subbundles D+, D−, corresponding to the eigenvalues 1, −1 of P respectively,
have equal dimension n; hence D = D+ ⊕D−.

In this case, (M,ϕ, ξ, η, g) is called an almost paracontact metric manifold, ϕ the structure
endomorphism, ξ the characteristic vector field, η the paracontact form and g compatible metric.

Note that the canonical distribution D is ϕ-invariant since D = Imϕ. Moreover, ξ is orthogonal
to D and therefore the tangent bundle splits orthogonally: TM = D ⊕ 〈ξ〉.

An analogue of the Kenmotsu manifold [14] in paracontact geometry will be further considered.
If, moreover:

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, (2.5)

where ∇ denotes the Levi-Civita connection of g, then the almost paracontact metric structure
(ϕ, η, ξ, g) is called para-Kenmotsu manifold. The para-Kenmotsu structure for 3-dimensional nor-
mal almost paracontact metric structures was introduced by Welyczko [25]. Examples of almost
paracontact metric structures can be found in [7] and [6]. From the definition it follows that is the
g-dual of ξ:

g(X, ξ) = η(X), (2.6)

ξ is a unitary vector field:
g(ξ, ξ) = 1, (2.7)

and ϕ is a g-skew-symmetric operator:

g(X,ϕY ) = −g(ϕX, Y ) (2.8)
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for any vector fields X and Y on M .
Moreover, the curvature tensor R and the Ricci tensor S satisfy

(∇Xη)Y = g(X,Y )− η(X)η(Y ), (2.9)

R(X,Y )ξ = η(X)Y − η(Y )X, (2.10)

R(ξ,X)Y = η(Y )X − g(X,Y )ξ (2.11)

η(R(X,Y )Z) = η(Y )X − g(X,Y )ξ, (2.12)

η(R(X,Y )ξ) = 0, (2.13)

S(X, ξ) = −2nη(X), (2.14)

QX = −2nX, (2.15)

Qξ = −2nξ, (2.16)

for any vector fields X,Y, Z on M .
A para-Kenmotsu manifold is said to be Einstein if [24]

S(X,Y ) = ag(X,Y ), (2.17)

where S is the Ricci tensor of type (0, 2) and a is a constant.

3 Para-Kenmotsu manifolds satisfying the curvature condition M̃ ·R = 0

In this section we consider para-Kenmotsu manifold satisfying the curvature condition M̃ ·R = 0.
Therefore

(M̃(X,Y ) ·R)(U, V )W = 0. (3.1)

for all vector fields X,Y, U, V and W . The explicit form of the above equation is

M̃(X,Y )R(U, V )W −R(M̃(X,Y )U, V )W (3.2)

−R(U, M̃(X,Y )V )W −R(U, V )M̃(X,Y )W

= 0.

Putting X = U = ξ in (3.2), we have

M̃(ξ, Y )R(ξ, V )W −R(M̃(ξ, Y )ξ, V )W (3.3)

−R(ξ, M̃(ξ, Y )V )W −R(ξ, V )M̃(ξ, Y )W

= 0.

Using (1.1), (2.11) and (2.14), we obtain

M̃(ξ, Y )R(ξ, V )W = η(W )η(V )Y − g(V,W )Y − g(Y, V )η(W )ξ (3.4)

+g(V,W )η(Y )ξ − 1

4n
[S(Y, V )η(W )ξ

+2ng(V,W )η(Y )ξ + 4nη(V )η(W )Y

−4ng(V,W )Y − 2ng(Y, V )η(W )ξ

+2ng(V,W )η(Y )ξ].
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Again using (1.1), (2.11) and (2.14), we get

R(M̃(ξ, Y )ξ, V )W = 0, (3.5)

and
R(ξ, M̃(ξ, Y )V )W = 0. (3.6)

Finally, using (1.1), (2.11) and (2.14), we have

R(ξ, V )M̃(ξ, Y )W = η(Y )η(W )V − g(Y,W )V (3.7)

− 1

4n
[S(Y,W )V + 4nη(Y )η(W )V

−2ng(Y,W )V ]− g(V, Y )η(W )ξ

+g(Y,W )η(V )ξ +
1

4n
[S(Y,W )η(V )

+4ng(Y, V )η(W )− 2ng(Y,W )η(V )]ξ

Putting (3.4)− (3.7) in (3.3), we have

η(W )η(V )Y − g(V,W )Y + g(V,W )η(Y )ξ (3.8)

−η(Y )η(W )V + g(Y,W )V − g(Y,W )η(V )ξ

− 1

4n
[S(Y, V )η(W )ξ + 4ng(V,W )η(Y )ξ

+4nη(V )η(W )Y − 4ng(V,W )Y + 2ng(Y, V )η(W )ξ

+S(Y,W )η(V )ξ − 2ng(Y,W )η(V )ξ − S(Y,W )V

−4nη(Y )η(W )V + 2ng(Y,W )V ]

= 0

Substituting W = ξ in (3.8) and using (2.14), we get

S(Y, V )ξ + 2ng(Y, V )ξ = 0. (3.9)

Taking inner product of (3.9) with ξ, we have

S(Y, V ) = −2ng(Y, V ), (3.10)

which implies the manifold is an Einstein manifold.
Thus, we conclude the following:

Theorem 3.1. If a para-Kenmotsu manifold satisfies M̃ · R = 0 then the manifold is an Einstein
manifold.

4 Para-Kenmotsu manifolds satisfying the curvature condition M̃ ·Q = 0

This section is devoted to study para-Kenmotsu manifold satisfying the curvature condition M̃ ·Q =
0. It means

M̃(X,Y )QZ −Q(M̃(X,Y )Z) = 0, (4.1)
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for all vector fields X,Y and Z.
Putting Y = ξ in (4.2), we obtain

M̃(X, ξ)QZ −Q(M̃(X, ξ)Z) = 0. (4.2)

Using (1.1), (2.11) and (2.14), we get

M̃(X, ξ)QZ = g(X,QZ)ξ − η(QZ)X (4.3)

− 1

4n
[−S(X,QZ)ξ − 4nη(QZ)X + 2ng(X,QZ)ξ],

and

Q(M̃(X, ξ)Z) = −2ng(X,Z)ξ + 2nη(Z)X (4.4)

− 1

4n
[2nS(X,Z)ξ + 8n2η(Z)X − 4n2g(X,Z)ξ].

Substituting (4.3) and (4.4) in (4.2), we obtain

S(X,QZ)ξ = −6nS(X,Z)ξ − 8n2g(X,Z)ξ. (4.5)

Taking inner product with ξ, the relation (4.5) becomes:

S2(X,Z) = −6nS(X,Z)− 8n2g(X,Z), (4.6)

where S2(X,Z) = S(X,QZ).
Thus, we conclude the following:

Theorem 4.1. If a para-Kenmotsu manifold satisfies the curvature condition M̃ ·Q = 0, then the
square of the Ricci tensor S is the linear combination of the Ricci tensor S and the metric tensor g.

For symmetric (0, 2)-tensor fields A and B on M define Kulkarni-Nomizu product AΛB of A
and B by ([4], p− 47)

AΛB(X1, ..., X4) = A(X1, X4)B(X2, X3)−A(X1, X3)B(X2, X4)

+A(X2, X3)B(X1, X4)−A(X2, X4)B(X1, X3).

We recall the following lemma:

Lemma 4.2. [12]Let A be symmetric (0, 2)-tensor at point x of a semi Riemannian manifold (M, g),
dim M ≥ 3 , and let T = gΛA be the Kulkarni-Nomizu product of g and A. Then the relation

T · T = αQ(g, T ), α ∈ R

is satisfied at x if and only if the condition

A2 = αA+ λg, α ∈ R

holds at x.

Therefore, we have the following corollary:

Corollary 4.3. Let M be a para-Kenmotsu manifold satisfying the condition M̃ · Q = 0 then
T · T = αQ(g, T ), where T = gΛS and α = −6n.
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5 Para-Kenmotsu manifolds satisfying the curvature condition Q · M̃ = 0

In this section we study para-Kenmotsu manifold satisfying the curvature condition Q · M̃ = 0.
Therefore

(Q · M̃)(X,Y )Z = 0, (5.1)

for all vector fields X,Y and Z.
Equation (5.1) can be written as

Q(M̃(X,Y )Z)− M̃(QX,Y )Z − M̃(X,QY )Z − M̃(X,Y )QZ = 0, (5.2)

Putting Y = ξ in (5.2), we get

Q(M̃(X, ξ)Z)− M̃(QX, ξ)Z − M̃(X,Qξ)Z − M̃(X, ξ)QZ = 0. (5.3)

Using (1.1) and (2.14) in (2.16), we obtain

Q(M̃(X, ξ)Z) = −2ng(X,Z)ξ + 2nη(Z)X (5.4)

−1

2
[S(X,Z)ξ + 4nη(Z)X − 2ng(X,Z)ξ].

By virtue of (1.1) and (2.11), we get

M̃(QX, ξ)Z = g(QX,Z)ξ − η(Z)QX (5.5)

− 1

4n
[−S(QX,Z)ξ − 4nη(Z)QX + 2ng(QX,Z)ξ].

Using (1.1), (2.11) and (2.14), we have

M̃(X,Qξ)Z = −2n[g(X,Z)ξ − η(Z)X]− 1

4n
[−2nS(ξ, Z)X (5.6)

+2nS(X,Z)ξ − 2nη(Z)QX − 4n2g(X,Z)ξ].

Now, by virtue of (1.1) and (2.11), we get

M̃(X, ξ)QZ = g(X,ZQ)ξ − η(QZ)X (5.7)

− 1

4n
[−S(X,QZ)ξ − 4nη(QZ)X + 2ng(X,QZ)ξ].

Putting (5.4)− (5.7) in (5.3), we have

S(QX,Z)ξ + 2ng(QX,Z)ξ = 0. (5.8)

Taking inner product with ξ of above equation and using (2.11), we obtain

g(Q2X,Z) = −2ng(QX,Z). (5.9)

Let {ei}, i = 1, 2, ..., (2n + 1) be a local orthonormal basis of the tangent space at a point
of the manifold M . Then by substituting X = Z = ei in (5.9) and taking summation over i,
1 ≤ i ≤ (2n+ 1), we get

Tr(Q2) =

2n+1∑
i=1

g(Q2ei, ei) = −2n

2n+1∑
i=1

g(Qei, ei) = −2nTr(Q). (5.10)

Thus, we are in a position to state the following:
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Theorem 5.1. If a para-Kenmotsu manifold satisfies the curvature condition Q · M̃ = 0, then the
trace of square of the Ricci operator of a para-Kenmotsu manifold is equal to −2n times trace of
the Ricci operator.
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