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Abstract

In this paper, we modify the Cauchy additive functional equation and find all solutions of this
new functional equation. Then, we study generalized Ulam-Hyers stability of such functional
equation in various Banach spaces via Hyers” method.
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1 Introduction

During the last two decades, several stability problems of a large variety of functional equations in
miscellaneous spaces have been extensively studied and generalized by a number of mathemati-
cian. The problem that for the first time was proposed by Ulam [23] in 1940 as follows: When is
it true that by slightly changing the hypotheses of a theorem one can still assert that the thesis of
the theorem remains true or approximately true? In the next year, Hyers [13] solved this stability
problem for additive mappings subject to the Hyers’ condition

If(x+y) = fz) - fy)l <6

on approximately additive mappings f : X — Y for a fixed § > 0 and all z,y € X where X
is a real normed space and Y a real Banach space. In 1950, Aoki [1] generalized the Hyers the-
orem for additive mappings. In 1978, Th. M. Rassias [20] provided a generalized version of the
Hyers theorem which permitted the Cauchy difference to become unbounded. By regarding a
large influence of Ulam, Hyers and Rassias on the investigation of stability problems of functional
equations the stability phenomenon that was introduced and proved by Rassias [20] is called the
Hyers-Ulam-Rassias stability. Some results regarding to the stability of various forms of the mis-
cellaneous functional equations have been investigated by a number of authors. In fact, the gener-
alized Ulam-Hyers stability problems for functional equations have been broadly investigated by
these chronological [2, 3} 4,5, 6} 7, 18, 12} 14} 19} [22] backgrounds.
The mass renowned functional equation is the Cauchy additive functional equation

flx+y) = f@)+ f(y) (1.1)
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In this paper, the authors write the general solution and generalized Ulam-Hyers stability of a
additive functional equation
flun +ug) + f (ug +ug) + -+ f (un—1 + un)
= f(u1) +2f (ug) + -+ 2f (un—1) + f (un) (12)

where n is a positive integer with n > 1 in various Banach spaces via Hyers” method.

2 Stability Results : Banach Space

We firstly investigate the general solution of the additive functional equation (1.2). To find general
solution, assume A4; and A, are real vector spaces.

Theorem 2.1. If f : A; — A, is a function fulfilling the functional equation forallz,y € A,
if and only if f is a function agreeable the functional equation for all uq,us, -+ ,u, € Ay.

Proof. Assume that f : Ay — Aj satisfies the functional equation (1.1). Putting = y = 0 in (LI,
we have f(0) = 0. Substituting (z,y) by (u1,u2),(u2, u3),(us, ua), -+, (Un—2,Un—1),(Un—1, Uy) In
(1.1), respectively, we get

flur +uz) = f(ur) + f(uz)
flug +uz) = f(uz) + f(us)
fluz +ug) = f(us) + f(ua)

f(un—l + Un) = f(un—l) + f(un)

for all ui,us,- - ,un € A;. Adding all the preceding equations, we arrive the equation (1.2).
Conversely, suppose that f : A1 — A, satisfies the functional equation foralluy,us, -+ ,u, €

A;. Replacing all u; by zero in (1.2), we get f(0) = 0. This implies that by interchanging

(uy,ug,uz - ,uy,)into (x,y,0,--- ,0), one can obtain the desired result. Q.E.D.

Here and subsequently, for notational convenience, for a mapping f : A — B, we define

S(ur, - un) i=f (ur +ug) + f (ug +uz) + -+ f (up_1 +up)
— [f (1) +2f (u2) + -+ 2f (un—1) + f (un)]
forall uy,--- ,u, € A.
n—times

—_—~
Throughout this paper, for a vector space A, we denote A x A x ... x A by A". In this sec-
tion, we establish the generalized Ulam-Hyers stability of the additive functional equation (1.2) in
Banach spaces. For this, we assume A is normed space and B is a Banach space.

Theorem 2.2. Let j € {1,—1}. Let f : A — B be a mapping satisfying the functional inequality

HS(U1,~~ Jun)|| < O0(ur, -, up) (2.1)
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where § : A" — [0, c0) is a function such that
§(2Miyq, -, 2Miy,
i O 2 ) 2.2)
m—oo 2mg
for all uj,--- ,u, € A. Then, there exists a unique additive function A : A — B satisfying the
functional equation and the inequality
1 = A (290)
for all u € A, where A (29u) and A(u) are defined as
A(29u) =6 (2%, ce ,2%) (2.4)
—_————
n—times
and ( ) )
o f(2mu
forallu € A.
Proof. We bring the proof for the case j = 1 completely. Replacing (uy,--- ,uy) by (u,--- ,u) in
(2.1), we get
I(n = 1) f(2u) = 2(n = Df ()] < 6w, - ,u) (2.6)
for all u € A. Define A(u) = 6(u, - - - ,u) and it follows from (2.6), we have
f (2u) Au)
_ < .
1289 — s < 5o @)
for all u € A. Setting u by 2u and multiply by 2 in (2.7), we arrive at
22
f( QU) _f@y) ARy 2.8)
2 2 An—1)
for all u € A. Applying the triangle inequality it follows from (2.7) and (2.8) that
[ (2%u) 1 A(2u)
H o — )| € g A + =5 29)
for all u € A. Generalizing, for any positive integer m, one can reach
f(2mu) Ay
H o — T < 2 n—l Z (2.10)
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for all u € A. Thus, the sequence {£ (QM”)} is a Cauchy sequence B. Indeed, replacing u by 2"u

and divided by 2" in (2.10) and using (2.2), we find

fE™ ) fRM)| 1
2m+n 2n - Qn

m—+n
f(22m u) _ f(2nu)
1 A (2
S ST &

i=0
- 0 as n — o (2.11)

for all v € A. Since B is complete, there exists a mapping A : A — B such that

B . f (2m l‘)

Aw) = fim £
for all u € A. Letting m tends to infinity in @2.10), we arrive for all u € A. Replacing
(u1,--+ ,up) by (2™uy,- -+ ,2™u,) and divided by 2™ in (2.1), using the definition of A(u) and
letting m tends to infinity, we see that A satisfies the additive functional equation for all

uy,- - ,u, € A To prove A(u) is unique, let A’ be another additive functional equation satisfying
and such that
A 2” AI 271

for all u € A. Now, we have
1
[A(u) — A (u)|| = o 1A(2%0) = A (2"u)|

2% {IIA@2"u) = f2"u)[l + (| f(2"u) — A (2"u)|}
1 < A (2"+iu)
= (n—1) Z onti

IN

- 0 as n — o

for all w € A. Thus A(u) is unique. Setting u by 4 in 2.7), we get

Jrea 21 (3] < n‘_% e
for all u € A. Substituting u by § and multiply by 2 in (2.12), we obtain
s () -2 () < 5 @
for all u € A. The relations and 1mp1y that
=2 ()] < oy [2 (5) +22 ()] @14

for all u € A. The rest of the proof is similar to that of case j = 1. This finishes the proof. Q.E.D.
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The following corollary is a direct consequence of some stabilities for the functional equation

(1.2).
Corollary 2.3. Let f : A — B be a mapping fulfilling the inequality

| £ (b w2) + f () + e f (e + )

1F () + 20 (1) -+ 2f (1) + f ()]

I{ﬂ

n
52%21 [l
K’Hi:l g | [

< ¢ e ™ + T (w7 (2.15)
n e
“Z}‘L:1 [[wi _
I{Hi:r} g |77 B .
K {Zi:l ] Tis v 4 | H“zH%}
where k,7,7;(t = 1,--- ,n) > 0 and for all uq,---,u, € A. Then there exists a unique additive

function A : A — B satisfying the functional equation and

KR
n—1|’
kn|ul[Y
1
(n—lf\2—27" v #
el ful[™
m—1)2—2m| 1
(n—1)|2 — 2|’ ny #
At Dlfull™ =y
If(w) —A@w)| << (n—1)2—2m] -
Al ,
Zm7 72(121’7,”)#1
=1 o~
f<;n||u|\ i=1 i N
(n—1)[2 — 2Xi=1 7|’ 2 i #F 1
k(n+ 1)|[u][ == .
(TL - 1)‘2 — 22?:1 i’ Zi=1 Vi # 13

forall u € A.
Proof. Consider

K’

“Z?:1 il |

”H?:l || [Y

S(u, - yun) = Ry | [™ 4TI [l 7}
Koy [

W IT, e
K {Z?:l ] Tis v 4 H?:1 HUzH%}

where k,7,7;(i =1,--+ ,n) > 0and forall uy,- - - ,u,, € Ain Theorem[.2] Q.E.D.

Vi
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3 Stability Results: 2-Banach Space and Quasi 2-Banach space

In this section, we examine the generalized Ulam-Hyers stability of the additive functional equa-
tion in 2-Banach Spaces and quasi 2-Banach spaces. The concept of linear 2-normed spaces
has been investigated by S. Gahler [10] in 1964 and has been developed extensively in different
subjects by many authors. In the 1960, S. Gahler [9] (10, [11] and A. White [24, 25] introduced the
concept of 2-Banach spaces; see also [17]. One of the axioms of the 2-norm is the parallelepiped
inequality, which is actually a fundamental one in the theory of 2-normed spaces. C. Park replaced
precisely this inequality (analogously as in the normed spaces) with a new condition, which ac-
tually means that he gave the following definition for quasi 2-normed space. In order to define
completeness, the concepts of Cauchy sequences and convergence are required.

Definition 3.1. Let X be a linear space of dimension greater than 1. Suppose ||(e,®)|| is a real-
valued function on X x X satisfying the following conditions:

(2N1) ||(z,y)|| = 0if and only if , y are linearly dependent vectors,
@N2) [[(z,y)ll = l[(y, 2)] forall z,y € X,
(2N3) |(Az,y)|| = [Al|(z,y)| forall A € Rand forall z,y € X,

(

(2N4) [[(z +y, 2)[| < [z, 2)[| + [|(y, 2)| for all z, y, z € X.
Then ||(e, e)]| is called a 2-norm on X and the pair (X, ||(e, ®)||) is called 2-normed linear space.

Definition 3.2. A sequence {z,,} in a linear 2-normed space X is called a Cauchy sequence if there
are two points y, z € X such that y and z are linearly independent,

lm ||(z; — 2m,y)|| =0 and lim ||(z; — zm, 2)|| = 0.
l,m—o0 l,m—o0

A sequence {z, } in a linear 2-normed space X is called a convergent sequence if there is an z, w €
X such that

Jim (@ — 2, w)] =0

forally € X . If {x,,} converges to z, write z,, — x as n — oo and call z the limit of {x,,}. In this
case, we also write lim,,_,o #,, = . A linear 2-normed space in which every Cauchy sequence is a
convergent sequence is called a 2-Banach space.

Definition 3.3. Let X be a linear space of dimension greater than or equal to 2 . Suppose ||(e, o)]]|
is a real-valued function on X x X satisfying the following conditions:

(Q2N1) ||(z,y)|| = 0if and only if z, y are linearly dependent vectors,

(@N2) [[(z,y)|| = ||(y )| forall z,y € X,

(Q2N3) ||(Az,y)|| = |All|(z,y)|| forall A € Rand forall z,y € X,

(Q2N4) Tt exists a constant K > 1 such that ||(z + v, 2)|| < K(||(z, 2)|| + ||(y, 2)||) for all z,y, z € X.

Then ||(e, ®)|| is called a quasi 2-norm on X and the pair (X, ||(e,)||) is called quasi 2-normed
linear space. The smallest possible number K such that it satisfies the condition (Q2N4) is called
a modulus of concavity of the quasi 2-norm || (e, ®)||.
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Sometimes the condition (Q2N4) called the triangle inequality. Further, M. Kir and M. Acikgoz
[16] gave few examples of trivial quasi 2-normed spaces and consider the question about com-
pleting the quasi 2-normed space. A quasi 2-normed space in which every Cauchy sequence is a
convergent sequence is called a quasi 2-Banach space.

Theorem 3.4. Let . Abe a2-normed space and B be a 2-Banach space. Let f : A — B be a mapping
satisfying the functional inequality

| wn),0)| €S2, ) (3.1)

where d5 : A" — [0, 00) is a function such that

39 (2, - -+ 2™y,

i 272 un) (3.2)

m—oo 2mJ
for all uy,---,u, € Aand all v € B. Then, there exists a unique additive mapping A : 4 — B
satisfying the functional equation and the inequality

1 > AQ (Ziju)
_ < [ S .
I~ A0 < g 32 =0 (63)

forallu € Aand all v € B, where j € {—1,+1} and A, (29u), A(u) are defined as

Ay (29u) = 6, (wu ,2%) (3.4)
~—_————
n—times
and ( ) )
o (2™
Au) = Tim =5 (3:5)

forallu € Aand all v € B.

Proof. Replacing (u1, -+ ,uy) by (u,--- ,u)in (3.1), we get

1((n = 1) f(2u) = 2(n = 1) f(u),v)[| < 02(u, - ,u) (3.6)
forall u € Aand all v € B. Define As(u) = d3(u, - - - ,u). It follows from (3.6), we have
f(2u 2(u)
(75 -] =525 6

forall u € Aand all v € B. Setting u by 2u and multiply by 2 in (3.7), we arrive

g2 2

4(n—1)
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forall u € Aand all v € B. With the use of triangle inequality it follows from and , we

obtain
f(2%u) 1 Ay (2u)
— < i .
for all u € A and all v € B. Generalizing, for any positive integer m, one can reach
f2mu) N~ A2 (2
H( 2m flu *2n—1 ; (3.10)

for all w € A and all v € B. The remaining part of the proof is similar to that of Theorem
Hence, the proof is complete. Q.E.D.

Corollary 3.5. Let f : A — B be a mapping fulfilling the inequality

e o)

K“?

S (I

w1 (s, )

AT sy )™+ T 11, )7 (3.11)
w3 Il el

W T sl [ o]

w3 ][ o)

where x,7,7;(i = 1,--- ,n) > 0, forall uy,--- ,u, € Aand all v € B. Then, there exists a unique
additive function A : A — B satisfying the functional equation and

IN

Yi

oll==0 + T s

K
n—1]’
k|| (u, v)||7
m—-1D2=2v 1
(n—1)2—-27 v #
K[ (u, v)[|™
n—1]2=2m| 1
(n—1)2-2v| ny #
k(n + 1) (u, v)[|™ oyt 1
I(f(u) — Au),v)|| < (n=1DJ2— 27| 612
K] |o] ,
Zm7 ’yi(Z:17...7n)7é1
a5
| u|| 2= || | X1 .
(n—1)|2 — 22w Y1 Vi F 1
(n+ 1)||U||Zq 17 ’UHZl 17 Zn 4 7& X
(n —1)[2 — 2271 7| v 2ui=1 i 7 b

forallu e Aand allv € B.
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In analogy with Theorem we have the following theorem for the stability of functional
equation (1.2) in a quasi 2-normed space. Since, its proof is similar to the proof of Theorem 3.4, we
omit it.

Theorem 3.6. Let j € {—1,+1} and A be quasi 2-normed space and B be quasi 2-Banach space.
Suppose that f : A — B is a function satisfying the functional inequality

| wn),0)| < 05w, ) (3.13)

where d3 : A" — [0, 00) is a function such that

5s (2™ uy, -+, 2™,
i 2@ 2 (3.14)
m—00 omj
for all uy,--- ,u, € Aand all v € B. Then, there exists a unique additive mapping A : A — B

satisfying the functional equation and the inequality

176~ A < g 3 B 615)

forall u € Aand all v € B, where j = £1. The function Az (2¥u) and A(u) are defined as

Aj (2iju) = {3 (Tju7 e ,2iju) (3.16)
—_———
n—times
and p ( , )
) o9mi,,

forallu € Aand allv € B.

Corollary 3.7. Let f : A — B be a mapping fulfilling the inequality

H(S(uh T aun)’ U)H

R?
ki || (i )]

w1 Ty [[(us, )]

< AL 1ws o)™+ TTZy (1w, )I7} (3.18)
Ky w7 vl e
R Ty il ol
{3l e 8 4 Ty sl )

where k,v,7v;(i=1,---,n) >0, forall us,--- ,u, € Aand all v € B. Then, there exists a mapping
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A : A — B satisfying the functional equation and

Km1g
n—1]"
K™ Ykn||u,v||”
P | R £ B 1
(n—1))2-2]" e
Kmfl ny

Al o] o

(n—1)|2 — 2787|’

K™ V(n +1)|[u, 0[] .

n KmflK/Hu Yi v Yi

P (n—1)2—2v| ~

Km’lnnHuHZ?:l% UHZ?’:l% "y

(n—1)]2 — 22 ’ i1V F

K™ (n 4 1) a2 % o] |2 s s

(n —1)|2 — 22i=1 %] ) i=17i )

forallue Aandallv € B.

4 Stability Results : Quasi-3-2-Banach Space

In this section, we investigate the generalized Ulam-Hyers stability of the additive functional
equation (1.2) in quasi-$-2-Banach spaces.

Definition 4.1. Let X be a linear space of dimension greater than or equal to 2. Suppose ||(e, o)]|
is a real-valued function on X x X satisfying the following conditions:

(QB2N1) ||(x,y)|| = 0if and only if z, y are linearly dependent vectors,
(QB2N2) [|(z,y)l| = |[(y, || forall z,y € X,

(QB2N3) ||(Az,9)|| = |M?||(z,)|| for all A € R and for all x,y € X where 3 is a a real number with
0<p<l1

(QB2N4) It exists a constant K > 1 such that ||(z + v, 2)|| < K(||(z, 2)|| + ||(y, 2)||) for all z,y, z € X.

The pair (X, ||(e, ®)]|) is called quasi-G-normed space if ||(e, ®)|| is a quasi-3-2-norm on X. The
smallest possible K is called the modulus of concavity of || - ||.

Definition 4.2. A quasi-$-2-Banach space is a complete quasi-8-normed space.

Throughout this section, we take A as a quasi-$-2-Banach space and B as a quasi-3-2-Banach
space.

Theorem 4.3. let f : A — B be a mapping satisfying the functional inequality

”(S(ulv 7“”)7v)|| < 64(u17"' vun) (41)
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where 0, : A" — [0, o) be a function such that
5y (2, - 2™y,
i ST 2 ) 4.2)
m—00 2mJ
for all uy,--- ,u, € Aand all v € B. Then, there exists a unique mapping A : A — B satisfying

the functional equation and the inequality

> A4 2”u

() = A, o >||_2Mf15 Z Ba (20) @3)

forallu € Aand all v € B, where j € {—1,+1} and A4 (2iju), A(u) are defined as

Ay (29u) =64 (wu ,2%) (4.4)
—_———
n—times
and ( _ )
o (2™
forallu € Aand all v € B.
Proof. Interchanging (uq, - - ,uy,) into (u,--- ,u) in (4.1), we get
1((n = 1)f(2u) = 2(n = 1) f(u),v)|| < da(u,- - ,u) (4.6)
for all u € A and all v € B. Consider Ay (u) = -, u), and so the relation (@.6) implies that
f(2u)
(75 )H-ml “
for all u € A and all v € B. Substituting u by 2u and multiply by 2 in (.7), we arrive at
f(2%u) Ay (2u)
4.
H( 22 S 2 m_1)P (48)
for all w € A and all v € B. With the use of triangle inequality it follows from @ and , we
obtain
TCY) _ puo )| < gres [ty + 242 49)
92 WHUNIE= 9B —1)p | T4 2 ‘

for all u € A and all v € B. Repeating this way, for any positive integer m, one can reach
A4 21

H(f<2 >H—25 n—1)8 Z (4.10)

forallu € Aandallv € B. Similar the rest of the proof Theorem[2.2] we can finish the proof. Q..p.
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Corollary 4.4. Let f : A — B be a mapping fulfilling the inequality

K,
ki l(u, 0)|[Y

kI Ty [(ui, )]

sy un) o)l < 4w L0 (1w )™ + T ([ (i o)1) (4.11)
eSS o]
Wl el effol
R Ay [l | == ol |2=i=07 4+ T [fus] o]0}
where k,7v,7 (¢ =1,--- ,n) >0, for all uq,--- ,u, € Aand all v € B. Then, there exists a unique

mapping A : A — B satisfying the functional equation and

1(f () = Aw), )] <

forallue Aandallv € B.

Km1lg

28(n —1)8n — 1|’

2K™ Ykn||u, v||Y

p e o
P o

2 (n = 172 — 9P| nBy # 1 4.12)
n m—1 Vi || [

i=1

2K ™ L pon||u]| 2= v

|| Xi=1 v

26(n —1)P|2 — 221;‘:1 i
2K {4 1) [u[ = o

Z;’L:l Yi n
5 Zi:l ﬁ’YZ 7& 17

26 (n —1)B|2 — 2231 A

5 Stability Results : Fuzzy Quasi-/-2-Banach Space
5.1 Definitions And Notations

Definition 5.1. Let X be a linear space of dimension greater than or equal to 2. A function N :
X x X xR —[0,1] is said to be a fuzzy quasi-3-2-norm on X if for all z,y, 2z € X and all s,t € R,
(2QBFN1) N(z,z,c¢) =0forc < 0;

(2QBEN2) z =0if and only if N(z,z,¢) =1forall ¢ > 0;

(2OBEN3) N(cz,z,t) =N (x, z, ﬁ) if ¢ # 0 where (3 is a a real number with 0 < 5 < 1
(2OBFN4) N(xz+vy,z,s+1t) > min{N(x,z,Ks), N(y,z, Kt)};a constant K > 1

(2QBEN5)  N(z, z, -) is a non-decreasing function on R and lim; . N (2, , z,t) = 1;

(2QBENG6)  for z # 0, N(z, z, -) is (upper semi) continuous on R.

The pair (X, X, N) is called a fuzzy quasi-3-2-Banach space.
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Example 5.2. Let X be a linear space. Then
t>0, x,z€X,

N (z,z,t) = t4+ )’
0, t<0, z,z€ X

is a fuzzy quasi-3-2-normed space on X.

Example 5.3. Let X be a linear space. Then
0, t<0,

N (z,2,t) = 0<t<|z|,z€eX

t
[
1, t>fel,zeX
is a fuzzy quasi-3-2-normed space on X.

Definition 5.4. Let X be a fuzzy quasi-#-2-normed space. Let x,, be a sequence in X. Then z,, is
said to be convergent if there exists z, z € X such that lim N(z, —x,z,t) = 1forall¢ > 0. In that

n—roo
case, z is called the limit of the sequence z,, and we denote itby N — lim x,, = z. A sequence z,,
n—oo

in X is called Cauchy if for each ¢ > 0 and each ¢ > 0 there exists ny such that for all n > ny and all
p > 0, wehave N(2,4p, — 2y, 2,t) > 1 —¢. Every convergent sequence in a fuzzy quasi-/3-2-normed
space is Cauchy. If each Cauchy sequence is convergent, then the 2- norm is said to be complete
and the fuzzy quasi-#-2-normed space is called a fuzzy quasi-$-2-Banach space.

5.2 Stability Results

Here, we study the generalized Ulam-Hyers stability of the additive functional equation (1.2) in
fuzzy quasi-/-2-Banach space. From now on, we guess A is a fuzzy quasi-$-2-normed space and
B is a fuzzy quasi-$-2-Banach space.

Theorem 5.5. Letn € {—1,+1}. Suppose that a mapping f : A — B satisfies the inequality

N((S(u17~-~ ,un)m),r) > N (65(u1, -+, up),v,7) (5.1)

where 05 : A™ — [0, ) is a function such that

n}i_r}noo N’ (65 (2" uq, -+, 2" uy,) v, 2"r) = 1 (5.2)

with the condition
N’ (65 (2"uy, -+, 2"uy) ,v,7) > N (p"05 (w1, ,upn),v,7) (5.3)
forall uq,--- ,un, € Aand allv € B, all r > 0 with 0 < p7 < 2. Then there exists a unique additive

function A : A — B satisfying the functional equation and the inequality

(5.4)

Bln —1)812 — olr
N ((f(w) — Au),v),7) > N’ (As(u),v,K2 (n—1)%|2 — p| )

2
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forallu € Aand all v € B, where Aj5 (1) and A(u) are defined as

As (u) =05 (u, -+ ,u) (5.5)
e Aw) = N — fim L2770 (5.6)
m-—oco  2nNMm ’
forallu € Aand allv € B.
Proof. Case:1 1 = 1. Replacing (u1,--- ,u,) by (u, -+ ,u) in (5.1), we obtain
N (((n = 1)f(2u) = 2(n = D f(u),v),r) = N (05 (u, -+, u),v,7) (5.7)
forallu € Aand all v € B, and all > 0. Setting As(u) = d5(u, - - - ,u) in (5.7), we have
N (((n = 1)f(2u) = 2(n = 1) f(u),v),7) = N' (As(u),v,7) (5.8)
forallu € Aand all v € B, and all » > 0. Using (2QBFNB3) in (5.8), we get
N <<f(§u) — f(u),v) ,7’) > N’ (As(u),v,2°(n — 1)°r) (59)

forallu € Aand all v € B, and all » > 0. Interchanging v into 2™ in (5.9) and applying the
propertty (2QBFN3), (5.3), we obtain

fem™tly)  f(2mu r 28(n —1)8r
v (28 - 18 0) ) = v (st 22 (510)
forallu € Aand all v € B, all 7 > 0. Replacing r by p™?r in (5.10), we have
f(2mtly f(2my PPy
N (( (2m+1 ) N (2m )71} 7 omp >N (A5(u)’v’2ﬂ(n o 1)BT) (5.11)
forallu € Aand allv € B, all » > 0. It is easy to see that
f(2"u) _N S ) f(20)
o — () = ; Ty (5.12)

for all v € A. From equations (5.11) and (5.12), we find
m— i m—1 i i ;
f(2mu) Y W f@H)  f@) \ KpPr
N<<2m_f(u)’v 2 gip | =min U gt i U)o
i=0 i=0

> min O {N' (As(u),v, K 2°(n — 1)°r)}
i=0
> N’ (As(u),v, K 2°(n — 1)°r) (5.13)
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forallu € Aand all v € B, all r > 0. switching u by 2'u in (5.13) and using , (2OBEN3), we
obtain

famtiy f(2lu K 28(n —1)Pr
N < (2m+l ) _ (2l ) ,U, T 2 N/ (A5(U), U) , Tn—l(p(t-‘rl)?ﬁ (514)
= 2(i+1)B

forallu € Aand allv € B,all 7 > 0and all m,l > 0. Since 0 < p < 2and 5 (£)" < oo, the
=0

Cauchy criterion for convergence and (2QBFN5) implies that {L (3::“) } is a Cauchy sequence in B.

Due to the completeness of B, this sequence converges to some point A(u) € B. So one can define
the mapping A(u) : A — Bby

A(u) = N — lim F2"u)

n—oo  2M

for all u € A. Letting [ = 0in (5.14), we get

N ((f(;:u) - f(u),v) ,7“) >N | As(u),v, W (5.15)
1‘;0 2

forallu € Aand all v € B, all r > 0. Letting m — oo in (5.15) and using (20BFN6), we arrive at

K2%(n—1)%(2—p)r
)

N ((F(u) — A(u),v),r) > N’ (A5<u>,v,

forallu € Aand allv € B, all r > 0. To prove A(u) satisfies the (1.2), replacing (u1,-- ,u,) by

(2™uq,- -+ ,2™Muy,) in (5.1), respectively , we obtain
N (f(2’”(ul tup)) @Mzt ug) ST (e + un))
277’L 2m 2"7L
J@Mw) 2CMw) M) [CMw)
2m 2m 2m am 7

> N (852 uy, -+, 2™ uy), v, 2r) (5.16)
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forall uy,--- ,u, € Aand allv € B, all r > 0. Now,
N ((A(up +uz) + A(ug +us) + -+ A(up—1 +up)

A () + 2 () + -+ 2 (1) + A ()] ), 7)
(2™ (ug 4 uz)) J(2™ (ug 4 uz))

:N((A(U1+U2)_ om + A (ug +uz) — S oo A (Uno1 4 up)
@ ) Sy 2
7...72A(u71_1)+% A(un)Jch(zzzt’l),v),r)
Zmin{N( A (ug +ug) — W,U) ,I;nr) , N <<A(U2+U3) - W,v) ,Z) ,
N((_QA(U2)+H(§W’U>7[;1), ...... ,N((—2A(un1)+w2nw,v>,[;:)7
N <<A (un) + ]”(22’7:5571)’1}) ,I;n?"> N (f(2m(12l71n+ us)) n f(2m(12lil+ us)) T f(2m(ug:n1 + up))
f@2™uy)  2f(2™us) 2f(2™up—1)  f(2™u,) Kr
e e ,v,2n> (5.17)

forall uy, -+ ,u, € Aand allv € B, all > 0 Hence, the relations (5.4), (5.16) and (5.17) imply that

N ((A(ur +u2) +A(ug +ug) + -+ A(up—1 +up)
—[A (u1) + 2A (ug) + -+ 4 2A (un—1) + A (un)], v), 1)
> min { N’ (As(u),v, K 2°(n — 1)°r) , N’ (As(u),v, K 2°(n — 1)Pr), -+ N (As(u),v, K 2°(n — 1)P7),
N (As(u),v, K 2°(n — 1)Pr) N (As(u),v, K 2°(n — 1)P7),
(5.18)
forall uy, - ,u, € Aand allv € B, all r > 0. Letting m — oo in and using (5.2), we see that

N((A(ur +u2) +A(ug +ug) + -+ A(up—1+ up)
—[A (u1) +2A (u2) + - 4+ 2A (up—1) + A (up)],v),7) =1 (5.19)

forall uy,--- ,u, € Aand allv € B, all » > 0. Applying (2QBEN2) in (5.19), it gives

A(ur +ug) + A(ug +ug) + -+ A(un—1 +up)
=A(up) +2A (ug) + -+ 2A (up—1) + A (up)

for all wy,---,u, € A. Therefore, A satisfies the additive functional equation (1.2). In order to
prove A(u) is unique, let A’(u) be another additive functional equation satisfying (1.2) and .
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Hence,
A(2™y A' 2My,
V() - M) = 8 (A2 ) )
, A@™u)  f(2mu Kr @) A (2m)
> — i _
_mln{N(( om ) 7 ),N(( om o v,
B _ B(n — 1)\8
N'<A5(2mu), K 2%(n—1)8 ) N’( v,K2 (n—1) r>
2p7”/
28(n —1)#
forallu € Aand all v € B, all » > 0. Since 1111 2/’77” = 00, we obtain
B(n — 1)\8
lim N’ <A5(u),v, K2(n1)r> =1.
m—oo 2[)7”

Thus, N((A(u) — A'(u),v),r) = 1forallx € Aand all » > 0, hence A(u) = A’(u). Therefore A(u) is
unique.
Case:27) = —1. Replacing u by ¥ in , we reach

u , u
N (((n —1f(u)=2(n-1)f (5) ,v) ,r) >N <A5 (5) ,v,r) (5.20)
forallu € Aand all v € BB, and all > 0. Using (2QBFN3) in (5.8), we get
_or (Y ' ¢ _1)8
N((f(u) 2f(2),v),r)ZN (A5(2),v,(n 1) 7‘) (5.21)
forallu € Aand all v € B, and all > 0. The rest of the proof is similar tracing to that of above
case. This completes the proof. Q.E.D.

The following corollary is the immediate consequence of some stabilities for the functional
equation (1.2).

Corollary 5.6. Let f : A — B be a mapping fulfilling the inequality

N (F (42 f (2 4 13) o+ f (ot + )

— [F () +2f () -+ 2f (wn 1) + f (wn)]v,7)

N’ (k,v,1)

D a7, 0,7)

HzT'L:l Hui||7,v7r)

{2y Nl ™ + TIzy Hwl P} v, ) (5.22)
HZ?:l HUiH’Y"',’U,T)
r Ty [l v, )
K

{30 el == + TEL el e} s v,r)

v

N’ (k
N’ (k
N’ (k
N'(
N'(
(

N/

)}
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where k,7,v(t = 1,--- ,n) > 0 and for all uq,---,u, € A. Then there exists a unique additive
function A : A — B satisfying the functional equation and

N’ (k,v,K 2°(n —1)%|n — 1|r)
/(2"{nHu||’yavaK2B(n_1)B|2_p‘7ﬂ)7 5’7751
N’ (2n||u\|"ﬁ7,v,K 28(n —1)P|2 — p\r) , nBy # 1
N (f(u) — A(u),v,r) > N’ 2/§(n—|—1)||u||"'Y,U,K25(n—1)5|2—p|7“)7 nBy # 1
N’ (35 26| [ul |0, K 28 (n — 1)P|2 — plr) Bri #1
N’ (2&n\|u||zv 1%, K 28 (n—1)%12—plr) , Yo By #1
N' (26(n+ Dl[ul| =%, 0, K 25 (n— 12— plr), S, B # 1
(5.23)
forallu € A.
Proof. Setting
H7
R ([l
r Ly [Juil”
ds(ur, -+ yup) = 9 w1y ™ + Ty Hluall "}
Koy w7
HH;L:1 i .
K {Z?:l | i + H?:l | %‘}
where k,v,7;(t =1,--- ,n) > 0and for all uy, - - - ,u, € Ain Theorem (5.5) and taking
20
2/3’77
onbY,
p=1< 2"87, (5.24)
Qﬁ%7
9> i—1 5%‘7
22 2i—1 B,
we arrive the desired result. Q.E.D.
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