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Abstract

In this paper we present Perov type fixed point theorems for contractive mappings in Gheo-
rghius sense on spaces endowed with a family of vector valued pseudo-metrics. Applications
to systems of integral equations are given to illustrate the theory. The examples also prove the
advantage of using vector valued pseudo-metrics and matrices that are convergent to zero, for
the study of systems of equations.
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1 Introduction
In this paper we are concerning with the solvability of the semilinear operator system

A1(x, y, z) = x

A2(x, y, z) = y

A3(x, y, z) = z

 (1.1)

in a complete gauge space X (space endowed with a family of pseudo-metrics). Here A1, A2, A3 :
X3 → X are given nonlinear operators. Systems of this type arise from mathematical modelling of
many interaction, competitive and cooperative processes from a variety of disciplines, including
physics, biology, chemistry, engineering and other sciences. For instance, the system

x(t) =

∫ t

t−τ1
f1(s, x(σ1(s)), y(σ2(s)), z(σ3(s)))ds

y(t) =

∫ t

t−τ2
f2(s, x(σ1(s)), y(σ2(s)), z(σ3(s)))ds

z(t) =

∫ t

t−τ3
f3(s, x(σ1(s)), y(σ2(s)), z(σ3(s)))ds


(1.2)

is a mathematical model for the spread of two interacted infectious diseases with contact rates
that vary seasonally. In these equations x(t), y(t), z(t) represent the proportion of infectives in
a population at time t, for each of the three epidemics; τ1, τ2, τ3 stand for the length of time an
individual remains infectious of each one of the diseases; and f1, f2, f3 are the proportion of new
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infectives per unit time for the three epidemics. The modified arguments σ1(t), σ2(t), σ3(t) can be
of retarded type, when σ1(t), σ2(t), σ3(t) ≤ t, or of advanced type, if σ1(t), σ2(t), σ3(t) ≥ t. For
only one disease, and without argument deviations, such a model was introduced by Cooke and
Kaplan [2] (see also Precup [16]).

It is obvious that system 1.1 can be viewed as a fixed point problem,

T (u) = u (1.3)

in the space X3, where u = (x, y, z) and T = (A1, A2, A3). Therefore, we may think to apply to 1.3,
inX3 endowed with the gauge structure induced by that ofX , different abstract existences results
from the theory of nonlinear operators on gauge spaces. Such a result is the contraction principle
extended to gauge spaces by Colojoara (1961) [1], Gheorghiu (1967) [5] and Tarafdar (1974) [23].
However, as pointed out by Perov and Kibenko [15] in connection with Banachs contraction prin-
ciple and Precup [17] Mishra et al., [9] and cited their in, for other abstract principles (Schauders,
Leray-Schauders and Krasnoselskiis cone theorems), we may expect that better results can be ob-
tained for system 1.1 if X3 is endowed with a family of vectorvalued pseudo-metrics. Of course,
in this situation the contraction condition has to be expressed in terms of a matrix instead of scalar
Lipschitz constants allowing the two mappings A1, A2 and A3 to satisfy more relaxed Lipschitz
conditions.

Our first goal in this paper is to present Perov type fixed point theorems for contractive map-
pings in Gheorghius sense on spaces endowed with a family of vector-valued pseudo-metrics.
Then we present applications to system 1.2 with parameter standardization τ1 = τ2 = τ3 = 1 in
two cases:

(a) for advanced arguments τ1 = τ2 = τ3 = t+ 3,

(b) for unmodified arguments τ1 = τ2 = τ3 = t.

The use of a gauge structure is motivated by our interest in discussing long term behavior of the
system, i.e., t ∈ [0,∞), while the advanced arguments in the first example lead to Gheorghius
contraction notion. Our abstract results are new and complement the existing literature in fixed
point theory in gauge/uniform spaces. In addition, compared to previous applications in Precup
[18] and Precup-Viorel [19], our new applications give to the vector approach a new asset for its
use in the treatment of systems.

In order to make clear the connection of our results to the existing literature, we conclude this
introductory section recalling some definitions and results (details can be found in Precup [16]).

By a vector-valued metric on a set X one means a map d : X × X → Rn with the following
properties: d(x, y) ≥ 0 for all x, y ∈ X and if d(x, y) = 0 then x = y; d(x, y) = d(y, x) for all
x, y ∈ X ; d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X .

Here, if a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn, then by a ≤ b we mean that ai ≤ bi for
i = 1, 2, . . . , n. A set X endowed with a vector-valued metric d is said to be a generalized metric
space. For the generalized metric spaces, the notions of a convergent sequence, Cauchy sequence
and completeness are similar to those for usual metric spaces.

Let (X, d) be a generalized metric space. A map T : X → X is said to be a generalized
contraction if there exists a matrix M ∈Mn×n(R+) such that

Mk → 0 as k →∞ (1.4)
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and

d(T (x), T (y)) ≤Md(x, y) for all x, y ∈ X.
The Lipschitz matrix M satisfying 1.4 is said to be convergent to zero. The extension of Banachs
fixed point theorem to generalized contractions on spaces with a vector-valued metric is due to
Perov and Kibenko (see [15] and [16]).

Theorem 1.1. (Perov) Let (X, d) be a complete generalized metric space and T : X → X be a
generalized contraction with Lipschitz matrix M . Then T has a unique fixed point x∗ and for each
x0 ∈ X , one has

d(T k(x0), x∗)) ≤Mk(I −M)−1d(x0, T (x0))

for all k ∈ N.

As concerns matrices which are convergent to zero, we mention the following equivalent char-
acterizations (see Precup [17]): IfM be a square matrix of nonnegative numbers, then the following
statements are equivalent:

(i) the matrix M is convergent to zero;

(ii) I −M is non-singular and (I −M)−1 = I +M +M2 + . . . ;

(iii) |λ| < 1 for every λ ∈ C with det(M − λI) = 0;

(iv) I −M is non-singular and (I −M)−1 has nonnegative elements.

Finally we recall basic definitions and results of the theory of gauge spaces. A map d : X×X → R+

is said to be a pseudo-metric, or a gauge on the setX , if it has the following properties: d(x, x) = 0,
d(x, y) = d(y, x) and d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X . A family P = {dα}α∈Λ of
pseudometrics on X (or a gauge structure on X) is said to be separating if for each pair of points
x, y ∈ X with x = y, there is a dα ∈ P such that dα(x, y) = 0. A pair (X,P) of a nonempty set X
and a separating gauge structure P on X is called a gauge space.

It is well-known (see Dugundji [5: pp. 198–204]) that any family P of pseudometrics on a
set X induces on X a structure U of uniform space and conversely, any uniform structure on X
is induced by a family of pseudo-metrics on X . In addition, U is separating (or Hausdorff) if
and only if P is separating. Hence we may identify gauge spaces to Hausdorff uniform spaces.
We now recall the notion of contraction on a gauge space, introduced by Gheorghiu [7] (see also
Chis-Precup [2] and Angelov [1]). Let (X,P) be a gauge space with P = {dα}α∈Λ . A map
T : D(T ) ⊂ X → X is a contraction if there exists a function ϕ : Λ → Λ and a ∈ RΛ

+, a = {aα}α∈Λ

such that
dα(T (x), T (y)) ≤ aαdϕ(α)(x, y)

for all α ∈ Λ and x, y ∈ D(T ) and

Σ∞i=1aαaϕ(α)aϕ2(α) . . . aϕi−1(α)dϕi(α)(x, y) <∞

for every α ∈ Λ and x, y ∈ D(T ). Here ϕi is the i− th iterate of ϕ.
We note that this notion was first introduced by Marinescu [8] in locally convex spaces assum-

ing that ϕ2 = ϕ and then by Colojoarǎ [1] in uniform spaces, under the same condition. The case
ϕ = 1Λ (identity) was considered by Tarafdar [23] (see also Frigon [4]). Also note that a somewhat
different notion of contraction in a uniform space was defined by Knill [7] in terms of entourages.
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Theorem 1.2. (Gheorghiu [5]) Let (X,P) be a complete gauge space and let T : X → X be a
contraction. Then T has a unique fixed point which can be obtained by successive approximations
starting from any element of X .

2 Main abstract results
In this section we introduce the notions of a vector-valued pseudo-metric, generalized gauge space
and generalized contraction. Then Gheorghius theorem is extended for generalized contractions
on complete generalized gauge spaces. A second result is concerning with mappings which are
contractive in Gheorghius sense only on one of its orbits. The results are Perov-Gheorghiu mix-
tures and have the advantages of both approaches.

Definition 2.1. Let Z be a set. A vector-valued map D : Z × Z → Rn+ is said to be a vector-
valued pseudo-metric, or a vector-valued gauge on Z, if it has the following properties: D(u, u) =
0; D(u, v) = D(v, u); and D(u, v) ≤ D(u,w) + D(w, v) for all u, v, w ∈ Z. Here again, if a =
(a1, a2, . . . , an), b = (b1, b2, . . . , bn) ∈ Rn, then by a ≤ b we mean ai ≤ bi for i = 1, 2, . . . , n.

A family G = {Dα}α∈Λ of vector-valued pseudo-metrics on Z (or a generalized gauge structure
on Z) is said to be separating if for each pair of points u, v ∈ Z with u = v, there is a Dα ∈ G such
that Dα(u, v) = 0. A pair (Z,G) of a nonempty set Z and a separating generalized gauge structure
G on Z is called a generalized gauge space. For the generalized gauge spaces, the notions of a
convergent sequence, Cauchy sequence and completeness are similar to those for usual gauge
spaces.

By analogy, we can introduce the vector version of Gheorghius notion of contraction.

Definition 2.2. Let (Z,G) be a generalized gauge space with G = {Dα}α ∈ Λ. A map T : D(T ) ⊂
Z → Z is a generalized contraction if there exists a function ϕ : Λ → Λ and M ∈ Mn×n(R+)Λ ,
M = {Mα}α∈Λ such that

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v) for all α ∈ Λ and u, v ∈ D(T ) (1.5)

and

Σ∞i=1MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (1.6)

for every α ∈ Λ and u, v ∈ D(T ).

Now the Perov type analog for generalized contractions of Gheorghius fixed point theorem
reads as follows:

Theorem 2.3. Let (Z,G) be a complete generalized gauge space and let T : Z → Z be a generalized
contraction. Then T has a unique fixed point which can be obtained by successive approximations
starting from any element of Z.

Proof. Let u0 be an arbitrary element of Z. Define a sequence (uk) by

uk+1 = T (uk), k ∈ N. (1.7)
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Then using 1.5 we have

Dα(uk, uk+1) = Dα(T (uk−1), T (uk))

≤ MαDϕ(α)(uk−1, uk)

= MαDϕ(α)(T (uk−2), T (uk−1))

≤ MαMϕ(α)Dϕ2(α)(uk−2, uk−1)

...
≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u0, u1)

for every α ∈ Λ and k = 1, 2, . . . . As a consequence we have

Dα(uk, uk+m) = Dα(uk, uk+1) + · · ·+Dα(uk+m−1, uk+m)

≤ Σm−1
n=0 MαMϕ(α) . . .Mϕk+n−1(α)Dϕk+n(α)(u0, u1)

= Σk+m−1
i=k MαMϕ(α) . . .Mϕi−1(α)Dϕi(α)(u0, u1).

Hence, according to 1.6, (uk) is a Cauchy sequence. Let u∗ be its limit. Then, letting k → ∞ in 1.7
gives u∗ = T (u∗). For uniqueness, assume that u1, u2 are two fixed points of T . Then

Dα(u1, u2) = Dα(T (u1), T (u2))

≤ MαDϕ(α)(u1, u2)

≤ MαMϕ(α)Dϕ2(α)(u1, u2)

...
≤ MαMϕ(α) . . .Mϕk−1(α)Dϕk(α)(u1, u2)

and using 1.6 we obtain that Dα(u1, u2) = 0 for every α ∈ Λ . Since family G is separating we
deduce that u1 = u2.

Q.E.D.

From the proof of Theorem 2.3 we immediately obtain the following result guaranteeing the
existence of a fixed point as limit of the successive approximation sequence which starts from a
given element of the space.

Theorem 2.4. Let (Z,G) be a generalized gauge space with G = {Dα}α ∈ Λ and let T : Z → Z be
a mapping. Assume that there is u0 ∈ Z, C > 0, ϕ : Λ→ Λ andM ∈ Mn×n(R+)Λ , M = {Mα}α∈Λ

such that the following conditions hold:

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v) for all α ∈ Λ and u, v ∈ Z,

Σ∞i=1MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (1.8)

Dα(u0, T (u0)) ≤ C
for all α ∈ Λ. Then T has at least one fixed point which can be obtained by successive approxima-
tions starting from u0.
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Remark 2.5. Here are some useful particular cases: If there is an integer p ≥ 2 with ϕp = ϕ, then
conditions 1.6 and 1.8 reduce to the assumption that

Mϕ(α) . . .Mϕp−1(α)

is convergent to zero for every α ∈ Λ.
Thus, if p = 2, that is ϕ2 = ϕ (Marinescus situation), then 1.6 and 1.8 hold if

Mϕ(α) is convergent to zero for every α ∈ Λ.

In particular, if ϕ = 1Λ (Tarafdars situation), then 1.6 and 1.8 are satisfied provided that Mα is
convergent to zero for every α ∈ Λ.

Now we turn back to system 1.1. We assume that X is a complete gauge space with the family
of pseudo-metrics P = {dα}α∈Λ. We denote Z := X3, T := (A1, A2, A3) and G := {Dα}α∈Λ ,
where

Dα(u, v) =

dα(x, x1)

dα(y, y1)

dα(z, z1)

 (1.9)

for every u := (x, y, z), v := (x1, y1, z1) ∈ X3 and α ∈ Λ. Then (Z,G) is a complete generalized
gauge space. Specialized to this case, Theorems 2.3 and 2.4 yield the following results.

Theorem 2.6. Assume that (X,P) is a complete gauge space with P = {dα}α∈Λ and that there
exists a function ϕ : Λ→ Λ and nonnegative constants aα, bα, cα, aα, bα, cα, aα, bα, cα such that

dα(A1(x, y, z), A1(x1, y1, z1)) ≤ aαdϕ(α)(x, x1) + bαdϕ(α)(y, y1) + cαdϕ(α)(z, z1),

dα(A2(x, y, z), A2(x1, y1, z1)) ≤ aαdϕ(α)(x, x1) + bαdϕ(α)(y, y1) + cαdϕ(α)(z, z1),

dα(A3(x, y, z), A3(x1, y1, z1)) ≤ aαdϕ(α)(x, x1) + bαdϕ(α)(y, y1) + cαdϕ(α)(z, z1),

 (1.10)

for all x, x1, y, y1, z, z1 ∈ X and α ∈ Λ. Let

Mα =

aα bα cα
aα bα cα

aα bα cα


If

Σ∞i=1MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α)Dϕi(α)(u, v) <∞ (1.11)

for all u, v ∈ X3 and α ∈ Λ , then system 1.1 has a unique solution. Moreover, the solution is
the limit of the sequence of successive approximations

uk = (xk, yk, zk), xk+1 = A1(xk, yk, zk), yk+1 = A2(xk, yk, zk) zk+1 = A3(xk, yk, zk) (k = 0, 1, . . . )(1.12)

starting from any initial pair (x0, y0, z0) ∈ X3.
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Proof. Clearly inequalities 1.10 can be written in the vector form

Dα(T (u), T (v)) ≤MαDϕ(α)(u, v).

The result is now a direct consequence of Theorem 2.3.
Q.E.D.

Theorem 2.7. Under the assumptions of Theorem 1.7, if there is u0 = (x0, y0, z0) ∈ X3 and C > 0
such that

Dα(u0, T (u0)) ≤ C (1.13)

and

Σ∞i=1MαMϕ(α)Mϕ2(α) . . .Mϕi−1(α) <∞ (1.14)

for every α ∈ Λ , then system 1.1 has at least one solution which is the limit of sequence 1.12
starting from u0.

Proof. The result is a direct consequence of Theorem 2.4. Q.E.D.

3 Applications to integral systems
Consider the system of integral equations with advanced argument

x(t) =

∫ t

t−1

f1(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

y(t) =

∫ t

t−1

f2(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

z(t) =

∫ t

t−1

f3(s, x(s+ 3), y(s+ 3), z(s+ 3))ds


(1.15)

for t ∈ [0,∞).
Assume that

|f1(t, x, y, z)− f1(t, x1, y1, z1)| ≤ k1(t)|x− x1|+ k2(t)|y − y1|+ k3(t)|z − z1|,
|f2(t, x, y, z)− f2(t, x1, y1, z1)| ≤ k4(t)|x− x1|+ k5(t)|y − y1|+ k6(t)|z − z1|,
|f3(t, x, y, z)− f3(t, x1, y1, z1)| ≤ k7(t)|x− x1|+ k8(t)|y − y1|+ k9(t)|z − z1|,

 (1.16)

for every x, x1, y, y1, z, z1 ∈ R, t ∈ [−1,∞) and some ki ∈ L1([−1,∞),R+), i = {1, 2, 3, 4, . . . , 9}.
For each n ∈ N, let

an =

∫ 2n+1

n−1

k1(t)dt, bn =

∫ 2n+1

n−1

k2(t)dt, cn =

∫ 2n+1

n−1

k3(t)dt

an =

∫ 2n+1

n−1

k4(t)dt, bn =

∫ 2n+1

n−1

k5(t)dt, cn =

∫ 2n+1

n−1

k6(t)dt
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an =

∫ 2n+1

n−1

k7(t)dt, bn =

∫ 2n+1

n−1

k8(t)dt, cn =

∫ 2n+1

n−1

k9(t)dt

and consider the matrix

Mα =

aα bα cα
aα bα cα

aα bα cα

 .

Also define the matrix M∞ by

M∞ =

|k1|L1([−1,∞)) |k2|L1([−1,∞)) |k3|L1([−1,∞))

|k4|L1([−1,∞)) |k5|L1([−1,∞)) |k6|L1([−1,∞))

|k7|L1([−1,∞)) |k8|L1([−1,∞)) |k9|L1([−1,∞))

 .

Our main result on system 1.15 is the following theorem.

Theorem 3.1. Let f1, f2, f3 : [−1,∞) × R3 → R be three continuous functions and assume that
inequalities 1.16 hold for some ki ∈ L1([−1,∞),R+), i = {1, 2, 3, 4, . . . , 9}. In addition assume that
there is u0 = (x0, y0, z0) ∈ C([0,∞),R3) and C > 0 such that

|T (u0)(t)− u0(t)| ≤ C for all t ∈ [0,∞), (1.17)

where T = (A1, A2, A3) is given bellow. If the matrix

M∞ is convergent to zero, (1.18)

then system 1.15 has at least one solution (x, y, z) ∈ C([0,∞),R3)

Proof. We shall use Theorem 2.7. Here X = C[0,∞),Λ = N and for n ∈ N, dn : X × X → R+ is
given by

dn(x, y) = max
t∈[n,2n+1]

|x(t)− y(t)|.

Let A1, A2, A3 : C[0,∞),R3 → C[0,∞) be defined by

A1(x, y, z)(t) =

∫ t

t−1

f1(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

A2(x, y, z)(t) =

∫ t

t−1

f2(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

A3(x, y, z)(t)) =

∫ t

t−1

f3(s, x(s+ 3), y(s+ 3), z(s+ 3))ds


First we prove the Lipschitz condition 1.10 with ϕ : N → N given by ϕ(n) = n + 1. Let

t ∈ [n, 2n + 1]. We have t − 1 ∈ [n − 1, 2n], and when s ∈ [t − 1, t], then s + 2 ∈ [n + 1, 2n + 3]. It
follows that
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|A(x, y, z)(t)−A(x1, y1, z1)(t)|

≤
∫ 2n+1

n−1

|f1(s, x(s+ 3), y(s+ 3), z(s+ 3))−
∫ 2n+1

n−1

f1(s, x1(s+ 3), y2(s+ 3), z3(s+ 3))|ds

≤
∫ 2n+1

n−1

k1|x(s+ 3)− x1(s+ 3)|ds+

∫ 2n+1

n−1

k2|y(s+ 3)− y1(s+ 3)|ds

+

∫ 2n+1

n−1

k3|z(s+ 3)− z1(s+ 3)|ds

≤ max
s∈[n+1,2n+3]

|x(s+ 3)− x1(s+ 3)|
∫ 2n+1

n−1

k1ds+ max
s∈[n+1,2n+3]

|y(s+ 3)− y1(s+ 3)|
∫ 2n+1

n−1

k2ds

+ max
s∈[n+1,2n+3]

|z(s+ 3)− z1(s+ 3)|
∫ 2n+1

n−1

k3ds

≤ max
τ∈[n+1,2n+3]

|x(τ)− x1(τ)|
∫ 2n+1

n−1

k1ds+ max
τ∈[n+1,2n+3]

|y(τ)− y1(τ)|
∫ 2n+1

n−1

k2ds

+ max
τ∈[n+1,2n+3]

|z(τ)− z1(τ)|
∫ 2n+1

n−1

k3ds

= andn+1(x, x1) + bndn+1(y, y1) + cndn+1(z, z1).

Taking the maximum over [n, 2n+ 1] yields

dn(A1(x, y, z), A1(x1, y1, z1)) ≤ andn+1(x, x1) + bndn+1(y, y1) + cndn+1(z, z1)

dn(A1(x, y, z), A1(x1, y1, z1)) ≤ andϕ(n)(x, x1) + bndϕ(n)(y, y1) + cndϕ(n)(z, z1)

for every (x, y, z), (x1, y1, z1) ∈ X3. Similarly, for A2,

dn(A2(x, y, z), A2(x1, y1, z1)) ≤ andϕ(n)(x, x1) + bndϕ(n)(y, y1) + cndϕ(n)(z, z1)

for every (x, y, z), (x1, y1, z1) ∈ X3.
And for A3,

dn(A3(x, y, z), A3(x1, y1, z1)) ≤ andϕ(n)(x, x1) + bndϕ(n)(y, y1) + cndϕ(n)(z, z1)

for every (x, y, z), (x1, y1, z1) ∈ X3.
Hence 1.10 holds. Furthermore, condition 1.13 is guaranteed by assumption 1.17. Also, for

every n ∈ N, Mn ≤M∞ and thus series 1.14 is dominated by

Σ∞k=0M
k
∞

which is convergent in view of assumption 1.18. Hence 1.14 is satisfied. Therefore Theorem 2.7
can be applied. Q.E.D.
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4 An integral system without modification of the argument
Consider the system of integral equations

x(t) =

∫ t

t−1

f1(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

y(t) =

∫ t

t−1

f2(s, x(s+ 3), y(s+ 3), z(s+ 3))ds

z(t) =

∫ t

t−1

f3(s, x(s+ 3), y(s+ 3), z(s+ 3))ds


(1.19)

for t ∈ [0,∞), where x(t) = ψ1(t), y(t) = ψ2(t) and z(t) = ψ3(t) for t ∈ [−1, 0] and ψ1, ψ2, ψ3

are given functions.
We assume that inequalities 1.16 hold for every x, x1, y, y1, z, z1 ∈ R, t ∈ [0,∞) and some

ki ∈ L1
loc([0,∞),R+), i = {1, 2, 3, 4, . . . , 9}. For n ∈ N \ {0}, we denote

an =

∫ 2n+1

n−1

k1(t)dt, bn =

∫ 2n+1

n−1

k2(t)dt, cn =

∫ 2n+1

n−1

k3(t)dt

an =

∫ 2n+1

n−1

k4(t)dt, bn =

∫ 2n+1

n−1

k5(t)dt, cn =

∫ 2n+1

n−1

k6(t)dt

an =

∫ 2n+1

n−1

k7(t)dt, bn =

∫ 2n+1

n−1

k8(t)dt, cn =

∫ 2n+1

n−1

k9(t)dt

and consider the matrix

Mα =

aα bα cα
aα bα cα

aα bα cα

 .

Theorem 4.1. Let f1, f2, f3 : [−1,∞)×R3 → R be three continuous functions, ψ1, ψ2, ψ3 ∈ C[−1, 0]
and assume that inequalities 1.16 hold for some ki ∈ L1

loc([0,∞),R+), i = {1, 2, 3, 4, . . . , 9}. For
n ∈ N \ {0} , matrix

Mn is convergent to zero, (1.20)

then system 1.19 has a unique solution (x, y, z) ∈ C[0,∞),R3.

Proof. The result follows from Theorem 2.6 if we take into account Remark 2.5 about Tarafdars
situation. Here X = C[0,∞), Λ = N \ {0} , for each n ∈ N \ {0},

dn : X ×X → R+

is given by
dn(x, y) = max

t∈[0,n]
|x(t)− y(t)|,
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ϕ : N \ {0} → N \ {0} , ϕ(n) = n, and A1, A2, A3 : C[0,∞),R3 → C[0,∞) are defined by

A1(x, y, z)(t) =

∫ t

t−1

f1(s, x̃(s), ỹ(s), z̃(s))ds,

A2(x, y, z)(t) =

∫ t

t−1

f2(s, x̃(s), ỹ(s), z̃(s))ds,

A3(x, y, z)(t) =

∫ t

t−1

f3(s, x̃(s), ỹ(s), z̃(s))ds,

where

x̃(t) =

{
ψ1(t) for − 1 ≤ t < 0

x(t) for t ≥ 0

ỹ(t) =

{
ψ2(t) for − 1 ≤ t < 0

y(t) for t ≥ 0

z̃(t) =

{
ψ3(t) for − 1 ≤ t < 0

z(t) for t ≥ 0

Q.E.D.

Remark 4.2. When ki ∈ L1([0,∞),R+), i = {1, 2, 3, 4, . . . , 9} then a sufficient condition for 1.20 to
hold for every n ∈ N \ {0} is that the matrix

M∞ =

|k1|L1(R+) |k2|L1(R+) |k3|L1(R+)

|k4|L1(R+) |k5|L1(R+) |k6|L1(R+)

|k7|L1(R+) |k8|L1(R+) |k9|L1(R+)

 .is convergent to zero. (1.21)

Indeed, for each n ∈ N \ {0} , one has Mn ≤ M∞, whence, since the entries of all matrices are
nonnegative, Mk

n ≤ Mk
∞ for all k ∈ N. Consequently, if Mk

∞ → 0 as k → ∞ , then Mk
n → 0 as

k → ∞ , too. However, 1.21 is not a necessary condition for 1.20 as shows the following contre-
example:

k1(t) = (t+ 1)−2,

ki = 0 for i = {2, 3, 4, . . . , 9}.
In this case

Mn =

 n
n+1 0 0

0 0 0
0 0 0


and

M∞ =

1 0 0
0 0 0
0 0 0


Clearly, for every n ∈ N \ {0}, Mn converges to zero, but M∞ does not.
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