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Abstract

A new sinc-Gauss-Jacobi collocation method for solving the fractional Volterra’s population
growth model in a closed system is proposed. This model is a nonlinear fractional Volterra
integro-differential equation where the integral term represents the effects of toxin. The frac-
tional derivative is considered in the Liouville-Caputo sense. In the proposed method, we first
convert fractional Volterra’s population model to an equivalent nonlinear fractional differential
equation, and then the resulting problem is solved using collocation method. The proposed
collocation technique is based on sinc functions and Gauss-Jacobi quadrature rule. In this ap-
proach, the problem is reduced to a set of algebraic equations. The obtained numerical results
of the present method are compared with some well-known results in the literature to show the
applicability and efficiency of the proposed method.
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1 Introduction
Fractional calculus, as generalization of integer order integration and differentiation to its non-
integer (fractional) order counterpart, is a fast developing field in engineering, physics, biology,
quantum, applied mathematics and etc. (e.g., see [14, 23, 28] and references therein). A his-
tory of the development of fractional (derivatives an integrals) operators can be found in [16].
Most problems containing fractional derivatives, either do not have closed form solutions or the
exact solutions have very complex forms, so numerical techniques for these problems are ex-
tensively developed. Among the most recent works concerned with the numerical solution of
fractional differential equations and fractional integro-differential equations we can consider pa-
pers [1, 4, 6, 7, 8, 13, 19, 22, 29, 31, 32, 33].

The fractional population growth model of a species within a closed system is given in [17, 25]
as

Dβp = ap− bp2 − cp
∫ t̃

0

p(x)dx, p(0) = p0, 0 < β ≤ 1. (1.1)

Here, p = p(t̃) denotes the scaled population of identical individuals at time t̃, a > 0 represents
the birth rate coefficient, b > 0 is the crowding coefficient, c > 0 is the toxicity coefficient and
p0 is the initial population. The coefficient c indicates the essential behavior of the population
evolution before its level falls to zero in the long term [38]. It is interesting to note that when

Tbilisi Mathematical Journal 11(2) (2018), pp. 123–137.
Tbilisi Centre for Mathematical Sciences.
Received by the editors: 06 August 2017.
Accepted for publication: 25 March 2018.



124 A. Saadatmandi, A. Khani and M.R Azizi

c = 0, Eq. (1.1) reduces to the well-known logistic equation. Also, p
∫ t̃

0
p(x)dx, represented the

the “total metabolism” or total amount of toxins accumulated from time zero [38]. Moreover, µ
represents the order of fractional derivative. The fractional derivative in Eq. (1.1) is considered in
the Liouville-Caputo sense. Introducing the non-dimensional variables by

t =
t̃c

b
, u =

pb

a
, (1.2)

Eq. (1.1) is reduced to the non-dimensional problem

κDβu(t) = u(t)− u2(t)− u(t)

∫ t

0

u(x)dx, u(0) = u0, 0 < β ≤ 1, (1.3)

where κ = c/ab is a non-dimensional parameter. It is important to notice that when β = 1, Eq.
(1.3) reduces to the classical logistic growth model, and the numerical methods for this equation
have been extensively studied by many authors (e.g., see [3, 12, 18, 24, 26] and references therein).
The analytical solution for classical logistic growth model is [26]

u(t) = u0 exp

(
1

κ

∫ t

0

[
1− u(τ)−

∫ τ

0

u(x)dx

]
dτ

)
. (1.4)

Some researchers have worked on problem(1.3); For instance, Parand and Delkhosh [25] by
generalized fractional order Chebyshev functions, Parand and Nikarya [27] by the Bessel col-
location method, Maleki et al. [17] by multi-domain pseudospectral method, Momani and Qar-
alleh [20] by Adomian decomposition method and Pade approximation, Yüzbaşi [41] by Bessel
collocation method and Xu [39] and Ghasemi et al. [9] by homotopy analysis method.
In the past three decades or so, many researchers used sinc approximation in various problems
such as boundary value problems [34, 40], squeezing flow [30], fractional convection-diffusion
equations [29], time-fractional order telegraph equation [37], fractional diffusion equation [11],
Troesch’s problem [21], Bagley-Torvik equation [5] and fractional order boundary value prob-
lem [2].
In this work, we intend to extend the application of sinc functions to solve the problem (1.3), for
0 < β < 1. It is worthy to mention here that, in [26], a collocation approach using sinc functions is
applied to problem (1.3) for β = 1. Our method consists of reducing the solution of fractional pop-
ulation growth model to a set of algebraic equations by expanding the candidate function in terms
of sinc functions with unknown coefficients. The collocation method, the properties of sinc func-
tions and the Gauss-Jacobi quadrature rule are then used to evaluate the unknown coefficients and
find the solution of problem(1.3). To the best knowledge of the authors, until now, such approach
has not been employed for solving problem(1.3), for 0 < β < 1.

This paper is arranged as follows: in the next section, some preliminary results of fractional
calculus, sinc functions and Gauss-Jacobi quadrature rule are given. In Section 3, the new method
proposed in the current work is presented. Results and discussion of the proposed method is
shown in Section 4. Also, we compare our achievements with existing results in other published
works in the literature. Section 5 contains a brief conclusion.

2 Preliminaries and notations
In this section, we present some basic definitions and preliminary materials which will be used
throughout the paper.
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2.1 The fractional derivative in the Liouville-Caputo sense
Definition 1. Let β > 0 and n = [β] + 1, then the Liouville-Caputo fractional derivative of order β is
defined as [14, 28]

Dβf(x) =

{
1

Γ(n−β)

∫ x
0

f(n)(t)
(x−t)β+1−n dt, n− 1 < β < n, n ∈ N,

dn

dxn f(x), β = n ∈ N.
(1.5)

where β is the order of the derivative, Γ(.) is the Gamma function and [β] denoting the integer part of β.
Some properties of Liouville-Caputo’s derivative are mentioned below [14].

• DβC = 0, (C is a constant).

• For any β > 0 and any nonnegative integer m, we have the relation

Dβ (Dmf(x)) = Dm+βf(x). (1.6)

• The Liouville-Caputo’s derivative of f(x) = xm,m ∈ N is given as

Dβxm =

{
0, m < dβe,

Γ(m+1)
Γ(m+1−β)x

m−β , m ≥ dβe,
(1.7)

where dβe denoting the smallest integer greater than or equal to β.

• Liouville-Caputo’s fractional differentiation is a linear operator, i.e.,

Dβ(a1f1(x) + a2f2(x)) = a1D
βf1(x) + a2D

βf2(x), (1.8)

where a1 and a2 are constants.

2.2 Sinc function approximation
A general review of sinc function approximation is given in [15, 36]. We recall here the main
properties of sinc functions which will be used in the sequel. As is well known, the Whittaker
cardinal (sinc) function is defined on −∞ < x <∞, by

sinc(x) =

{
sin(πx)
πx , x 6= 0,

1, x = 0.

Also, for any h > 0 and k = 0,±1,±2, . . . , the translated sinc functions with evenly spaced nodes
are given by

S(k, h)(x) = sinc
(
x− kh
h

)
=

{
sin[πh (x−kh)]
π
h (x−kh) , x 6= kh,

1, x = kh.
(1.9)

It is easy to see that

S(k, h)(jh) = δkj =

{
1, k = j,

0, k 6= j.
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Let f be an analytic function defined on the real axis. Then the series

C(f, h)(x) =

∞∑
k=−∞

f(kh) Sinc
(
x− kh
h

)
,

is called the Whittaker cardinal expansion of f whenever this series converges. Most properties
of the Whittaker cardinal expansion may be found in [15]. To construct approximations on the
interval (0,∞), which is used in this paper, we consider the conformal mappings

w = ϕ(z) = ln(sinh(z)),

which transforms the eye-shaped domain,DE , in the z-plane, onto the infinite strip in the complex
w-plane, DS , where for d > 0,

DE =
{
z = x+ iy : | arg(sinh(z))| < d ≤ π

2

}
,

and
DS =

{
w = t+ is : |s| < d ≤ π

2

}
.

Thus the basis sinc functions over (0,∞) are given by

Sk(x) = S(k, h) ◦ ϕ(x) = sinc
(
ϕ(x)− kh

h

)
, (1.10)

where S(k, h) ◦ ϕ(x) is defined by S(k, h)(ϕ(x)). The inverse map of w = ϕ(z) is

z = ϕ−1(w) = ln(ew +
√
e2w + 1).

We define the range of ψ = ϕ−1 on the real line as

Γ = {ψ(t) ∈ DE : −∞ < t <∞} = (0,∞).

Also, the image of the evenly spaced nodes {kh}∞k=−∞ is denoted by

xk = ψ(kh) = ln(ekh +
√
e2kh + 1) , k = 0,±1,±2, . . . (1.11)

Definition 2. Let B(DE) be the class of functions F which are analytic in DE and satisfy

•
∫
ψ(t+L)

|F (z)dz| −→ 0 , t −→ ±∞,

• N(F ) =
∫
∂DE
|F (z)dz| <∞.

where L =
{
iv : |v| < d ≤ π

2

}
and ∂DE is the boundary of DE .

The following theorem, whose proof can be found in [36] provide interpolation formulas for func-
tion in B(DE).

Theorem 1. If ϕ′F ∈ B(DE) then for all x ∈ Γ∣∣∣∣∣F (x)−
∞∑

k=−∞

F (xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ N(Fϕ′)

2πd sinh(πd/h)
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≤ 2N(Fϕ′)

πd
e−πd/h.

Moreover, if |F (x)| ≤ Ce−α|ϕ(x)|, x ∈ Γ, for some positive constants C and α, and if the selection
h =

√
πd/αN ≤ 2πd/ ln 2, then∣∣∣∣∣F (x)−

N∑
k=−N

F (xk)S(k, h) ◦ ϕ(x)

∣∣∣∣∣ ≤ C2

√
N exp(−

√
πdαN), x ∈ Γ,

where C2 depends only on F, d and α.
As seen in above theorem, the sinc interpolation in B(DE) converge exponentially [36]. We

also require derivatives of composite sinc functions evaluated at the nodes. Technical calculations
provide the following results [36].

δ
(0)
k,j = [S(k, h) ◦ ϕ(x)]|x=xj =

{
1, k = j,

0, k 6= j.
(1.12)

δ
(1)
k,j = h

d

dϕ
[S(k, h) ◦ ϕ(x)]|x=xj =

{
0, k = j,

(−1)j−k

j−k , k 6= j.
(1.13)

2.3 Gauss-Jacobi quadrature

Denote P (λ,µ)
m (x);λ > −1, µ > −1 as the m-th order Jacobi polynomial defined on [−1, 1]. These

polynomials are given explicitly by [35]

P (λ,µ)
m (x) = 2−m

m∑
k=0

(
m+ µ
m− k

)(
m+ λ
k

)
(x− 1)m−k(x+ 1)k.

The Jacobi polynomials are orthogonal on the interval (−1, 1) with respect to the weight function
ρ(λ,µ)(x) = (1− x)λ(1 + x)µ, i.e.,∫ 1

−1

P (λ,µ)
n (x)P (λ,µ)

m (x)ρ(λ,µ)(x)dx =

{
2λ+µ+1

λ+µ+2n+1
Γ(λ+n+1)Γ(µ+n+1)
n!Γ(λ+µ+n+1) , n = m,

0, n 6= m.

All the zeros of P (λ,µ)
m (x) are simple and they belong to the interval (−1, 1) [35].

For a given positive integer m we denote the Gauss-Jacobi points by {ξ(λ,µ)
i }mi=1. In fact, these

points are zeros of the polynomial P (λ,µ)
m (x). An m-point Gauss-Jacobi quadrature rule, with pa-

rameters λ and µ, is based on Gauss-Jacobi points {ξ(λ,µ)
i }mi=1 and can be used to approximate the

integral of a function over the range [−1, 1] with weight ρ(λ,µ)(x) as∫ 1

−1

f(x)ρ(λ,µ)(x)dx ≈
m∑
i=1

ω
(λ,µ)
i f(ξ

(λ,µ)
i ), (1.14)

where the Gauss-Jacobi weights {ω(λ,µ)
i }mi=1 are given by [10]

ω
(λ,µ)
i =

Γ(λ+m+ 1)Γ(µ+m+ 1)

m!Γ(λ+ µ+m+ 1)

2λ+µ+1(
1−

(
ξ

(λ,µ)
i

)2
)[

P
(λ,µ)′
m (ξ

(λ,µ)
i )

]2 . (1.15)
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Also, the error is
f2m(η)

(2m)!

∫ 1

−1

[
m∏
i=1

(ξ − ξ(λ,µ)
i )

]2

ρ(λ,µ)(ξ)dξ, η ∈ (−1, 1).

Thus, the Gauss-Jacobi quadrature rule has a degree of exactness of 2m − 1, i.e., it is exact for
polynomials of degree up to 2m− 1.

3 The sinc-Gauss-Jacobi collocation method
In this section, we solve the fractional Volterras population model of the form (1.3) by using the col-
location method, based on modified sinc functions, in combination with the Gauss-Jacobi quadra-
ture formulae. First of all, we reformulate the problem (1.3) to an equivalent nonlinear fractional
differential equation.

3.1 Reformulation of the problem
Let

y(x) =

∫ x

0

u(t)dt, (1.16)

this transformation readily leads to
y′(x) = u(x). (1.17)

Using Eqs. (1.6) and (1.17) yield

Dβu = DβD1y = Dβ+1y. (1.18)

Substituting Eqs. (1.16)-(1.18) into Eq. (1.3) yields the nonlinear fractional differential equation

κDβ+1y(x) = y′(x)− (y′(x))
2 − y′(x)y(x), (1.19)

with the initial conditions
y(0) = 0, y′(0) = u0. (1.20)

3.2 Solving fractional Volterra’s population model
The sinc basis functions in Eq. (1.10) are not differentiable when x tends to zero. Following [26],
we modify the sinc basis functions as

xSk(x). (1.21)

A straightforward calculation reveals that the derivative of the modified sinc basis functions are
defined and are equal to zero as x approaches zero. To approximate the solution of Eq. (1.19) with
initial conditions (1.20), first of all, we construct a polynomial

q(x) = θx2 + u0x, (1.22)

that satisfies Eq. (1.20). Here, θ is a constant to be determined. Now, the approximate solution for
y(x) in Eq. (1.19) with initial conditions in Eq. (1.20) is represented by

yN (x) = zN (x) + q(x), (1.23)
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where

zN (x) =

N∑
k=−N

ckxSk(x). (1.24)

It is worth pointing out that the approximate solution yN (x) satisfies the initial conditions in Eq.
(1.20), since

lim
x→0

zN (x) = lim
x→0

z′N (x) = 0. (1.25)

The 2N + 1 coefficients, {ck}Nk=−N and the unknown θ are determined by substituting yN (x) into
Eq. (1.19) and evaluating the result at the sinc collocation points:

xj = ln(ejh +
√
e2jh + 1) , j = −N − 1, . . . , N. (1.26)

Obviously by using Eqs. (1.12) and (1.23) we have

yN (xj) = cjxj + q(xj), j = −N − 1, . . . , N, (1.27)

where we used c−N−1 = 0. To compute y′N (xj), we first differentiate Eq. (1.21) as

d

dx
[xSk(x)] = Sk(x) + xϕ′(x)

d

dϕ
[S(k, h) ◦ ϕ(x)] . (1.28)

Now, using Eqs. (1.12), (1.13), (1.23) and (1.28) we obtain

y′N (xj) =

N∑
k=−N

ck

{
δ

(0)
kj +

1

h
xjϕ

′(xj)δ
(1)
kj

}
+ q′(xj), j = −N − 1, . . . , N. (1.29)

Lemma 1. Let ξi andwi be the nodes and the corresponding weights of the Gauss-Jacobi quadrature formula
given in Eq. (1.14), respectively. Also, let 1 < γ < 2 and xj be sinc collocation points given in Eq. (1.26).
Then the following relation holds:

Dγ(xSk(x))|x=xj
≈

(
xj
2 )2−γ

Γ(2− γ)

m∑
i=1

ω
(1−γ,0)
i

{
2S

(1)
k (x̂j,i) + x̂j,iS

(2)
k (x̂j,i)

}
, (1.30)

where, x̂j,i =
xj
2 (1 + ξ

(1−γ,0)
i ).

Proof. Using (1.5), it follows that

Dγ(xSk(x))|x=xj
=

1

Γ(2− γ)

∫ xj

0

(xj − t)1−γ{2S(1)
k (t) + tS

(2)
k (t)}dt. (1.31)

Now, we employ the Gauss-Jacobi quadrature rule to approximate the integral in the right-hand
side of Eq. (1.31). First, the affine transformation τ = 2

xj
t− 1 is used to change the t-interval [0, xj ]

into τ - interval [−1, 1]. The following form can be obtained

Dγ(xSk(x))|x=xj
=

(
xj
2 )2−γ

Γ(2− γ)

∫ 1

−1

(1− τ)
1−γ

{
2S

(1)
k

(xj
2

(1 + τ)
)
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+
(xj

2
(1 + τ)

)
S

(2)
k

(xj
2

(1 + τ)
)}

dτ.

Employing the m-point Gauss-Jacobi quadrature rule (1.14), with parameters λ = 1−γ and µ = 0,
the proof is clear. 2

In the following theorem we approximate the fractional derivative of yN (xj).
Theorem 2. For, 1 < γ < 2 the following relation holds:

Dγ(yN (x))|x=xj
≈

N∑
k=−N

ckδ
(γ)
kj +

2θ

Γ(3− γ)
x2−γ
j , (1.32)

where δ(γ)
kj is given by

δ
(γ)
kj =

(
xj
2 )2−γ

Γ(2− γ)

m∑
i=1

ω
(1−γ,0)
i

{
2S

(1)
k (x̂j,i) + x̂j,iS

(2)
k (x̂j,i)

}
.

Proof. Since the Liouville-Caputo’s fractional differentiation is a linear operation we have

Dγ(yN (x)) =

N∑
k=−N

ckD
γ(xSk(x)) +Dγ(q(x)). (1.33)

Also, using Eqs. (1.7) and (1.22) we get

Dγ(q(x)) =
2θ

Γ(3− γ)
x2−γ . (1.34)

A combination of Lemma 1 and Eqs. (1.33), (1.34) leads to the desired result. 2

We are now ready to solve problem (1.19)-(1.20). Substituting Eqs. (1.27), (1.29) and (1.32) in Eq.
(1.19) we obtain

κDβ+1y(xj) = y′(xj)− (y′(xj))
2 − y′(xj)y(xj), j = −N − 1, . . . , N. (1.35)

The 2N + 2 nonlinear algebraic equations (1.35) can be solved for the unknown coefficients ck and
θ by using the an iterative method. Consequently, yN (x) given in Eq. (1.23) can be calculated.
Throughout this paper, we use the Maple’s fsolve command with the initial approximation (ck =
0.5, k = −N, · · · , N, and θ = 0.5) to find unknown coefficients ck and θ from the nonlinear system
(1.35).

4 Numerical results and discussion
This section is devoted to computational results. We applied the method presented in this paper
for solving the fractional Volterra’s population model (1.3) with u0 = 0.1. Throughout this section,
we choose α = 1 and d = π/2 which leads to h = π/

√
2N . Also, the number of Gauss-Jacobi

points is set to be m = 15.
The obtained solution of Eq. (1.3) for β = 0.5, 0.75 and 0.99 for different values of κ are shown

in Figures 1-3, respectively. From these figures, it is clear that the maximum of u(t) decreases as
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FIGURE 1. Resulting graphs of u(t), for β = 0.5 with N = 30.

κ increases. This tendency is similar to that observed in [26, 24] for the case β = 1. Moreover,
Figures 1-3, show a rapid rise along the logistic curve and then a fast exponential decay to zero
for small values of κ. We also present the behavior of the solution of Eq. (1.3) for κ = 0.2 and
β = 0.6, 0.7, 0.8, 0.9 and 0.99 in Figure 4. According to Figure 4, we find that the solution falls
slowly when the the value of β increases. Figures 1-4 show a very good agreement between the
results obtained by the present method and those obtained by Maleki et al. [17], Parand et al. [25]
and Momani et al. [20]. In addition, for the purpose of comparison in Table 1, we report the values
of u(t) for κ = 2.5 and β = 0.5, 0.75, 0.9 together with the results given in [25]. Results show that
the methods are in a good agreement with each other. Finally, in Tables 2, we give the values of
umax for β = 0.75 and 0.9 with different values of N .

5 Conclusion
In this study, the properties of sinc functions and Gauss-Jacobi quadrature rule are used to reduce
the solution of Volterra’s population model of fractional order to the solution of system of algebraic
equations. The obtained results are shown in different graphs and tables and the ability of sinc-
Gauss-Jacobi collocation method in solving fractional Volterra’s population model is presented.
This method can be easily implemented and is simple. One issue of future work is to develop
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FIGURE 2. Resulting graphs of u(t), for β = 0.75 with N = 30.

TABLE 1. Comparison of the values of u(t) for κ = 2.5 with N = 20.

β = 0.5 β = 0.75 β = 0.9
Present Method Present Method Present Method

t method of [25] method of [25] method of [25]
0.25 0.12354 0.12292 0.11471 0.11458 0.11117 0.11117
0.50 0.13349 0.13344 0.12559 0.12545 0.12141 0.12137
0.75 0.14224 0.14148 0.13528 0.13526 0.13134 0.13142
1.00 0.14929 0.14795 0.14443 0.14434 0.14128 0.14134
1.25 0.15454 0.15320 0.15297 0.15275 0.15117 0.15108
1.50 0.15847 0.15741 0.16060 0.16050 0.16047 0.16053
1.75 0.16159 0.16070 0.16759 0.16755 0.16941 0.16958
2.00 0.16408 0.16316 0.17404 0.17383 0.17817 0.17811
2.25 0.16583 0.16487 0.17954 0.17931 0.18615 0.18600
2.50 0.16691 0.16590 0.18397 0.18395 0.19298 0.19314
2.75 0.16750 0.16632 0.18773 0.18772 0.19917 0.19940
3.00 0.16759 0.16620 0.19088 0.19060 0.20487 0.20471
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FIGURE 3. Resulting graphs of u(t), for β = 0.99 with N = 30.
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FIGURE 4. Resulting graphs of u(t), for κ = 0.2 with N = 20.
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TABLE 2. Values of umax for κ = 0.2 with different values of N
β N = 15 N = 20 N = 25 N = 30 N = 40

0.75 0.636185 0.636443 0.636468 0.636442 0.636402
0.90 0.648661 0.647911 0.647676 0.647578 0.647579

similar technique to solve some interesting fractional differential equations.
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