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Abstract

In this present paper, we have generalized a main theorem dealing with |N̄ , pn|k summability of
non-decreasing sequences to |A, pn|k summability method by using almost increasing sequences
and taking normal matrices in place of weighted mean matrices
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1 Introduction
Let

∑
an be a given infinite series with partial sums (sn). We denote by uαn the nth Cesàro mean

of order α, with α > −1, of the sequence (sn), that is (see [5])

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv (1.1)

where

Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0. (1.2)

A series
∑
an is said to be summable | C,α |k, k ≥ 1, if (see [6])

∞∑
n=1

nk−1 | uαn − uαn−1 |k<∞. (1.3)

If we set α=1, then we have | C, 1 |k summability. Let (pn) be a sequence of positive number such
that

Pn =

∞∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). (1.4)
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The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (1.5)

defines the sequence (wn) of the Riesz mean or simply the
(
N̄ , pn

)
mean of the sequence (sn), generated by

the sequence of coefficients (pn) (see [7]). The series
∑
an is said to be summable |N̄ , pn|k, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn
pn

)k−1

|wn − wn−1|k <∞. (1.6)

In the special case when pn = 1 for all values of n (respect. k = 1), then |N̄ , pn|k summability is the same as
|C, 1|k (respect. |N̄ , pn|) summability.
Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines
the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (1.7)

The series
∑
an is said to be summable |A, pn|k, k ≥ 1, if (see [11])

∞∑
n=1

(
Pn
pn

)k−1 ∣∣∆̄An(s)
∣∣k <∞. (1.8)

where

∆̄An(s) = An(s)−An−1(s). (1.9)

Note that in the special case if we take pn = 1 for all n, |A, pn|k summability is the same as |A|k summability
(see [12]). Also, if we take anv = pv

Pn
, then |A, pn|k summability reduces to

∣∣N̄ , pn∣∣k summability. Further-
more, if we take anv = pv

Pn
and pn = 1 for all values of n, then |A, pn|k summability is the same as |C, 1|k

summability.

2 The Known Results
A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence (zn)
and two positive constants A and B such that Azn ≤ bn ≤ Bzn (see [1]). It is known that every increasing
sequences is an almost increasing sequence but the converse need not be true. Quite recently, Bor has proved
the following theorems concerning on summability factors of the absolute weighted mean.

Theorem 2.1 [3] Let (Xn) be a positive non-decreasing sequence and suppose that there exists sequences
(βn) and (λn) such that

|∆λn| ≤ βn, (1.10)

βn → 0 as n→∞ (1.11)
∞∑
n=1

n|∆βn|Xn = O(1), (1.12)

|λn|Xn = O(1). (1.13)
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If
m∑
n=1

|sn|k

n
= O(Xm) as m→∞, (1.14)

and (pn) is a sequence that

Pn = O(npn), (1.15)

Pn∆pn = O(pnpn+1), (1.16)

then the series
∑
an

Pnλn
npn

is summable |N̄ , pn|k, k ≥ 1.
Later on, Bor has recently proved the following theorem using under weaker conditions.
Theorem 2.2 [4] Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn) , (βn), (λn), and (pn)
satisfy the conditions (1.10-1.13), (1.15-1.16), and

m∑
n=1

|sn|k

nXk−1
n

= O(Xm) as m→∞, (1.17)

then the series
∑
an

Pnλn
npn

is summable |N̄ , pn|k, k ≥ 1.

3 The Main Results
The aim of this paper is to generalize Theorem 2.2 for |A, pn|k summability factors using almost increasing
sequences in place of positive non-decreasing sequence. So, we have generalized Theorem 2.2 under weaker
hypothesis by using normal matrices.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1,v, a−1,0 = 0 (1.18)

and

â00 = ā00 = a00, ânv = ∆̄ānv, n = 1, 2, ... (1.19)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series transfor-
mations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (1.20)

and

∆̄An(s) =

n∑
v=0

ânvav. (1.21)

With this notation we have the following theorem.
Theorem 3.1 Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (1.22)

an−1,v ≥ anv, for n ≥ v + 1, (1.23)

ann = O(
pn
Pn

), (1.24)

n−1∑
v=1

avvân,v+1 = O(ann) (1.25)
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and let (Xn) be an almost increasing sequence. If the sequences (Xn), (βn), (λn), and (pn) satisfy the condi-
tions of Theorem 2.2, then the series

∑
an

Pnλn
npn

is summable |A, pn|k, k ≥ 1.
We need the following lemmas for the proof of Theorem 3.1.
Lemma 3.1 [8] Under the conditions on (Xn), (βn), and (λn) as expressed in the statement of Theorem 2.2,
we have the following:

nXnβn = O(1), (1.26)
∞∑
n=1

βnXn <∞. (1.27)

Lemma 3.2 [10] If the conditions (1.15) and (1.16) of Theorem 2.1 are satisfied, then ∆
(
Pn
npn

)
= O

(
1
n

)
.

Remark Under the conditions on the sequence (λn) of Theorem 2.1, we have that (λn) is bounded and ∆λn =
O(1/n) (see [3]).

4 Proof of Theorem 3.1
Let (Vn) denotes the A-transform of the series

∑
an

Pnλn
npn

. Then, by the definition, we have that

∆̄Vn =

n∑
v=1

ânvav
Pvλv
vpv

.

Applying Abel’s transformation to this sum, we have that

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv
vpv

) v∑
r=1

ar +
ânnPnλn
npn

n∑
r=1

ar

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv
vpv

)
sv +

ânnPnλn
npn

sn,

by the formula for the difference of products of sequences (see [7]) we have

∆̄Vn =
annPnλn
npn

sn +

n−1∑
v=1

Pvλv
vpv

∆v(ânv)sv +

n−1∑
v=1

ân,v+1λv∆

(
Pv
vpv

)
sv +

n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∆̄Vn = Vn,1 + Vn,2 + Vn,3 + Vn,4.

To complete the proof of Theorem 3.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)k−1

| Vn,r |k<∞, for r = 1, 2, 3, 4. (1.28)
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Firstly, by applying Abel’s transformation and in view of the hypotheses of Theorem 3.1 we have

m∑
n=1

(
Pn
pn

)k−1

| Vn,1 |k≤
m∑
n=1

(
Pn
pn

)k−1

aknn

(
Pn
pn

)k
|λn|k

|sn|k

nk

= O(1)

m∑
n=1

(
Pn
pn

)k−1

|λn|k
|sn|k

nk
= O(1)

m∑
n=1

nk−1

nk
|λn|k−1|λn||sn|k

= O(1)
m∑
n=1

1

n

1

Xk−1
n

|λn||sn|k = O(1)

m−1∑
n=1

∆|λn|
n∑
v=1

|sv|k

vXk−1
v

+O(1)|λm|
m∑
n=1

|sn|k

nXk−1
n

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm = O(1)

m−1∑
n=1

βnXn +O(1)|λm|Xm = O(1) as m→∞.

By applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k

+ 1
k′ = 1 and as in Vn,1, we have

that

m+1∑
n=2

(
Pn
pn

)k−1

| Vn,2 |k=

m+1∑
n=2

(
Pn
pn

)k−1
∣∣∣∣∣
n−1∑
v=1

Pvλv
vpv

∆v(ânv)sv

∣∣∣∣∣
k

≤
m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv
pv

)k}
×

{
n−1∑
v=1

|∆v(ânv)|

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

|∆v(ânv)||λv|k|sv|k
1

vk

(
Pv
pv

)k

= O(1)

m∑
v=1

|λv|k−1|λv||sv|k
1

vk

(
Pv
pv

)k m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

avv
1

Xk−1
v

|sv|k|λv|
1

vk

(
Pv
pv

)k

= O(1)
m∑
v=1

1

Xk−1
v

|sv|k|λv|
1

vk

(
Pv
pv

)k−1

= O(1)

m∑
v=1

1

Xk−1
v

|sv|k|λv|
1

vk
vk−1 = O(1)

m∑
v=1

1

Xk−1
v

|sv|k|λv|
1

v
= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 3.1. Also, since ∆
(
Pv
vpv

)
= O

(
1
v

)
, by Lemma 3.2, we have

m+1∑
n=2

(
Pn
pn

)k−1

| Vn,3 |k=

m+1∑
n=2

(
Pn
pn

)k−1
∣∣∣∣∣
n−1∑
v=1

ân,v+1∆

(
Pv
vpv

)
λvsv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

a1−kvv ân,v+1|λv|k|sv|k
1

vk

}
×

{
n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

(
Pv
pv

)k−1

ân,v+1|λv|k|sv|k
1

vk

= O(1)

m∑
v=1

|λv|k−1|λv||sv|k
1

v

m+1∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

|λv|k−1|λv||sv|k
1

v

= O(1)

m∑
v=1

1

Xk−1
v

|λv||sv|k
1

v
= O(1) as m→∞,

by virtue of the hypotheses of Theorem 3.1. Finally, by virtue of the hypotheses of Theorem 3.1, by Lemma
3.1, we have vβv = O( 1

Xv
), then

m+1∑
n=2

(
Pn
pn

)k−1

| Vn,4 |k=

m+1∑
n=2

(
Pn
pn

)k−1
∣∣∣∣∣
n−1∑
v=1

ân,v+1
Pv+1

(v + 1)pv+1
∆λvsv

∣∣∣∣∣
k

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1
{
n−1∑
v=1

a1−kvv ân,v+1|∆λv|ksv|k
}
×

{
n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)k−1

ak−1
nn

n−1∑
v=1

a1−kvv ân,v+1|∆λv|k|sv|k

= O(1)

m∑
v=1

(
Pv
pv

)k−1

|sv|k|∆λv|k
m+1∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

|sv|k(vβv)k−1βv = O(1)

m∑
v=1

vβv|sv|k
1

vXk−1
v

= O(1)

m−1∑
v=1

∆(vβv)
v∑
r=1

|sr|k

rXk−1
r

+O(1)mβm

m∑
v=1

|sv|k

vXk−1
v

= O(1)

m−1∑
v=1

|∆(vβv)|Xv +O(1)mβmXm = O(1)

m−1∑
v=1

|(v + 1)∆βv − βv|Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v|∆βv|Xv +O(1)

m−1∑
v=1

Xvβv +O(1)mβmXm = O(1) as m→∞,

This completes the proof of Theorem 3.1 .
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5 Conclusions
1. If we take (Xn) as a positive non-decreasing sequence and anv = pv

Pn
in Theorem 3.1, then we obtain

Theorem 2.2 and if we put k = 1 in Theorem 2.2, we have a known result of Mishra and Srivastava dealing
with

∣∣N̄ , pn∣∣ summability factors of infinite series (see [10]).
2. If we take pn = 1 for all values of n in Theorem 3.1, then we get a new result dealing with the |A|k summa-
bility method.
3. If we take anv = pv

Pn
and pn = 1 for all values of n in Theorem 3.1, then we obtain a known result of Mishra

and Srivastava concerning the | C, 1 |k summability factors of infinite series (see [9]).
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