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Abstract

In this paper, we deal with the connection and duplication problems associated with the hybrid
Sheffer family. The hybrid Sheffer polynomials are also studied via matrix approach. The prop-
erties of these polynomials are established using simple matrix operations. Examples providing
the corresponding results for certain members of the hybrid Sheffer family are considered. This
article is first attempt in the direction of obtaining connection and duplication coefficients and
matrix representations for the hybrid polynomials.
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1 Introduction and preliminaries

Special functions comprise a very old branch of mathematics, the origin of their unified and rather
complete theory date to the nineteenth century. In numerous branches of mathematics, special
polynomials and numbers perform a fundamental role and their exaggeration is always actual. In
diverse areas of applied mathematics and mathematical physics, generating functions perform an
essential role in the investigation of various useful properties of sequences which they generate.
Generating functions are utilized to accomplish numerous properties of formulas for numbers and
polynomials in a wide range of research subjects such as modern combinatorics.

The generating functions for the sequence of polynomials can be used in analyzing sequences
of functions, in detecting a closed formula for a sequence, in detecting recurrence relations and
differential equations, relationships between sequences, asymptotic behavior of sequences, in proving
identities involving sequences and in solving enumeration problems in combinatorics and encoding
their solutions.

The use of polynomials in many fields of science and engineering is quite remarkable. Throughout
this paper, we shall focus on three families of special polynomials. These useful classes are the
Appell, Sheffer and hybrid Sheffer polynomials. These polynomials and numbers have applications
in many fields such as complex analysis, operator theory, statistics, numerical analysis and data
compression etc.

The hybrid Sheffer polynomials constructed by Subuhi Khan and M. Riyasat [12] can be viewed
as an extension of the Sheffer polynomials. These hybrid polynomials are important due to the fact
that they possess important properties such as differential equations, generating functions, series
definitions, integral representations etc. These polynomials are useful and possess potential for
applications in certain problems of number theory, combinatorics, classical and numerical analysis,
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theoretical physics and other fields of pure and applied mathematics. The differential equations
satisfied by the hybrid special polynomials may be used to solve new emerging problems in different
branches of science.

The hybrid families of special polynomials are introduced as discrete convolution of the known

special polynomials. The discrete Appell convolution f
(A)
n (x) is defined as [14]:

f (A)
n (x) =

n∑
k=0

(
n

k

)
Akfn−k(x).

Taking the generic polynomials fn(x) (n ∈ N, x ∈ R) as xn in the above equation, we note that

f
(A)
n (x) reduces to the Appell polynomials An(x) [4], which are defined by either of the following

equivalent conditions:
d

dx
An(x) = nAn−1(x), n = 1, 2, 3, · · · , (1.1)

in which
A0(x) = a0, a0 ∈ R \ {0}, (1.2)

or, there exists an exponential generating function of the form:

a(t)ext =

∞∑
n=0

An(x)
tn

n!
, (1.3)

where a(t) has (at least the formal) expansion:

a(t) =

∞∑
n=0

an
tn

n!
, a0 6= 0, (1.4)

The Appell polynomials are studied via different approach, see for example [1,7,8]. The hybrid
Sheffer polynomials denoted by sAn(x) are defined as the discrete Appell convolution of the Sheffer
polynomials sn(x) and possess the following generating function [12]:

s(t)a(t) exp(xG(t)) =

∞∑
n=0

sAn(x)
tn

n!
, (1.5)

where a(t) has same expansion as in equation (1.4) and s(t) and G(t) have (at least the formal)
expansions:

s(t) =

∞∑
n=0

cn
tn

n!
, c0 6= 0 (1.6)

and

G(t) =

∞∑
n=1

Gn
tn

n!
, G1 6= 0, (1.7)

respectively.
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These hybrid Sheffer polynomials sAn(x) are also defined by the following series representation:

sAn(x) =

n∑
k=0

(
n

k

)
aksn−k(x). (1.8)

The hybrid Sheffer polynomials sAn(x) becomes the Sheffer polynomials sn(x) for a(t) = 1,
which are defined by the exponential generating function of the form [14, p. 19]:

s(t) exp(xG(t)) =

∞∑
n=0

sn(x)
tn

n!
, (1.9)

where s(t) and G(t) have same representations as in equations (1.6) and (1.7). For G(t) = t, the
Sheffer polynomials sn(x) reduces to the Appell polynomials An(x).

Matrices play an important role in all branches of science, engineering and management. They
have explicit significance in various fields of mathematics and engineering. There are many special
types of matrices such as the Pascal, Vandermonde and Stirling considered in [3], [9] and [10]
respectively. These matrices are mostly being used for data classification and to solve other problems
using computers. Specifically, the Pascal matrix turns out in combinatorics, numerical analysis,
probability and image processing.

In last few years, the matrix approach has attracted the renewed attention of many experts not
only in the field of pure mathematics but also in different areas of applied mathematics such as
statistics, numerical analysis, computer aided design and combinatorics. Pure mathematics focuses
on the existence and uniqueness of solutions, while applied mathematics emphasizes the rigorous
justification of the methods for approximating solutions.

Recently, the matrix approach for the Appell and Sheffer polynomials is proposed in [1, 2]. We
extend this approach to the hybrid Sheffer polynomials. The matrix approach for the hybrid Sheffer
polynomials basically relies on the properties of the creation matrix defined by

(H)ij =

{
i, i = j + 1,

0, otherwise, i, j = 0, 1, ...,m.
(1.10)

From [3, p. 232], it follows that

Hej = (j + 1) ej+1, j = 0, 1, ...,m, (1.11)

where ej (j = 0, 1, 2, · · · ,m) denote the standard unit basis vectors in Rm+1. Also, we have ej = 0,
whenever j > m. This is compatible with the fact that the creation matrix is nilpotent of degree
m+ 1, i.e.

Hj = 0, for all j ≥ m+ 1. (1.12)

Replacing t by H in equations (1.4) and (1.6), we find the non-singular matrices:

a(H) =

m∑
n=0

an
Hn

n!
, a0 6= 0, (1.13)

s(H) =

m∑
n=0

cn
Hn

n!
, c0 6= 0, (1.14)
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Let us, consider the generalized Pascal matrix of the sequence {qn(x)}n≥0 defined by

(
P [qn(x)]

)
ij

=

{(
i
j

)
qi−j(x), i ≥ j,

0, otherwise, i, j = 0, 1, ...,m.
(1.15)

Consider the Bell matrix B, whose entries are related to the sequences {bn}n≥0 with b0 = 0 and
b1 6= 0, as follows

(
B
)
ij

=


Bi,j := Bi,j(b1, b2, . . . bi−j+1), i ≥ j ≥ 1,

1, i = j = 0,

0, otherwise, i, j = 0, 1, ...,m.

(1.16)

It is to be noted that this lower triangular matrix is nonsingular due to the fact that diag(B) =
(1, b1, b

2
1, . . . b

m
1 ). Also, the vector of monomial powers is defined by

ξ(x) = [1 x . . . xm]T (1.17)

and the transfer matrices M and N are defined as:

(M)ij =

{(
i
j

)
ai−j , i ≥ j,

0, otherwise, i, j = 0, 1, ...,m, a0 6= 0.
(1.18)

(N)ij =

{(
i
j

)
ci−j , i ≥ j,

0, otherwise, i, j = 0, 1, ...,m, c0 6= 0.
(1.19)

From [1, p. 433 (Theorem 3.2)], we have

M = a(H), N = s(H). (1.20)

The study of the connection and duplication problems has gained an increasing interest in
the last few years. The computation of the connection and duplication coefficients perform an
important role in various situations of pure and applied mathematics, especially in combinatorial
analysis. The connection and duplication problems are not only important from a fundamental
point of view but also because they are used in computation of physical and chemical properties of
quantum-mechanical systems.

The content of this article are inspired by the work under progress in the direction of obtaining
connection and duplication coefficients and matrix representations for special polynomials. In this
paper, the connection and duplication coefficients and matrix representations for hybrid Sheffer
polynomials are established. The corresponding results for certain members belonging to the hybrid
Sheffer family are also derived.

2 Connection and duplication coefficients

Let P be the vector space of polynomials with coefficients in C. A polynomial sequence {Pn}n≥0

in P is called a polynomial set if and only if deg Pn = n, for all non-negative integer n.
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Given two polynomial sets {Pn}n≥0 and {Qn}n≥0, the connection problem between them is to
find the coefficients Cr(n) in the expression:

Qn(x) =

n∑
r=0

Cr(n)Pr(x). (2.1)

A special case of the connection problem, called the duplication problem, asks to find the
coefficients Cr(n, b) in the expression:

Pn(bx) =

n∑
r=0

Cr(n, b)Pr(x), (2.2)

where b designates a non-zero complex number.
We begin by recalling a result giving the connection coefficients between two σ-Appell polyno-

mials. That is to say σAn = nAn−1, n = 0, 1, · · · , n, where σ is a linear operator not depending
on n and is a lowering operator.
Result 2.1 ( [7, Corollary 3.4]). Let {Pn}n≥0 and {Qn}n≥0be two σ-Appell polynomial sets of
transfer power series, respectively, A1 and A2. Then

Qn(x) =

n∑
m=0

n!

m!
αn−m Pm(x), where

A2(t)

A1(t)
=

∞∑
k=0

αk t
k. (2.3)

First, we establish the connection formula for the hybrid Sheffer polynomials sAn(x) in the form
of following result:

Theorem 2.1. Let {sA(1)
n (x)}n≥0 be the hybrid Sheffer polynomial set of transfer power series

s1(t), a1(t) and {sA(2)
n (x)}n≥0 be another hybrid Sheffer polynomial set of transfer power series

s2(t), a2(t). Then the following connection formula holds true:

sA
(2)
n (x) =

n∑
r=0

Cr(n) sA
(1)
r (x), (2.4)

where Cr(n) =
n−r∑
k=0

(
n
r

)(
n−r
k

)
αn−r−kγk and h(t) =

s2(t)a2(t)
s1(t)a1(t)

=
∞∑

n,k=0

αnγk
tn+k

n! k!
.

Proof. From generating function (1.5), we have

s2(t)a2(t) exp(xG(t)) =

∞∑
n=0

sA
(2)
n (x)

tn

n!
,

which can be written as

s2(t)a2(t)

s1(t)a1(t)
s1(t)a1(t) exp(xG(t)) =

∞∑
n=0

sA
(2)
n (x)

tn

n!
. (2.5)
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Let

h(t) =
s2(t)a2(t)

s1(t)a1(t)
=

∞∑
n,k=0

αnγk
tn+k

n! k!
,

which on applying the Cauchy-product rule becomes

h(t) =
s2(t)a2(t)

s1(t)a1(t)
=

∞∑
n=0

n∑
k=0

(
n

k

)
αn−kγk

tn

n!
. (2.6)

In view of equations (1.5), (2.5) and (2.6), it follows that

∞∑
n=0

n∑
k=0

(
n

k

)
αn−kγk

tn

n!

∞∑
r=0

sA
(1)
r (x)

tr

r!
=

∞∑
n=0

sA
(2)
n (x)

tn

n!
. (2.7)

Again, applying the Cauchy-product rule in the l.h.s. of equation (2.7) and then equating the
coefficients of identical powers of t on both sides of the resultant equation assertion (2.4) follows.

q.e.d.

Next, the duplication formula involving the hybrid Sheffer polynomials sAn(x) is obtained in
the form of following result:

Theorem 2.2. The hybrid Sheffer polynomial set {sAn(x)}n≥0 consisting of transfer power series
s(t) and a(t) possess the following duplication formula:

sAn(bx) =

n∑
r=0

Cr(n, b) sAr(x), (2.8)

where Cr(n, b) =
n−r∑
k=0

(
n
r

)(
n−r
k

)
br αn−r−k(b)γk(b) and g(t) =

s(t)a(t)
s(bt)a(bt)

=

∞∑
n,k=0

αn(b)γk(b)
tn+k

n! k!
.

Proof. From generating function (1.5), we have

s(t)a(t) exp(bxG(t)) =

∞∑
n=0

sAn(bx)
tn

n!
,

or equivalently

s(t)a(t)

s(bt)a(bt)
s(bt)a(bt) exp(bxG(t)) =

∞∑
n=0

sAn(bx)
tn

n!
. (2.9)

Let

g(t) =
s(t)a(t)

s(bt)a(bt)
=

∞∑
n,k=0

αn(b)γk(b)
tn+k

n! k!
,
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which on applying the Cauchy-product rule becomes

g(t) =
s(t)a(t)

s(bt)a(bt)
=

∞∑
n=0

n∑
k=0

(
n

k

)
αn−k(b)γk(b)

tn

n!
. (2.10)

In view of equations (1.5), (2.9) and (2.10), it follows that

∞∑
n=0

n∑
k=0

(
n

k

)
αn−k(b)γk(b)

tn

n!

∞∑
r=0

sAr(x)
brtr

r!
=
∞∑

n=0

sAn(bx)
tn

n!
. (2.11)

Again, applying the Cauchy-product rule in the l.h.s. of equation (2.11) and then equating
the coefficients of identical powers of t on both sides of the resultant equation, we get assertion
(2.8). q.e.d.

In the next section, certain properties of the hybrid Sheffer polynomials are established via
matrix approach.

3 Matrix representations

In order to utilize the Pascal and transfer matrices, the vector form of the hybrid Sheffer polynomial
sequence is required.

The hybrid Sheffer vector denoted by sA(x) is defined as:

sA(x) = [sA0(x) sA1(x) . . . sAm(x)]T , (3.1)

where sAn(x) are the hybrid Sheffer polynomials defined by generating function (1.5).
The following theorem is proved to establish the matrix representation of the hybrid Sheffer

polynomials:

Theorem 3.1. Let A(x), s(x) and sA(x) are the Appell, Sheffer and hybrid Sheffer vectors for
the corresponding Appell, Sheffer and hybrid Sheffer polynomials {An(x)}n≥0, {sn(x)}n≥0 and
{sAn(x)}n≥0 respectively. Then sA(x) = NMBξ(x) is the matrix representation of the hybrid
Sheffer vector sA(x).

Proof. Let M and N be the transfer matrices for the Appell and Sheffer vectors A(x) and s(x)
respectively. From [1, p. 432 (3.9)], we have

A(x) =Mξ(x) (3.2)

and from [2, p. 94 (20)], we find
s(x) = NBξ(x). (3.3)

Replacing the powers of x i.e., x0, x1, x2, · · · , xn by A0(x), A1(x), · · · , An(x), in equation (3.3)
and denoting the resulting polynomials by sA0(x), sA1(x), · · · , sAn(x) respectively and their cor-
responding vectors by sA(x) = [sA0(x) sA1(x) · · · , sAn(x)]T , it follows that

sA(x) = NBA(x).
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Using relation (3.2) and commutativity of the matrices B and M, we find

sA(x) = NMBξ(x). (3.4)

It can be easily seen from the above equation the sA(x) is the hybrid Sheffer vector for the pair
(NM, B).

q.e.d.

Note. It is important to observe that relation (3.4) for the hybrid Sheffer polynomials sAn(x) is
different from relation [2, p. 94 (20)] for the Sheffer polynomials sn(x).
Remark 3.1 Using the transfer matrix and some properties of the generalized Pascal matrix, the
matrix representation of the hybrid Sheffer identity:

sAn(x+ y) =

n∑
k=0

(
n

k

)
pk(x) sAn−k(y), ∀ n ∈ N0, x, y ∈ R, (3.5)

is obtained as:

sA(x+ y) = P
(
[pn(y)]

)
sA(x). (3.6)

Remark 3.2 Setting y = (m − 1)x in identity (3.6), the following multiplication formula for the
hybrid Sheffer vector sA(x) is obtained:

sA(mx) = P
(
[pn((m− 1)x)]

)
sA(x). (3.7)

Remark 3.3 Let

(M)−1
ij =

{(
i
j

)
γi−j , i ≥ j,

0, otherwise, i, j = 0, 1, ...,m, γ0 6= 0.
(3.8)

In view of transfer matrices defined by equations (1.18) and (3.8), it follows that

γ0 =
1

a0
and γk = − 1

a0

k−1∑
s=0

(
k

s

)
ak−sγs, k = 1, 2, · · · ,m. (3.9)

Using relation (3.9), we obtain the following recurrence relation for the hybrid Sheffer polyno-
mials sAn(x):

sAn(x) =
1

γ0

(
sn(x)−

n−1∑
k=0

(
n

k

)
γn−k sAk(x)

)
, n = 0, 1, · · · . (3.10)

The forthcoming section aims at presenting certain results for the polynomials belonging to the
hybrid Sheffer family.
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4 Examples

The members of the Appell family can be obtained by making suitable selections of the function
a(t) in generating function (1.3). Some of these members are listed in Table 1.

Table 1. Certain members belonging to the Appell family

S. No. a(t) Generating function Name of the polynomials
and related numbers

I. a(t) = t
et−1

t
et−1

ext =
∞∑
n=0

Bn(x) t
n

n!
The Bernoulli polynomials

Bn := Bn(0) and numbers [15]

II. a(t) = 2
et+1

2
et+1

ext =
∞∑
n=0

En(x) t
n

n!
The Euler polynomials

En := En(0) and numbers [15]

III. a(t) = e−t
2/4 ext−t

2/4 =
∞∑
n=0

Ĥn(x) t
n

n!
The monic Hermite polynomials

Ĥn := Ĥn(0) and numbers [5]

Different members belonging to the Sheffer family defined by equation (1.9) can be obtained by
selecting the appropriate pair (s(t), G(t)). Some of these members are listed in Table 2.

Table 2. Certain members belonging to the Sheffer family

S. No. G(t); s(t) Generating function Name of the polynomials

I. G(t) = νt; s(t) = e−t
m

exp(νxt − tm) =
∞∑
n=0

Hn,m,ν (x) t
n

n!
Generalized Hermite polynomials

Hn,m,ν (x)
[13]

II. G(t) = t
t−1

; s(t) = (1 − t)−α−1 1
(1−t)α+1 exp( xt

t−1
) =

∞∑
n=0

L
(α)
n (x) t

n

n!

Generalized Laguerre polynomials

n!L
(α)
n (x)

[14]

III. G(t) = 1 − et; s(t) = exp(βt) exp(βt + x(1 − et)) =
∞∑
n=0

a
(β)
n (x) t

n

n!
Actuarial polynomials a

(β)
n (x) [6]

IV. G(t) = ln
(
1 + t

a

)
; s(t) = exp(−t) e−t

(
1 + t

a

)x =
∞∑
n=0

cn(x; a) t
n

n!
Poisson-Charlier polynomials cn(x; a) [11]

The advantage of the extended Sheffer family defined by equation (1.5) is that it allows to con-
sider mixed type polynomials as its members. These hybrid polynomials can be obtained by taking
the pair (s(t), G(t)) of the polynomials belonging to the Sheffer class and a(t) of the polynomials
belonging to the Appell class. Due to this fact, it is justified to call these polynomials as the hybrid
Sheffer polynomials for the pair (s(t)a(t), G(t)). Thus, by making suitable selections for the pair
(s(t)a(t), G(t)), the corresponding member belonging to the hybrid Sheffer family can be obtained.
These hybrid polynomials are listed in Table 3.

Table 3. Certain members belonging to the hybrid Sheffer family

S. No. G(t); s(t); a(t) Generating function Name of the polynomials

I. G(t) = νt; s(t) = e−t
m

;
(

t
et−1

)
exp(νxt − tm) =

∞∑
n=0

HBn,m,ν (x) t
n

n!
Generalized Hermite-Bernoulli

a(t) =
(

t
et−1

)
polynomials HBn,m,ν (x)

II. G(t) = νt; s(t) = e−t
m

;
(

2
et+1

)
exp(νxt − tm) =

∞∑
n=0

HEn,m,ν (x) t
n

n!
Generalized Hermite-Euler

a(t) =
(

2
et+1

)
polynomials HEn,m,ν (x)
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III. G(t) = νt; s(t) = e−t
m

; exp(νxt − tm − t2/4) =
∞∑
n=0

HĤn,m,ν (x) t
n

n!
Generalized Hermite-monic Hermite

a(t) = e−t
2/4 polynomials HĤn,m,ν (x)

IV. G(t) = t
t−1

; s(t) = (1 − t)−α−1; 1
(1−t)α+1

(
t

et−1

)
exp( xt

t−1
) =

∞∑
n=0

LB
(α)
n (x) t

n

n!
Generalized Laguerre-Bernoulli

a(t) =
(

t
et−1

)
polynomials n! LB

(α)
n (x)

V. G(t) = t
t−1

; s(t) = (1 − t)−α−1; 1
(1−t)α+1

(
2

et+1

)
exp( xt

t−1
) =

∞∑
n=0

LE
(α)
n (x) t

n

n!
Generalized Laguerre-Euler

a(t) =
(

2
et+1

)
polynomials n! LE

(α)
n (x)

VI. G(t) = t
t−1

; s(t) = (1 − t)−α−1; 1
(1−t)α+1 exp( xt

t−1
− t2/4) =

∞∑
n=0

LĤ
(α)
n (x) t

n

n!
Generalized Laguerre-monic Hermite

a(t) = e−t
2/4 polynomials n! LĤ

(α)
n (x)

VII. G(t) = 1 − et; s(t) = exp(βt);
(

t
et−1

)
exp(βt + x(1 − et)) =

∞∑
n=0

aB
(β)
n (x) t

n

n!
Actuarial-Bernoulli

a(t) =
(

t
et−1

)
polynomials aB

(β)
n (x)

VIII. G(t) = 1 − et; s(t) = exp(βt);
(

2
et+1

)
exp(βt + x(1 − et)) =

∞∑
n=0

aE
(β)
n (x) t

n

n!
Actuarial-Euler

a(t) =
(

2
et+1

)
polynomials aE

(β)
n (x)

IX. G(t) = 1 − et; s(t) = exp(βt); exp(βt − t2/4 + x(1 − et)) =
∞∑
n=0

aĤ
(β)
n (x) t

n

n!
Actuarial-monic Hermite

a(t) = e−t
2/4 polynomials aĤ

(β)
n (x)

X. G(t) = ln
(
1 + t

a

)
; s(t) = e−t;

(
t

et−1

)
e−t

(
1 + t

a

)x =
∞∑
n=0

cBn(x; a) t
n

n!
Poisson-Charlier-Bernoulli

a(t) =
(

t
et−1

)
polynomials cBn(x; a)

XI. G(t) = ln
(
1 + t

a

)
; s(t) = e−t;

(
2

et+1

)
e−t

(
1 + t

a

)x =
∞∑
n=0

cEn(x; a) t
n

n!
Poisson-Charlier-Euler

a(t) =
(

2
et+1

)
polynomials cEn(x; a)

XII. G(t) = ln
(
1 + t

a

)
; s(t) = e−t; e−(t+t2/4)(1 + t

a

)x =
∞∑
n=0

cĤn(x; a) t
n

n!
Poisson-Charlier-monic Hermite

a(t) = e−t
2/4 polynomials cĤn(x; a)

In view of Theorem 2.1, the connection formulas for certain members belonging to the hybrid
Sheffer family mentioned in Table 3 are established. We present these formulas in Table 4.

Table 4. Connection formulas for certain members belonging to the hybrid Sheffer
family

S. No. sA
(1)
r (x); sA

(2)
n (x) Expression for h(t) Connection formulas

I. HĤr,m,ν (x); aĤ
(β)
n (x) eβt et

m
aĤ

(β)
n (x) =

n∑
r=0

[n−r
m

]∑
k=0

(
n
r

)
βn−r−mk(n−r)!
k! (n−r−mk)! HĤr,m,ν (x)

II. aĤ
(β)
r (x); cĤn(x; a) e(β+1)t

cĤn(x; a) =
n∑
r=0

(
n
r

)
(β + 1)n−r aĤ

(β)
r (x)

III. LB
(α)
r (x); LE

(α)
n (x)

2(et−1)

t(et+1) LE
(α)
n (x) =

n∑
r=0

n−r∑
k=0

(
n−r
k

)En−r−k
k+1

1
(n−r)! LB

(α)
r (x)

IV. HĤr,m,ν (x); HBn,m,ν (x) t
et−1

exp( t
2

4
) HBn,m,ν (x) =

n∑
r=0

[n−r]
2∑
k=0

(
n
r

)Bn−r−2k(n−r)!
k! (n−r−2k)! 4k HĤr,m,ν (x)

V. aĤ
(α)
r (x); aĤ

(β)
n (x) exp

(
(β − α)t

)
aĤ

(β)
n (x) =

n∑
r=0

(
n
r

)
(β − α)n−r aĤ

(α)
r (x)

Similarly, in view of Theorem 2.2, the duplication formulas for certain members belonging to
the hybrid Sheffer family mentioned in Table 3 are established. We list these formulas in Table 5.
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Table 5. Duplication formulas for certain members belonging to the hybrid Sheffer
family

S. No. sAn(x) Expression for g(t) Duplication formulas

I. cĤn(x; a) exp(t(b − 1)) exp
( t2(b2−1)

4

) cĤn(bx; a) =

n∑
r=0

[n−r
2

]∑
k=0

(
n
r

)
br (b−1)n−r−2k(b2−1)k(n−r)!

(n−r−2k)! k! 4k
cĤr(x; a)

II. aĤ
(β)
n (x) exp(βt(1 − b)) exp

( t2(b2−1)
4

) aĤ
(β)
n (bx) =

n∑
r=0

[n−r
2

]∑
k=0

(
n
r

)
βn−r−2k(1−b)n−r−2k(b2−1)kbr(n−r)!

(n−r−2k)! 4k k!
aĤ

(β)
r (x)

III. cBn(x; a)

(
t

et−1

) (
ebt−1
bt

)
et(1−b)

cBn(bx; a) =

n∑
r=0

k+p≤n−r∑
k,p=0

(
n
r

) Bn−r−k−p b
k+r(1−b)p (n−r)!

(n−r−k−p)! (k+1)! p! cBr(x; a)

IV. aB
(β)
n (x)

(
t

et−1

) (
ebt−1
bt

)
eβt(1−b)

aB
(β)
n (bx) =

n∑
r=0

k+p≤n−r∑
k,p=0

(
n
r

) Bn−r−k−p b
k+rβp (1−b)p (n−r)!

(n−r−k−p)! (k+1)! p! aB
(β)
r (x)

V. HBn,m,ν (x)

(
t

et−1

) (
ebt−1
bt

) HBn,m,ν (bx) =

n∑
r=0

k+mp≤n−r∑
k,p=0

(
n
r

) Bn−r−k−mp b
k+r (bm−1)p (n−r)!

(n−r−k−mp)! (k+1)! p! HBr,m,ν (x)

× exp(tm(bm − 1))

In view of Theorem 3.1, it is evident that the knowledge of the pair (NM, B) is sufficient for a
concrete matrix representation formula for any hybrid Sheffer sequence. Therefore, the following
matrix representations of certain polynomials listed in Table 3 are established.
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Table 6. Matrix representations of certain members belonging to the hybrid Sheffer
family

S. No. Name and notation of the polynomials Matrix representation

I. Generalized Hermite-Bernoulli polynomials {HBn,m,ν (x)}0≤n≤m

(
e−H

m
(∑m

n=0
Hn

(n+1)!

)−1

, D(ν)

)

II. Generalized Hermite-Euler polynomials {HEn,m,ν (x)}0≤n≤m

(
e−H

m
2(eH + 1)−1, D(ν)

)

III. Generalized Hermite-monic Hermite polynomials {HĤn,m,ν (x)}0≤n≤m

(
e−H

m
e−H

2/4, D(ν)

)

IV. Generalized Laguerre-Bernoulli polynomials {n! LB
(α)
n (x)}0≤n≤m

(
(1 −H)−α−1

(∑m
n=0

Hn

(n+1)!

)−1

,LD(−1)

)

V. Generalized Laguerre-Euler polynomials {n! LE
(α)
n (x)}0≤n≤m

(
(1 −H)−α−1 2(eH + 1)−1,LD(−1)

)

VI. Generalized Laguerre-monic Hermite polynomials {n! LĤ
(α)
n (x)}0≤n≤m

(
(1 −H)−α−1 e−H

2/4,LD(−1)

)

VII. Actuarial-Bernoulli polynomials {aB
(β)
n (x)}0≤n≤m

(
P [βn]

(∑m
n=0

Hn

(n+1)!

)−1

,SD(−1)

)

VIII. Actuarial-Euler polynomials {aE
(β)
n (x)}0≤n≤m

(
P [βn] 2(eH + 1)−1,SD(−1)

)

IX. Actuarial-monic Hermite polynomials {aĤ
(β)
n (x)}0≤n≤m

(
P [βn] e−H

2/4,SD(−1)

)

X. Poisson-Charlier-Bernoulli polynomials {cBn(x; a)}0≤n≤m

(
P [(−1)n]

(∑m
n=0

Hn

(n+1)!

)−1

, (SD(a))(−1)

)

XI. Poisson-Charlier-Euler polynomials {cEn(x; a)}0≤n≤m

(
P [(−1)n] 2(eH + 1)−1, (SD(a))(−1)

)

XII. Poisson-Charlier-monic Hermite polynomials {cĤn(x; a)}0≤n≤m

(
P [(−1)n] e−H

2/4, (SD(a))(−1)
)

We note that other results such as the recurrence relations and multiplication theorem
for the special polynomials belonging to the hybrid Sheffer family can also be obtained. The
proposed matrix approach is interesting for its remarkable simplicity and sets highlights that
the hybrid Sheffer polynomials extend both the Sheffer and Appell polynomials. Further, the
connection and duplication formulas for the hybrid special polynomials introduced in this article
are important from the point of view of applications in several areas of science. The approach
presented in this article is general and can be extended to other hybrid classes of special polynomials.

Acknowledgements. This work has been done under Senior Research Fellowship (Award letter
No. F./2014-15/NFO-2014-15-OBC-UTT-24168/(SA-III/Website)) awarded to the second author
by the University Grants Commission, Government of India, New Delhi.

References

[1] L. Aceto, H. R. Malonek, G. Tomaz, A unified matrix approach to the representation of Appell
polynomials, Integral Transform Spec. Funct. 26 (2015) 426-441.

[2] L. Aceto, I. Cação, A matrix approach to Sheffer polynomials, J. Math. Anal. Appl. 446 (2017)
87-100.



Connection problems and matrix representations for certain hybrid polynomials 93

[3] L. Aceto, D. Trigiante, The matrices of Pascal and other greats, Amer. Math. Monthly 108
(2001) 232-245.
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