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Abstract

The aim of this paper is to discuss the uniqueness of p-adic difference monomials f" f(z+c). The
results obtained in this paper are the p-adic analogues and supplements of the theorems given
by Qi, Yang and Liu [Uniqueness and periodicity of meromorphic functions concerning the dif-
ference operator, Comput. Math. Appl. 60(2010), 1739-1746], Wang, Han and Wen [Uniqueness
theorems on difference monomials of entire functions, Abstract Appl. Anal. 2012(2012), Arti-
cle ID 407351], Yang and Hua [Uniqueness and value-sharing of meromorphic functions, Ann.
Acad. Sci. Fenn. Math. 22(1997), 395-406].
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1 Introduction and main results

W.K. Hayman proposed the following well-known conjecture.

Hayman’s Conjecture [10]. If an entire function satisties f™f’ # 1 for all positive integers
n € N, then f is a constant.

It has been verified by Hayman himself in [11] for the case n > 1 and Clunie in [9] for the case
n > 1, respectively. In 1997, corresponding to the above famous conjecture of Hayman, Yang and
Hua studied the unicity of differential monomials and obtained the following theorem.

Theorem 1.1. [24] Let f and g be two nonconstant entire functions, n > 6 a positive integer. If " f/
and ¢"¢’ share 1 CM, then either f(z) = ci1e%*, g(z) = coe™ %%, where ¢y, ¢s, ¢ are three constants
satisfying (cica)" ¢ = —1, or f = tg for a constant ¢ such that "1 = 1.

In 2010, Qi, Yang and Liu studied the uniqueness of difference monomials and obtained the
following result.

Theorem 1.2. [21] Let f and g be transcendental entire functions with finite order, ¢ a nonzero
complex constant, and n > 6 an integer. If f” f(z + ¢) and g"g(z + ¢) share 1 CM, then fg = t; or
f = tag for some constants t; and ¢, which satisfy t77' = 1 and t3 1 = 1.
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In 2012, Wang, Han and Wen proved the following theorem.

Theorem 1.3. [22] Let f and g be transcendental entire functions with finite order, ¢ a nonzero
complex constant, and n > 6 an integer. If E3)(1, f" f(2 + ¢)) = Es3)(1,9"g(z 4 ¢)), then fg = t; or
f = tag for some constants t; and ¢, which satisfy ¢} ! = 1 and ¢3! = 1.

In recent years, similar problems are investigated in non-Archimedean fields. Now let K be an
algebraically closed field of characteristic zero, complete for a non-Archimedean absolute value.
We denote by A(K) the ring of entire functions in & and by M (K) the field of meromorphic func-
tions. The value sharing problems for meromorphic functions in K was investigated first in [1]]
and [13]. In recent years, numerous interesting results were obtained in the investigation of the
value-sharing problem for meromorphic function in K [2]-[4], [6]-[8], [16]-[18], [19][20][23].

Let us recall some basic definitions. For f € M(K)and S C K , we define

E¢(S) = U {(z,m)|f(2) = a withmultiplicity m},
a€S

and we denote by E’Jﬁ (a) the set of all a-points of f where an a-point with mutiplicity m is counted

m times if m < k and k + 1 times if m > k. It's obvious that if E}(a) = E}(a), then z is a zero of
| — a with multiplicity m(< k) if and only if it is a zero of g — a with multiplicity m(< k) and z is
a zero of f — a with multiplicity m(> k) if and only if it is a zero of g — a with multiplicity n(> k),
where m is not necessarily equal to n.

Two functions f, g of F' are said to share S, counting

Let F' be a nonempty subset of M (K).
4(5).

multiplicity(share S CM), if E¢(S) = E,

In the present paper, we discuss the uniqueness problem of p-adic difference monomials f™ f(z+
c) and prove the following theorems.

Theorem 1.4. Let f and g be nonconstant p-adic entire functions, n > 8 an integer. If E]%,,, Feto) (1) =
Ejng(erC) (1), then f = tg, where t is a constant and ¢"*! = 1.

Theorem 1.5. Let f and g be nonconstant p-adic entire functions, n > 8 aninteger. If En (.4 (1) =
Egng(z1¢)(1), then f = tg, where ¢ is a constant and ¢"*! = 1.

The main tool of the proof is the p-adic Nevanlinna theory [12][13][14][15]. So in the next
section, we establish the basic properties of the characteristic functions of p-adic meromorphic
functions.

2 Counting functions and Characteristic functions of p-adic meromorphic
functions

Let f be a nonconstant entire function on X and b € K. Then we can write f in the following form

=Y bu(z=0)",
n=q
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where b, # 0 and we denote w?(b) = ¢. For a point a € K, we define the function w} : K — N by
wh(b) = wh_,(b).

For a real number p with 0 < p < r. Take a € K and we set

1 ”
Ny(a,r) = f/ @),
np J, T

where n¢(a, x) is the number of solutions of the equation f(z) = a(counting multiplicities) in the
disk D, = {z € K : |z| < z}. If a = 0, the we set Nf(r) = N¢(0,7).

If [ is a positive integer, then we define
1 T
Ntar = L [l
P

where ny f(a,2) = 3, <, min{wy_q(2), 1}

Let k be a positive integer. Define the function w”* from K into N by wk(z) = 0if w%(z) > k and
p g ¥ Yy Wy ¥
w’;(z) = w(2) if w}(z) < k. And n?k(r) =D |s<r w?k(z), n?k(a, r)= n?fa(r)

Define
<k
1 "nz (a,x
Nfgk(aar)zi/ ! ( )dJ?,
Inp J, x
If @ = 0, then we set Nfgk(r) = Nfgk(O, ). Set
<k
1 "n/(a,x
Nzgfk(aar) = 7/ 7”( )dxv
' Inp J, T

where nff(a, T) =Y <r min{wffa(z)7 1}. In a similar way, we can define N;*(a,r), N5 (a,7),

Lf
Nf>k(a, r), Nfzk(a, r), Nl?fk (a,r) and Nl?fk (a,r).

Recall that for a nonconstant entire function f(z) on K, represented by the power series

flz)= Z anz"
n=0

for each r > 0, we define |f|, = max{|a,|r"™,0 < n < oo}.

Now let f = % be a nonconstant meromorphic function on K, where f; and f; are entire func-

tions on K having no common zeros. We set | f|, = % For a point a € K U {co}, we define the

function w§ : K — N by w(b) = w§, _,,(b) with a # oo and w (b) = w}, (b).
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Taking a € K, we denote the counting function of zeros of f — a, counting multiplicity, in the
disk D, = {z € K : |z| < r}, ie. weset N¢(a,r) = Ny, _qf,(r) and set Ng(oo,7) = Ng,(r). In
a similar way, for nonconstant meromorphic function on K, we can define N f<k(a, r), N lffk(a, ),

N7¥(a,r), N7*(a,r), N7f (a,r) and N7 (a, 7).

We define

my (oo, r) = max{0,log|f],}, mf(a,r):m%(w,r),

and then characteristic function of f by
Ty(r) = my(o0,r) + Ny(oo,r).
Thus we get
Ny(a,r) +mg(a,r) = Ts(r) + O(1),
where a € K U {o0} and
Ty(r) =Ti(r) +O(1), m 0 (00,7) = O(1).

f
3 Some Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 3.1. [12][5] Let f be a nonconstant meromorphic function on K and let ai, as,...,a; be
distinct points of K. Then

(g — )Ty (r) < Ny f(o0,r) + ZNLf(ai,r) — Ny, (1) —logr + O(1) .

i=1

Lemma 3.2. Let f and g be nonconstant meromorphic functions on K. If £%(1) = EZ(1), then one
of the following three cases holds:

(i) Ty(r) < Nigp(0,7) + NEF(0,7) 4+ Ny g(0,7) + NEZ(0,7) + Ny p(o0,7)
+N{F(00,7) + Ny g(00,7) + Ni2(00,7) — logr + O(1),

(i) f=g, (i) fg=1.

(2N (9 2
n=(rrm) (575

First we suppose that H # 0. It’s obvious that m g (co,r) = O(1), and

Proof. Set

NF'(1,7) < Ny(0,7) < Ty (r) + O(1) < Ny (oo, 1) + O(1)
< N72(0,7) + N72(0,7) + Ni7 (00, 7) + Nio (00, 7)
+N170’f/ (’I") + Nl,O,g’ (T) + O(].) s (11)



Uniqueness for the Difference Monomials of P-Adic Entire Functions

71

where Ny o 4/ (r) is the counting function of those zeros of f’ that are not zeros of f(f — 1), while

each zero is counted with multiplicity 1.
On the other hand, by Lemma 3.1, we have

T¢(r) < Ny p(oo,r) + Nig(0,7) + Ny s(1,7) — No,p (r) — logr + O(1).

Since E}(1) = E}(1), we note that

Nig(L,r) = N7' L)+ NEF(Lr) = NP (L) + NEZ(L,r),

Then
Ty(r) < Nyp(00,7) + Ny p(0,7) + N5 (1,7)
—&-NZ?(I, ) — No, /(1) — logr + O(1) .

1,9

Next we consider Nf;(l, r).
Ng(0,7) = Ng(0,7) + N1,4(0,7) = Ny (0,7) < Ty (1) + O(1)
= N%/ (00, 1) + m%(oo,r) +0(1) = Nl’g(oo,gr) + Nl’g(Og, r)+O0(1).
So
Ny (0,7) < Ny g4(00,7) + Ng(0,7) + O(1) .

Moreover

Nogr(r) + Nig (1,7) + N2 (0,7) = Nig (0,7) < Ny (0,7),

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

where N ¢ () is the counting function of those zeros of ¢’ that are not zeros of g(g — 1). From (6)

and (7) , we get
Nog (r) + N7 2(1,7) < Ny g(00,7) + N1,4(0,7) + O(1) .
Combining (1), (4) and (8), we obtain
Ty(r) < Nig(0,7) + Ni7(0,7) + N1 g(0,7) + N7 2 (0,7) + Ny g (00, 7)
—I—Nf?(oo, )+ Ny 4(00,7) + ij(oo7 r) —logr + O(1).
Suppose H = 0. Then by integration we get

ag+b
cg+d’

f=
where q, b, c and d are constants and ad — be # 0. So Ty (r) = T,(r) + O(1).

We now consider the following cases.

(1.8)

(1.9)
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Case 1. Let ac # 0. Then

a bc — ad

T e degvay

So, By Lemma 3.1, we get

Tf(T) < NLf(OO,T) + N17f_%(077") + Nl,f((),r) +0(1)
= N1,#(0,7) + Ny ¢(00,7) + Ny g(00,7) + O(1),

which implies (7).
Case2.a # 0and ¢ = 0. Then f = g + g. If b # 0, by Lemma 3.1,

Ty(r) < Nig(00,7) + Ny p_5(0,7) + N1 p(0,7) + O(1)
= Nl’f(OO77’) + Nl_,g(O,r) + vaf(O,r) + O(l) y

which implies (7).

C. Meng and G. Liu

(1.10)

Ifb=0,then f = %. If & = 1, we obtain (i7). If & # 1, then by E3(1) = E}(1) we get f # 1

and f # 4. According to Lemma 3.1, we have

Tf(?“) < lef(OO,T) + Nl’f(l,’l“) + Nlﬁf(gﬂ") + 0(1) = NLf(OO,T) + O(l),

d
which implies (7).

Case3.a=0and ¢ # 0. Then f = Cgﬁ. If d # 0, by Lemma 3.1,

Ty(r) < Nip(o0,7) + Ny ;5 (0,7) + Ny 5 (0,7) + O(1)
= Ny s(00,7) + N1,4(0,7) + N1, £(0,7) + O(1),
which implies (7).

If d =0, then f = 2. If © = 1, we obtain (ii). If 2 # 1, then by E7(1) = EZ(1) we get f # 1

cg’
and f # %. According to Lemma 3.1, we have

b
Ty(r) < Nug(oo,m) + Nug(1,7) + Nip(=,7) + O(1) = N g (00,7) + O(1),

which implies (i). The proof of Lemma 3.2 is complete.

Lemma 3.3. [16] Let f and g be nonconstant meromorphic functions on K. If E¢(1) = E,(1), then

one of the following three cases holds:

(i) T¢(r) < Nig(0,7) + NEJ%(O, r) 4+ N1,4(0,7) + Nfgz(O,r) + Ni,¢(o0,1)
+NZ (00,7) + Nig(00,r) + Nf;(oo, r) —logr + O(1),

2
Lf

(i) f=g, (i) fg=1.
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Lemma 3.4. [2] Let f be a nonconstant p-adic meromorphic function. Then
M stere) (00,7) = O(1); Tyz40)(r) = Tz (r) + O(1).
Lemma 3.5. Let f be a p-adic entire function, ¢ € K. If F(z) = f"(z)f(z + ¢), then
T(r,F)=n+1)T(r,f)+0(1).

Proof. We can deduce form Lemma 3.4 that
(n+1)Ty(r) = Tpnsr(r) + O(1) = mpnia(r) + O(1)
< (1) () + O() = m_s_ (1) +mp(r) +O(1)
<Tr(r)+0(1).
Therefore
(n+1)Ty(r) < Tr(r) + O(1).
On the other hand, Lemma 3.4 implies
Tr(r) < Typn(r) + Tiiato)(r) = nTy(r) + Tp(r) + O(1) = (n+ )Ty (r) + O(1) .
We obtain the conclusion of Lemma 3.5.

4 Proof of Theorem 1.4
Let

F=f"f(z4+¢), G=g"g(z+¢). (1.11)
Then it is easy to verify E%(1) = E%(1). Suppose the Case (i) in Lemma 3.2 holds
Tp(r) < Ni,p(0,1) + NT#(0,7) + N1.c(0,7) + N g (0,7) — logr + O(1) . (1.12)
From Lemma 3.4, we have

NLF(O,T) + NEI%—'(O,T) < 2N1’F(0,7“)
= 2N17f(0, )+ 2N1,f(z+c) (0,7) < 4Tf(7“) , (1.13)

and

N1(0,7) + N&(0,7) < 2N1 6(0,7)
= 2N1,4(0,7) + 2N1 g(240)(0,7) < 4Ty(r). (1.14)

From (12), (13), (14) and Lemma 3.5, we deduce

Tp(r) = (n+ 1)Tf(r) < 4T¢(r) + 4T,(r) + O(1), (1.15)
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that is,
(n—3)Ty(r) <4T,(r)+ O(1). (1.16)
Similarly we can deduce
(n—=3)T,(r) <4Ty(r)+ O(1). (1.17)
Combining (16) and (17), we have
(n—17)T¢(r)+ (n—7)T4(r) <O(1), (1.18)

which contradicts the hypothesis n > 8. Therefore F' = G or F'G = 1.

If F =G, thatis
f"(2)f(z+c) =g"(2)g(z + ). (1.19)

Let h(z) = 58 We have

h*(z)h(z+¢c)=1. (1.20)
If h(z) is not a constant, then Lemma 3.4 implies
nTh(r) = Th(z4e)(r) + O(1) = Ty (r) + O(1), (1.21)

which is a contadiction with n > 8. Thus h(z) = t, where t is a constant. From (20) we have f = tg
and t" ! = 1.

If FG = 1, that is
FU(2)f(z+ g™ (2)g(z +¢) = 1. (1.22)

Let w(z) = f(2)g(z). We have
W (2)w(z+¢) = 1. (1.23)

By a similar discussion, we can show that w is a constant. Therefore fg = w and w"™*! = 1. This is
a contradiction because nonconstant entire function on K have at least one zero and hence, if fg is
a constant, at least one of the two functions f or g is meromorphic, but not entire. This completes
the proof of Theorem 1.4.

5 Proof of Theorem 1.5
Let
F=f"f(z+¢), G=g"g(z+¢). (1.24)
Then it is easy to verify Er(1) = Eg(1). Suppose the Case (i) in Lemma 3.3 holds
Tp(r) < N1,p(0,7) + lef,(O,r) + Ny ¢(0,r) + Nfé((), r) —logr + O(1). (1.25)

Similar to the arguments in Theorem 1.4, we see that Theorem 1.5 holds.
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