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Abstract

In the paper, we define Laguerre-based Hermite-Bernoulli polynomial with its generating func-
tion, and investigate certain properties. From this generating function, we derive summation
formulas and related bilateral series associated with the newly introduced generating function.
Some of whose special cases are also presented. Relevant connections of some results presented
here with those involving simpler known partly unilateral and partly bilateral representations
are also obtained.
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1 Introduction
Throughout of the paper we will make use of the following notations: N := {1, 2, 3, · · · }, N0 =
N ∪ {0} and Z− := {−1,−2,−3, · · · } = Z−\ {0}. Here, as usual, Z denotes the set of integers,
R denotes the set of real numbers and C denotes the set of complex numbers. Let exp (z) be
exponential function given by exp (z) := ez (z ∈ C; |z| < 1).

Let Ln (x) be classical Laguerre polynomials defined by means of the following generating
function:

∞∑
n=0

Ln(x)tn =
1

1− t
exp

(
− xt

1− t

)
(|t| < 1). (1.1)

Based on Eq. (1.1), two variables Laguerre polynomials (2VLP) Ln(x, y) are considered as

Ln(x, y) := ynLn(
x

y
) and Ln (x, 1) := Ln (x) (1.2)

representing 2VLP is the same with classical Laguerre polynomials. So, by Eq. (1.2), one can see

∞∑
n=0

Ln(x, y)
tn

n!
= exp(yt)J0(2

√
xt) (1.3)
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where J0(x) denotes the 0th order Bessel function, and nth order Bessel function Jn (x) are given
by the series (see [4],[17],[18]):

x
n
2 Jn

(
2
√
x
)

=

∞∑
n=0

(−1)rxr

r!(n+ r)!
(n ∈ N0). (1.4)

The 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) Hn(x, y) are known in [2, 4]
as

Hn(x, y)

n!
=

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
and

∞∑
n=0

Hn(x, y)
tn

n!
= ext+yt

2

. (1.5)

It is easy to see that Hn(2x,−1) = Hn(x) that stands for classical Hermite polynomials, cf. [2].

In [17, 18], the generating function of the 3-variable Laguerre-Hermite polynomials (3VLHP)
LHn(x, y, z) is given by

∞∑
n=0

LHn(x, y, z)
tn

n!
= exp(yt+ zt2)J0(2

√
xt). (1.6)

The generalized Bernoulli B(α)
n (x), Euler E(α)

n (x) and Genocchi G(α)
n (x) polynomials are also

defined by means of the following generating functions(
t

et − 1

)α
ext =

∞∑
n=0

B(α)
n (x)

tn

n!
(|t| < 2π; 1α := 1) ,

(
2

et + 1

)α
ext =

∞∑
n=0

E(α)
n (x)

tn

n!
(|t| < π; 1α := 1)

(1.7)
and (

2t

et + 1

)α
ext =

∞∑
n=0

G(α)
n (x)

tn

n!
(|t| < π; 1α := 1) . (1.8)

Obviously that

B(1)
n (x) = Bn(x), E(1)

n (x) = En(x) and G(1)
n (x) = Gn(x) cf. [3, 6, 10, 11, 12, 14, 17, 18].

Recently, Kurt [9] has introduced and investigated the generalized Bernoulli polynomialsB[α,m−1]
n (x)

(m ∈ N) defined in a suitable neighborhood of t = 0 by means of the following generating func-
tion:

∞∑
n=0

B[α,m−1]
n (x)

tn

n!
=

 tm

et −
m−1∑
h=0

th

h!


α

ext. (1.9)

It is clear that if we take α = 1 in (1.9), it reduces to known result of Natalini and Bernandini [10].
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Let us now recall here an interesting (partly bilateral and partly unilateral) generating function
for L(α)

n (x), due to Exton in [5], in the following form (see Pathan and Yasmeen [13]; Srivastava et
al. [16]):

exp

(
y + z − xz

y

)
=

∞∑
m=−∞

∞∑
n=m∗

L(m)
n (x)

ymzn

(m+ n)!
(1.10)

where m∗ = max{0,−m}with m ∈ Z.

In this paper, we introduce a new class of generalized Laguerre-based Hermite-Bernoulli poly-
nomials LHB[α,m−1]

n (x, y, z) and develop some elementary properties. We also derive the sum-
mation formulae for these generalized polynomials by using different analytical means on their
respective generating functions and related bilateral series associated with the newly-introduced
generating function. Some of whose special cases are also presented. Finally, relevant connections
of some results presented here with those involving simpler known partly unilateral and partly
bilateral representations are indicated.

2 A new class of Laguerre-based Hermite-Bernoulli polynomials
Let us now consider the following generating function of the generalized Laguerre-based Hermite-
Bernoulli polynomials LHB[α,m−1]

n (x, y, z) given by

∞∑
n=0

LHB[α,m−1]
n (x, y, z)

tn

n!
=

 tm

et −
m−1∑
h=0

th

h!


α

J0(2
√
xt)eyt+zt

2

(1.11)

defining in a suitable neighborhood of t = 0.
We readily see from (1.11) that

LHB[α,m−1]
n (x, y, z) =

n∑
k=0

(
n

k

)
B

[m−1]
n−k LHk(x, y, z). (1.12)

In the special cases, Eq. (1.11) contains not only generalized Bernoulli polynomials, but also
generalization of Laguerre-Hermite polynomials.

Remark 2.1. Setting m = 1, z = 0 and y replaced by x in Eq.(1.11), it reduces to known result of
Khan et al. [7].

Remark 2.2. Setting x = 0, y replaced by x, and z replaced by y in Eq.(1.11), it reduces to known
result of Pathan and Khan [14].

Remark 2.3. For m = 1, x = 0, y replaced by x, z replaced by y in Eq.(1.11),one can see that
∞∑
n=0

HB
(α)
n (x, y)

tn

n!
=

(
t

et − 1

)α
ext+yt

2

(1.13)
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which is a generalization of the generating function of Dattoli et al. [4, Eq (1.6), p.386] in the form:

∞∑
n=0

HBn(x, y)
tn

n!
=

(
t

et − 1

)
ext+yt

2

. (1.14)

Let E(α)
n (x, y) be the generalized Hermite-Euler polynomials, and let G(α)

n (x, y) be the general-
ized Hermite-Genocchi polynomials defined by

∞∑
n=0

HE
(α)
n (x, y)

tn

n!
=

(
2

et + 1

)α
ext+yt

2

(|t| < π; 1α := 1) (1.15)

∞∑
n=0

HG
(α)
n (x, y)

tn

n!
=

(
2t

et + 1

)α
ext+yt

2

(|t| < π; 1α := 1). (1.16)

In the case when y = 0 in (1.13), Eqs.(1.15) and (1.16) are generalizations of (1.7) and (1.8).

We now state the following theorem including the connection between Laguerre-Hermite poly-
nomials LHn(x, y, z) and generalized Bernoulli numbers B[α,m−1]

n .

Theorem 2.4. For n ∈ N0, we have

LHn(x, y) =
1

n+ 1

(
LHB

[1,1]
n+1(x, y + 1, z)− LHB[1,1]

n+1(x, y, z)
)

. (1.17)

Proof. Consider Eq.(1.11), we have

eyt+zt
2

C0(xt) =
et − 1

t

(
t

et − 1

)
eyt+zt

2

J0(2
√
xt)

=
1

t

((
t

et − 1

)
e(y+1)t+zt2J0(2

√
xt)−

(
t

et − 1

)
eyt+zt

2

J0(2
√
xt)

)
.

Then, by using the definition of Kampé de Fériet generalization of the Laguerre-Hermite polyno-
mials LHn(x, y) and Laguerre-based Hermite-Bernoulli polynomials LHB

[α,m−1]

n (x, y, z), we get

∞∑
n=0

LHn(x, y, z)
tn

n!
=

∞∑
n=0

1

n+ 1

(
LHB

[1,1]
n+1(x, y + 1, z)− LHB[1,1]

n+1(x, y, z)
) tn
n!
.

Finally, comparing the coefficients of t
n

n! , we arrive at the desired identity given in (1.17). Q.E.D.

Theorem 2.5. For n ∈ N0, we have

LHB
[α+β,m−1]

n (x, y + w, z) =

n∑
k=0

(
n

k

)
B

[α,m−1]
n−k (w)LHB

[β,m−1]
k (x, y, z). (1.18)
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Proof. By Definition (1.11), we have tm

et −
m−1∑
h=0

th

h!


α+β

exp
(
(y + w)t+ zt2

)
J0(2
√
xt) =

∞∑
n=0

LHB[α+β,m−1]
n (x, y + w, z)

tn

n!

=

( ∞∑
n=0

B[α,m−1]
n (w)

tn

n!

)( ∞∑
n=0

LHB
[β,m−1]

n (x, y, z)
tn

n!

)
.

Now replacing n by n− k in the RHS of above equation, and comparing the coefficients of t
n

n! , we
complete the proof. Q.E.D.

Theorem 2.6. For n ∈ N0, we have

LHB[α,m−1]
n (x, y, z) =

n∑
k=0

(
n

k

)
B

[m−1]
n−k LHB

[α−1,m−1]
k (x, y, z). (1.19)

Proof. Using (1.11), we can write

∞∑
n=0

LHB[α,m−1]
n (x, y, z)

tn

n!
=

tm

et −
m−1∑
h=0

th

h!

 tm

et −
m−1∑
h=0

th

h!


α−1

exp(yt+ zt2)J0(2
√
xt)

=

( ∞∑
n=0

B[m−1]
n

tn

n!

)( ∞∑
n=0

LHB[α−1,m−1]
n (x, y, z)

tn

n!

)
.

On replacing n by n − k in the RHS of above equation and comparing the coefficients of tn

n! , we
arrive at the desired result (2.9).

Q.E.D.

3 Summation formulae for Laguerre-based Hermite-Bernoulli polynomials

We now give the interesting summation properties for LHB[α,m−1]
n (x, y, z) by using series ma-

nipulation methods. The obtained results here are corresponding generalization of some known
special polynomial which we stated in this part.

Theorem 3.1. The following summation formula holds true:

LHB
[α,m−1]
q+l (x,w, z) =

q,l∑
n,p=0

(
q

n

)(
l

p

)
(w − y)n+pLHB

[α,m−1]
q+l−n−p(x, y, z) (1.20)

in which we have used
q,l∑

n,p=0
=

q∑
n=0

l∑
p=0

.
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Proof. Replacing t by t + u in (1.11), and then using the formula [15, p. 52 (2)]

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
(1.21)

we see that (t+ u)m

et+u −
m−1∑
h=0

(t+u)h

h!


α

ez(t+u)
2

J0(2
√
x (t+ u)) = e−y(t+u)

∞∑
q,l=0

LHB
[α,m−1]
q+l (x, y, z)

tq

q!

ul

l!
. (1.22)

Replacing y by w in Eq. (1.22), we find

exp((w − y)(t+ u))

∞∑
q,l=0

LHB
[α,m−1]
q+l (x, y, z)

tq

q!

ul

l!
=

∞∑
q,l=0

LHB
[α,m−1]
q+l (x,w, z)

tq

q!

ul

l!
. (1.23)

Expanding exponential function in Eq.(1.23) gives

∞∑
N=0

[(w − y)(t+ u)]N

N !

∞∑
q,l=0

LHB
[α,m−1]
q+l (x, y, z)

tq

q!

ul

l!
=

∞∑
q,l=0

LHB
[α,m−1]
q+l (x,w, z)

tq

q!

ul

l!
(1.24)

which on using formula (1.21) in the first summation on the LHS becomes

∞∑
n,p=0

(w − y)n+ptnup

n!p!

∞∑
q,l=0

LHB
[α,m−1]
q+l (x, y, z)

tq

q!

ul

l!
=

∞∑
q,l=0

LHB
[α,m−1]
q+l (x,w, z)

tq

q!

ul

l!
. (1.25)

Now replacing q by q − n, l by l − p and using the lemma ([15, p.100 (1)])

∞∑
k=0

∞∑
n=0

A(n, k) =

∞∑
k=0

k∑
n=0

A(n, k − n) (1.26)

in the LHS of (1.25), we derive

∞∑
q,l=0

q,l∑
n,p=0

(w − y)n+p

n!p!
LHB

[α,m−1]
q+l−n−p(x, y, z)

tq

(q − n)!

ul

(l − p)!

=

∞∑
q,l=0

LHB
[α,m−1]
q+l (x,w, z)

tq

q!

ul

l!
. (1.27)

Finally, on equating the coefficients of the like powers of tq and ul in the above equation, we
complete the proof. Q.E.D.

Taking l = 0 in assertion (1.20), we have the following corollary.
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Corollary 3.2.

LHB[α,m−1]
q (x,w, z) =

q∑
n=0

(
q

n

)
(w − y)nLHB

[α,m−1]
q−n (x, y, z). (1.28)

The following theorem is the product of two Laguerre-based Hermite-Bernoulli polynomials.

Theorem 3.3. For n ∈ N0 and s ∈ N0, we have

LHB[α,m−1]
n (x,w, u)LHB[α,m−1]

s (X,W,U) (1.29)

=

n,s∑
r,k=0

(
n

r

)(
s

k

)
Hr(w − y, u− z)Hk(W − Y, U − Z)LHB

[α,m−1]
n−r (x, y, z)LHB

[α,m−1]
s−k (X,Y, Z).

Proof. Consider the product of two Laguerre-based Hermite-Bernoulli polynomials (1.11) in the
following form: tm

et −
m−1∑
h=0

th

h!


α

exp(yt+ zt2)J0(2
√
xt)

 Tm

eT −
m−1∑
h=0

Th

h!


α

exp(Y T + ZT 2)J0(2
√
XT )

=

( ∞∑
n=0

LHB[α,m−1]
n (x, y, z)

tn

n!

)( ∞∑
s=0

LHB[α,m−1]
s (X,Y, Z)

T s

s!

)
. (1.30)

Replacing y by w, z by u, Y by W and Z by U in (1.30), we find

∞∑
n=0

∞∑
s=0

LHB[α,m−1]
n (x,w, u)LHB[α,m−1]

s (X,W,U)
tn

n!

T s

s!

= exp((w − y)t+ (u− z)t2) exp((W − Y )T + (U − Z)T 2)

×
∞∑
n=0

∞∑
s=0

LHB[α,m−1]
n (x, y, z)LHB[α,m−1]

s (X,Y, Z)
tn

n!

T s

s!
,

which on using the generating function (1.26) in the exponential on the RHS, it becomes

∞∑
n=0

∞∑
s=0

LHB[α,m−1]
n (x,w, u)LHB[α,m−1]

s (X,W,U)
tn

n!

T s

s!

=

∞∑
n,r=0

∞∑
s,k=0

Hr(w − y, u− z)LHB[α,m−1]
n (x, y, z)

tn+r

n!r!
Hk(W − Y, U − Z)LHB[α,m−1]

s (X,Y, Z)
T s+k

s!k!
.

Finally, replacing n by n− r and s by s− k , and matching the coefficients of like powers of tn and
T s, our assertion follows. Q.E.D.

Changing u to z and U to Z in Eq. (1.29), we have the following corollary.
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Corollary 3.4. We have

LHB[α,m−1]
n (x,w, z)LHB[α,m−1]

s (X,W,Z) =

n,s∑
r,k=0

(
n

r

)(
s

k

)
(w − y)rLHB

[α,m−1]
n−r (x, y, z)

×(W − Y )kLHB
[α,m−1]
s−k (X,Y, Z). (1.31)

Now also, we have the following summation formula for LHB[α,m−1]
n (z, w, y).

Theorem 3.5. For, we have

LHB
[α,m−1]
k+l (z, w, y) =

k,l∑
n,p=0

(
k

n

)(
l

p

)
H

B
[α,m−1]
l+k−n−p(x, y)qLn+r(w, z − x).

Proof. The following identity is derived in [14]

HB
[α,m−1]
k+l (z, y) =

k,l∑
n,p=0

(
k

n

)(
l

p

)
(z − x)n+pHB

[α,m−1]
l+k−n−p(x, y). (1.32)

Based on this identity, and applying exp
(
D−1w

δq

δzq

)
to both sides of Eq.(1.32), we have

exp

(
D−1w

δq

δzq

)
HB

[α,m−1]
k+l (z, y) (1.33)

=

k,l∑
n,p=0

(
k

n

)(
l

p

)
H

B
[α,m−1]
l+k−n−p(x, y) exp

(
D−1w

δq

δzq

)
(z − x)n+p.

Using the operational definitions (see [8]) in the LHS and RHS of Eq.(1.33) completes the proof.
Q.E.D.

4 Generating functions for the Laguerre-based Hermite-Bernoulli
polynomials involving bilateral series

Set

V (α,m)(x, y, z, w; s, t) =

 tm

et −
m−1∑
h=0

th

h!


α

es−
wt
s +yt+zt2J0(2

√
xt). (1.34)

Expanding exp(s− wt
s ) in the series form, and then by using (1.11), we get

V (α,m) =

∞∑
M=0

sM

M !

∞∑
K=0

(
−wt
s

)K
1

K!

∞∑
N=0

LHB
[α,m−1]
N (x, y, z)

tN

N !
. (1.35)

Upon replacing the summation indices M and N in (1.35) by K + N = n and M − K = m,
respectively, rearranging the summation series gives

V (α,m) =

∞∑
m=−∞

∞∑
n=m∗

smtn
n∑

K=0

(−w)K

K!(m+K)!(n−K)!
LHB

[α,m−1]
n−K (x, y, z) (1.36)
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which can be justified by absolute convergence of the series involved. From here, we have

es−
wt
s +yt+zt2C0(xt) =

∞∑
m=−∞

∞∑
n=m∗

smtn
n∑

K=0

(−w)K

K!(m+K)!(n−K)!
LHn−K(x, y, z). (1.37)

Now we list some special cases of the result (1.36) as follows.
(i) Setting x = 0, y = 1 and using Ln(0, 1) = 1 reduces to tm

et −
m−1∑
h=0

th

h!


α

es−
wt
s +zt2

=

∞∑
m=−∞

∞∑
n=m∗

smtn
n∑

K=0

(−w)K

K!(m+K)!(n−K)!
BHL

[α,m−1]
n−K (0, 1, z).

(ii) Taking s = t = w
2 , α = x = 0 and y = 1 becomes

ew
2z/4 =

∞∑
m=−∞

∞∑
n=m∗

(
w

2
)m+n

n∑
K=0

(−w)K

K!(m+K)!(n−K)!
LHB

[α,m−1]
n−K (0, 1, z).

(iii) Substituting s = t = w
2 , x = 1 and α = y = 0, z = 2

w in (1.21), we get a new representation
of Bessel Function J0(2

√
x).

J0(2

√
2

w
) =

∞∑
m=−∞

∞∑
n=m∗

(
w

2
)m+n

n∑
K=0

(−w)K

K!(m+K)!(n−K)!
LHB

[α,m−1]
n−K (1, 0,

2

w
).

(iv) Choosing m = 1, x = 1 and y = 0, we obtain

(
t

et − 1

)α
es−

wt
s +zt2J0

(
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(v) Letting α = m = 1 and y = 0, we see
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∞∑
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n∑
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(−w)K

K!(m+K)!(n−K)!
LHBn−K(1, 0, z).
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5 Concluding Remarks
In the paper, we have established the generating functions for the Laguerre-based Hermite-

Bernoulli polynomials involving 0th order Bessel function and the generating function of Laguerre
polynomials. The equivalent forms of these generating functions can be derived by using Equa-
tions (1.6) and (1.9). We have also used the concepts and the formalism associated with Laguerre
polynomials in order to derive the Laguerre-based Hermite-Bernoulli polynomials and established
their properties.
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