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Abstract

In the present paper, we study skew cyclic codes over the ring Fq + vFq + v2Fq, where v3 =
v, q = pm and p is an odd prime. The structural properties of skew cyclic codes over Fq +
vFq + v2Fq have been studied by using decomposition method. By defining a Gray map from
Fq +vFq +v2Fq to F 3

q , it has been proved that the Gray image of a skew cyclic code of length n
over Fq +vFq +v2Fq is a skew 3-quasi cyclic code of length 3n over Fq. Further, it is shown that
the skew cyclic codes over Fq + vFq + v2Fq are principally generated. Finally, the idempotent
generators of skew cyclic codes over Fq + vFq + v2Fq have also been studied.
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1 Introduction

In the last decade of the twentieth century a great deal of attention has been given to the study
of linear codes over finite rings because of their new role in algebraic coding theory and their
successful applications. The class of cyclic codes is a very important class of linear codes from
both theoretical and practical point of view which are easier to implement due to their rich
algebraic structure. Cyclic codes have been studied for the last six decades. Based on these facts,
cyclic codes have become one of the most important class in coding theory. A landmark paper by
Hammons, et al. [12] discovered that some good nonlinear codes over Z2 can be viewed as binary
images under a Gray map of linear cyclic codes over Z4. But all this work is restricted to codes
that are defined in a commutative ring.

Boucher et al. [6], [7] and [8] studied the structure of skew cyclic codes over a non commutative
ring F [x, θ], called skew polynomial ring, where F is a finite field and θ is a field automorphism of
F . They generalized the class of linear and cyclic codes to the class of skew cyclic codes by using
the ring F [x, θ], where the generator polynomials of skew cyclic codes come from the ring F [x, θ].
They also gave some examples of skew cyclic codes with Hamming distances larger than the best
known linear codes with the same parameters. Later on, Abualrub et al. [1] and Bhaintwal [5],
defined skew quasi cyclic codes over these classes of rings. The main motivation of studying codes
in this setting is that polynomials in skew polynomial rings exhibit many factorizations and hence
there are many ideals in skew polynomial ring than in the commutative ring. But all this work is
restricted to the condition that the order of the automorphism must be a factor of the length of
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the code. In [15], Siap, et al. removed this condition and they studied the structural properties of
skew cyclic codes of arbitrary length over finite fields. A lot of work has been done in this direction
(see references [2, 3, 9]).

Recently, Jitman et al. [13] defined skew constacyclic codes by defining the skew polynomial
ring with coefficients from finite chain rings, especially the ring Fpm + uFpm where u2 = 0. Gursoy
et al. [11] investigated the structural properties of skew cyclic codes through the decomposition
method over Fq + vFq, where v2 = v and q = pm. Very recently, the authors [3] studied the
structural properties of skew cyclic codes over the ring F3 + vF3 with v2 = 1 by considering the
automorphism as; θ : v 7→ −v. They proved that skew cyclic codes over F3 + vF3 are equivalent
to either cyclic codes or quasi cyclic codes. Further, the authors [4] obtained skew quasi cyclic
codes over Fq from the skew cyclic codes over the ring Fq + vFq. In the present paper, we study
skew cyclic codes over the ring Fq + vFq + v2Fq, where v3 = v, q = pm and p is an odd prime.
Some skew quasi cyclic codes of index 3 over Fq from skew cyclic codes over Fq + vFq + v2Fq have
also been obtained.

Throughout the paper R will denote the ring Fq + vFq + v2Fq with v3 = v, q = pm and p is an

odd prime. Consider the automorphism θt : R −→ R such that θt(a+vb+v2c) = ap
t

+vbp
t

+v2cp
t

.
It is to be noted that θ1 is the Frobenius automorphism of Fq and θt = θt1. In this paper, we will
use the automorphism θt instead of the automorphism v 7→ 1− v which was used by Gao in [9].

2 Preliminaries

Let R = Fq + vFq + v2Fq, where q = pm and p is an odd prime. R is a commutative and
non-chain ring with characteristic p which contains q3 elements. The ring is endowed with
the natural addition and multiplication with the property v3 = v and it can be viewed as the
quotient ring Fq[v]/〈v3 − v〉. The elements of R can be uniquely written as a + vb + v2c, where
a, b, c ∈ Fq. It is a semi-local ring having three maximal ideals 〈v〉, 〈v − 1〉 and 〈v + 1〉. It
is easy to see that each ideal of this ring is principally generated, therefore, it is a principal ideal ring.

Define a mapping θt : R −→ R such that θt(a+vb+v2c) = ap
t

+vbp
t

+v2cp
t

, for all a, b, c ∈ Fq.
One can verify that θt is an automorphism on R and θt = θt1. This automorphism acts on Fq as
follows:

θt : Fq −→ Fq

a 7→ ap
t

.

It may be noted that the order of this automorphism is |〈θt〉| = m/t and the subring
Fpt + vFpt + v2Fpt of R is invariant under θt.

Definition 2.1. For a given automorphism θt of R, the set R[x, θt] = {a0 + a1x + a2x
2 + · · · +

anx
n| ai ∈ R,n ≥ 0} of formal polynomials forms a ring under usual addition of polynomials

and multiplication is defined by the rule (axi)(bxj) = aθit(b)x
i+j . The ring R[x, θt] is called skew

polynomial ring over R.
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It can be easily seen that the ring R[x, θt] is non-commutative unless θt is the identity au-
tomorphism on R. Therefore, when an ideal of R[x, θt] is considered, one should specify whether
it is a right ideal or a left ideal. The skew polynomial ring R[x, θt] is not left or right Euclidean.
However, the division algorithm holds for some polynomials whose leading coefficients are invertible
(for detail see references [7] and [13]).

3 Gray map and linear codes over R

Gao [10], studied linear codes over the ring Fp + uFp + u2Fp, where u3 = u and p is an odd prime.
Here, we generalize his study to linear codes over the ring R. Let Rn be the set of all n-tuples over
R, then a nonempty subset C of Rn is called a code of length n over R. C is called linear code of
length n over R if it is an R-submodule of Rn. Elements of C are called codewords and therefore
each codeword c in such a code C is just an n-tuple of the form x = (x0, x1, · · · , xn−1) ∈ Rn.

The Hamming weight wH(x) of a codeword x = (x0, x1, · · · , xn−1) ∈ Rn is the number of
nonzero components. The minimum weight wH(C) of a code C is the smallest weight among all its
nonzero codewords. For x = (x0, x1, · · · , xn−1), y = (y0, y1, · · · , yn−1) ∈ Rn,
dH(x, y) = |{i | xi 6= yi}| is called the Hamming distance between x and y ∈ Rn and is denoted by

dH(x, y) = wH(x− y).

The minimum Hamming distance between distinct pairs of codewords of a code C is called the
minimum distance of C and is denoted by dH(C) or shortly dH .

Now, we define the Lee weight of an element r = a+ vb+ v2c ∈ R as follows:

wL(r) = wH(a, a+ b+ c, a− b+ c),

where wH denotes the usual Hamming weight on Fq. Let x = (x0, x1, · · · , xn−1) be a vector
in Rn. Then the Lee weight of x is the rational sum of Lee weights of its components, that is,

wL(x) =
n−1∑
i=0

wL(xi). For any elements x, y ∈ Rn, the Lee distance is given by dL(x, y) = wL(x−y).

The minimum Lee distance of a code C is the smallest nonzero Lee distance between all pairs
of distinct codewords. The minimum Lee weight of C is the smallest nonzero Lee weight among
all codewords. If C is linear, then the minimum Lee distance is the same as the minimum Lee weight.

The Gray map ϕ from R to F 3
q is defined as ϕ(a + vb + v2c) = (a, a + b + c, a − b + c).

It can be easily seen that ϕ is linear. The Gray map ϕ can be extended to Rn in a natu-
ral way, that is, ϕ : Rn −→ F 3n

q such that ϕ(x0, x1, · · · , xn−1) = (a0, a0 + b0 + c0, a0 − b0 +
c0, · · · , an−1, an−1+bn−1+cn−1, an−1−bn−1+cn−1), where xi = ai+vbi+v

2ci for i = 0, 1, · · · , n−1.

The following property is obvious from the definition of the Gray map:

Proposition 3.1. The Gray map ϕ is a distance-preserving map or isometry from Rn(Lee distance)
to F 3n

q (Hamming distance) and it is also Fq-linear.
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For a code C over R, define

C1 = {a ∈ Fn
q | a+ vb+ v2c ∈ C some b, c ∈ Fn

q },

C2 = {a+ b+ c ∈ Fn
q | a+ vb+ v2c ∈ C},

and
C3 = {a− b+ c ∈ Fn

q | a+ vb+ v2c ∈ C}.

If C is linear code of length n over R, then C1, C2 and C3 are all linear codes of length n over Fq.
Moreover, the linear code C of length n over R can be uniquely expressed as

C = (1− v2)C1 ⊕
p+ 1

2
(v2 + v)C2 ⊕

p+ 1

2
(v2 − v)C3.

A generator matrix of C is a matrix whose rows generate C. Let

C = (1− v2)C1 ⊕
p+ 1

2
(v2 + v)C2 ⊕

p+ 1

2
(v2 − v)C3

be a linear code of length n over R with generator matrix G. Then G can be written as

G =


(1− v2)G1

p+1
2 (v2 + v)G2

p+1
2 (v2 − v)G3

 ,

where G1, G2 and G3 are the generator matrices of C1, C2 and C3 respectively.

Let x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1) be two elements of Rn. Then the
Euclidean inner product of x and y in Rn is defined as

x · y = x0y0 + x1y1 + · · ·+ xn−1yn−1.

The dual code C⊥ of C is defined as

C⊥ = {x ∈ Rn| x · y = 0, for all y ∈ C}.

A code C is called self-orthogonal if C ⊆ C⊥ and self dual if C = C⊥.

Now, we give some results on linear codes over R, which are the generalization of results on linear
codes over Fp + vFp + v2Fp. So, we are omitting the proofs of the results.

Theorem 3.2. If C = (1 − v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3 is a linear code of length n
over R, then ϕ(C) = C1 ⊗ C2 ⊗ C3 and |C| = |C1||C2||C3|.
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Corollary 3.3. Let C = (1 − v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3 be a linear
code of length n over R, where Ci is a linear code with dimension ki and minimum
Hamming distance d(Ci) for i = 1, 2, 3. Then ϕ(C) is a linear code with parameters
[3n, k1 + k2 + k3, min{d(C1), d(C2), d(C3)}] over Fq.

One of the properties of the Gray map we defined is that it preserves the duality as given in the
following lemma:

Lemma 3.4. Let C⊥ be the dual code of C over R. Then ϕ(C⊥) = ϕ(C)⊥. In particular, if C is
self-dual, then so is ϕ(C).

Proof. Let x1 = a1 + vb1 + v2c1 and x2 = a2 + vb2 + v2c2 ∈ C, where a1, b1, c1, a2, b2, c2 ∈ Fn
q .

Now by Euclidean inner product of x1 and x2, we have

x1 · x2 = (a1 + vb1 + v2c1) · (a2 + vb2 + v2c2)

= a1a2 + v(a1b2 + a2b1 + b1c2 + b2c1) + v2(a1c2 + a2c1 + b1b2 + c1c2).

Since C is a self-dual code, C = C⊥, we find that a1a2 = a1b2 + a2b1 + b1c2 + b2c1 = a1c2 + a2c1 +
b1b2 + c1c2 = 0. Now

ϕ(x1)ϕ(x2) = (a1, a1 + b1 + c1, a1 − b1 + c1)(a2, a2 + b2 + c2, a2 − b2 + c2) = 0.

Thus ϕ(C⊥) ⊆ ϕ(C)⊥. On the other hand let |C| = (q)
k1+k2+k3 and C is of length n. Then ϕ(C)

has the parameters [3n, k1 + k2 + k3]. Since |ϕ(C)| = |C|, |ϕ(C)⊥| = (q)
3n−(k1+k2+k3). Further

|ϕ(C⊥)| = |C⊥| = q3n/|C| = q3n−(k1+k2+k3). Hence ϕ(C⊥) = ϕ(C)⊥.

In view of the previous lemma, the following theorem can be easily obtained:

Theorem 3.5. Let C be a linear code of length n over R and let ϕ(C) = C1 ⊗ C2 ⊗ C3. Then C
can be uniquely expressed as C = (1 − v2)C1 ⊕ p+1

2 (v2 + v)C2 ⊕ p+1
2 (v2 − v)C3. Furthermore, if

ϕ(C⊥) = C⊥1 ⊗ C⊥2 ⊗ C⊥3 , then C⊥ = (1− v2)C⊥1 ⊕
p+1
2 (v2 + v)C⊥2 ⊕

p+1
2 (v2 − v)C⊥3 .

4 Skew cyclic codes over R

In the present section, we study skew cyclic codes over R. Let θt be an automor-
phism on R given by θt(a + vb + v2c) = ap

t

+ vbp
t

+ v2cp
t

. Then a linear code C of
length n over R is called a skew cyclic code or θt-cyclic code if it satisfies the property
c = (c0, c1, · · · , cn−1) ∈ C implies σ(c) = (θt(cn−1), θt(c0), · · · , θt(cn−2)) ∈ C, where σ(c) denotes
the skew cyclic shift of c.

In [15], it was shown that a linear code C of length n over Fq is a skew cyclic code with respect
to automorphism θ if and only if it is a left Fq[x, θ]-submodule of Fq[x, θ]/〈xn − 1〉. Moreover, if C
is a left submodule of Fq[x, θ]/〈xn − 1〉, then C is generated by a monic polynomial g(x) which is
a right divisor of xn − 1 in Fq[x, θ].
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The method which we use in this section is same as the method used by Gao in [10] over the
ring Fp + vFp + v2Fp with v3 = v. The main difference in our case is that the ring R[x, θt] is
non-commutative.

Theorem 4.1. Let C = (1− v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3 be a linear code of length n
over R. Then C is a skew cyclic code over R with respect to automorphism θt if and only if C1, C2

and C3 are skew cyclic codes of length n over Fq with respect to same automorphism θt.

Proof. For any r = (r0, r1, · · · , rn−1) ∈ C, we can write its components as
ri = (1 − v2)ai + p+1

2 (v2 + v)bi + p+1
2 (v2 − v)ci, where ai, bi, ci ∈ Fq, 0 ≤ i ≤ n − 1.

Let a = (a0, a1, · · · , an−1), b = (b0, b1, · · · , bn−1) and c = (c0, c1, · · · , cn−1). Then
a ∈ C1, b ∈ C2 and c ∈ C3. Now, suppose C1, C2 and C3 are skew cyclic codes over Fq

with respect to automorphism θt. This means that σ(a) = (θt(an−1), θt(a0), · · · , θt(an−2)) =

(ap
t

n−1, a
pt

0 , · · · , a
pt

n−2) ∈ C1, σ(b) = (θt(bn−1), θt(b0), · · · , θt(bn−2)) = (bp
t

n−1, b
pt

0 , · · · , b
pt

n−2) ∈ C2

and σ(c) = (θt(cn−1), θt(c0), · · · , θt(cn−2)) = (cp
t

n−1, c
pt

0 , · · · , c
pt

n−2) ∈ C3. Thus

(1 − v2)σ(a) + (v2 + v)p+1
2 σ(b) + (v2 − v)p+1

2 σ(c) ∈ C. It can be easily seen that

(1 − v2)σ(a) + (v2 + v)p+1
2 σ(b) + (v2 − v)p+1

2 σ(c) = σ(r). Hence σ(r) ∈ C, which means
that C is a skew cyclic code over R with respect to automorphism θt.

Conversely, suppose C is a skew cyclic code over R with respect to automorphism θt. Let ri =
(1−v2)ai+

p+1
2 (v2+v)bi+

p+1
2 (v2−v)ci, for any a = (a0, a1, · · · , an−1) ∈ C1, b = (b0, b1, · · · , bn−1) ∈

C2 and c = (c0, c1, · · · , cn−1) ∈ C3. Then r = (r0, r1, ..., rn−1) ∈ C. By the hypothesis σ(r) ∈ C.
Since (1− v2)σ(a) + (v2 + v)p+1

2 σ(b) + (v2 − v)p+1
2 σ(c) = σ(r), (1− v2)σ(a) + (v2 + v)p+1

2 σ(b) +

(v2 − v)p+1
2 σ(c) ∈ C. Thus σ(a) ∈ C1, σ(b) ∈ C2 and σ(c) ∈ C3, which implies that C1, C2 and

C3 are skew cyclic codes of length n over Fq with respect to automorphism θt.

Corollary 4.2. Let C be a skew cyclic code of length n over R. Then the dual code C⊥ is also a
skew cyclic code of length n over R.

Proof. In view of Theorem 3.5, we know that C⊥ = (1−v2)C⊥1 ⊕
p+1
2 (v2+v)C⊥2 ⊕

p+1
2 (v2−v)C⊥3 .

Since the dual code of every skew cyclic code over Fq is also skew cyclic ([8], Corollary 18), by
Theorem 4.1, C⊥ is a skew cyclic code over R.

Corollary 4.3. A code C = (1− v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3 of length n over R is a
self-dual skew cyclic if and only if C1, C2 and C3 are self-dual skew cyclic codes of length n over
Fq.

Let C ′ be a linear code of length n over Fq and c = (c1|c2| · · · |cs) be a codeword in C ′ into s
equal parts of length r where n = rs. If (σ(c1)|σ(c2)| · · · |σ(cs)) ∈ C ′, then the linear code C which
is permutation equivalent to C ′ is called a skew quasi-cyclic code of index s or skew s-quasi cyclic
code. (for detail see reference [1])

Theorem 4.4. Let C be a skew cyclic code of length n over R. Then ϕ(C) is a skew 3-quasi cyclic
code of length 3n over Fq.

Proof. In view of Theorem 3.2 and the definition of skew quasi-cyclic codes, we can obtain the
required result.
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Theorem 4.5. Let C = (1 − v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3 be skew cyclic code of

length n over R. Then C = 〈(1 − v2)g1(x), p+1
2 (v2 + v)g2(x), p+1

2 (v2 − v)g3(x)〉 and |C| =

q3n−deg(g1(x))−deg(g2(x))−deg(g3(x)), where g1(x), g2(x) and g3(x) are the generator polynomials of
C1, C2 and C3 respectively.

Proof. Since C1 = 〈g1(x)〉 ⊆ Fq[x, θt]/〈xn − 1〉, C2 = 〈g2(x)〉 ⊆ Fq[x, θt]/〈xn − 1〉, C3 =
〈g3(x)〉 ⊆ Fq[x, θt]/〈xn − 1〉 and C = (1 − v2)C1 ⊕ p+1

2 (v2 + v)C2 ⊕ p+1
2 (v2 − v)C3, we find that

C = {c(x) | c(x) = (1 − v2)f1(x) + p+1
2 (v2 + v)f2(x) + p+1

2 (v2 − v)f3(x), f1(x) ∈ C1, f2(x) ∈
C2, f3(x) ∈ C3}. Therefore

C ⊆ 〈(1− v2)g1(x),
p+ 1

2
(v2 + v)g2(x),

p+ 1

2
(v2 − v)g3(x)〉 ⊆ R[x, θt]/〈xn − 1〉.

For any (1 − v2)k1(x)g1(x) + p+1
2 (v2 + v)k2(x)g2(x) + p+1

2 (v2 − v)k3(x)g3(x) ∈
〈(1− v2)g1(x), p+1

2 (v2 + v)g2(x), p+1
2 (v2 − v)g3(x)〉 ⊆ R[x, θt]/〈xn − 1〉, where k1(x), k2(x), k3(x) ∈

R[x, θt]/〈xn − 1〉, there are r1(x), r2(x), r3(x) ∈ Fq[x, θt] such that

(1− v2)k1(x) = (1− v2)r1(x),

p+ 1

2
(v2 + v)k2(x) =

p+ 1

2
(v2 + v)r2(x)

and
p+ 1

2
(v2 − v)k3(x) =

p+ 1

2
(v2 − v)r3(x).

This means that

〈(1− v2)g1(x),
p+ 1

2
(v2 + v)g2(x),

p+ 1

2
(v2 − v)g3(x)〉 ⊆ C.

Hence 〈(1 − v2)g1(x), p+1
2 (v2 + v)g2(x), p+1

2 (v2 − v)g3(x)〉 = C. Since |C| = |C1||C2||C3|, |C| =

q3n−deg(g1(x))−deg(g2(x))−deg(g3(x)).

Theorem 4.6. Let C1, C2 and C3 be skew cyclic codes over Fq with monic generator polynomials
g1(x), g2(x) and g3(x) respectively. If C = (1−v2)C1⊕ p+1

2 (v2+v)C2⊕ p+1
2 (v2−v)C3 is a skew cyclic

code of length n over R, then there is a unique polynomial g(x) ∈ R[x, θt] such that C = 〈g(x)〉 and
g(x) is a right divisor of xn− 1, where g(x) = (1− v2)g1(x) + p+1

2 (v2 + v)g2(x) + p+1
2 (v2− v)g3(x).

Proof. By Theorem 4.5, we may assume that C = 〈(1 − v2)g1(x), p+1
2 (v2 + v)g2(x), p+1

2 (v2 −
v)g3(x)〉, where g1(x), g2(x) and g3(x) are the monic generator polynomials of C1, C2 and C3

respectively. Let g(x) = (1− v2)g1(x) + p+1
2 (v2 + v)g2(x) + p+1

2 (v2 − v)g3(x). Clearly, 〈g(x)〉 ⊆ C.
Note that

(1− v2)g1(x) = (1− v2)g(x),

p+ 1

2
(v2 + v)g2(x) =

p+ 1

2
(v2 + v)g(x)

and
p+ 1

2
(v2 − v)g3(x) =

p+ 1

2
(v2 − v)g(x),
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so C ⊆ 〈g(x)〉. Hence C = 〈g(x)〉. Since g1(x), g2(x) and g3(x) are monic right divisors of xn − 1,
there are r1(x), r2(x), r3(x) ∈ Fq[x, θt]/〈xn − 1〉 such that

xn − 1 = r1(x)g1(x) = r2(x)g2(x) = r3(x)g3(x).

This implies that

xn − 1 = [(1− v2)r1(x) +
p+ 1

2
(v2 + v)r2(x) +

p+ 1

2
(v2 − v)r3(x)]g(x).

Hence, g(x)|xn − 1. The uniqueness of g(x) can be followed from that of g1(x), g2(x) and g3(x).

The following corollary is an immediate consequence of the above theorem:

Corollary 4.7. Every left submodule of R[x, θt]/〈xn − 1〉 is principally generated.

In order to study the generator polynomials of the dual code of a skew cyclic code over R, we need
the following definition which can be found in [8].

Let g(x) = g0 + g1x + · · · + grx
r and h(x) = h0 + h1x + · · · + hn−rx

n−r be polynomials in
Fq[x, θt] such that xn − 1 = h(x)g(x) and C ′ be the skew cyclic code generated by g(x) in
Fq[x, θt]/〈xn − 1〉. Then the dual code of C ′ is a skew cyclic code generated by the polynomial
h̄(x) = hn−r + θt(hn−r−1)x+ · · ·+ θn−rt (h0)xn−r.

In view of Theorems 3.5 & 4.6, we have the following corollary:

Corollary 4.8. Let C1, C2 and C3 be skew cyclic codes over Fq and g1(x), g2(x) and g3(x) be
their generator polynomials such that

xn − 1 = h1(x)g1(x) = h2(x)g2(x) = h3(x)g3(x) ∈ Fq[x, θt].

If C = (1− v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3, then

C⊥ = 〈(1− v2)h̄1(x) +
p+ 1

2
(v2 + v)h̄2(x) +

p+ 1

2
(v2 − v)h̄3(x)〉

and |C⊥| = qdeg(g1(x))+deg(g2(x))+deg(g3(x)).

5 Idempotent generators of skew cyclic codes over R

The idempotent generators of skew cyclic codes over Fq studied by Gursoy et al. [11] under some
restrictions. In fact, they proved the following results:

Lemma 5.1. [11, Lemma 2] Let g(x) ∈ Fq[x, θt] be a monic right divisor of xn−1. If g.c.d.(n,mt) =
1, then g(x) ∈ Fpt [x], where mt = m/t denotes the order of the automorphism θt.

Lemma 5.2. [11, Theorem 6] Let g(x) ∈ Fq[x, θt] be a monic right divisor of xn − 1 and C =
〈g(x)〉. If g.c.d.(n,mt) = 1 and g.c.d.(n, q) = 1, then there exists an idempotent polynomial
e(x) ∈ Fq[x, θt]/〈xn − 1〉 such that C = 〈e(x)〉.

Now, we give the idempotent generators of skew cyclic codes over R.
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Theorem 5.3. Let C = (1− v2)C1⊕ p+1
2 (v2 + v)C2⊕ p+1

2 (v2− v)C3 be skew cyclic code of length
n over R and g.c.d.(n,mt) = 1, g.c.d.(n, q) = 1. Then Ci has idempotent generator, say ei(x) for
i = 1, 2, 3. Moreover e(x) = (1− v2)e1(x) + p+1

2 (v2 + v)e2(x) + p+1
2 (v2 − v)e3(x) is an idempotent

generator of C, that is, C = 〈e(x)〉.

Proof. In the light of Theorem 4.6 and Lemma 5.2 , the proof follows.

The following theorem gives the number of skew cyclic codes of length n over R.

Theorem 5.4. Let g.c.d.(n,mt) = 1 and xn− 1 =
r∏

i=1

gsii (x), where gi(x) ∈ Fq[x, θt] is irreducible.

Then the number of skew cyclic codes of length n over R is
r∏

i=1

(si + 1)3.

Proof. In view of Lemma 5.1 if g.c.d.(n,mt) = 1, then gi(x) ∈ Fpt [x]. In

this case the number of skew cyclic codes of length n over Fq is
r∏

i=1

(si + 1). Since

C = (1 − v2)C1 ⊕ p+1
2 (v2 + v)C2 ⊕ p+1

2 (v2 − v)C3,
r∏

i=1

(si + 1)3 is the number of skew

cyclic codes of length n over R. When g.c.d.(n,mt) 6= 1, the factorization of xn − 1 is not unique
in Fq[x, θt], therefore we can not say anything certain about the number of skew cyclic codes in
this case.

Now, we close our discussion with the following examples:

Example 4.11 Let R = F9 + vF9 + v2F9 be the ring with v3 = v and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[α], α2 + 1 = 0. Then

x4 − 1 = (x+ 1)(x+ 2)(x+ α)(x+ 2α) ∈ F9[x, θ].

If g1(x) = g2(x) = g3(x) = x + 2α, then C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉
are the skew cyclic codes over F9 with parameters [4, 3, 2]. Therefore, the code
C = 〈(1 − v2)g1(x) + p+1

2 (v2 + v)g2(x) + p+1
2 (v2 − v)g3(x)〉 = 〈x + 2α〉 is a skew cyclic

code of length 4 over R. Further, the Gray image ϕ(C) of C is a skew 3-quasi cyclic code over F9

with parameters [12, 9, 2], which is an optimal code.

Example 4.12 Let R = F9 + vF9 + v2F9 be the ring with v3 = v and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[α], α2 + 1 = 0. Then

x5 − 1 = (x+ 2)(x4 + x3 + x2 + x+ 1) ∈ F9[x, θ].

Since g.c.d.(5, 2) = 1, there exist 63 nonzero skew cyclic codes of length 5 over R.

Let g1(x) = g2(x) = g3(x) = x + 2. Then C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 and
C3 = 〈g3(x)〉 are the skew cyclic codes of length 5 over F9. Therefore, the code
C = 〈(1 − v2)g1(x) + p+1

2 (v2 + v)g2(x) + p+1
2 (v2 − v)g3(x)〉 = 〈x + 2〉 is a skew cyclic code

of length 5 over R. Also, the Gray image ϕ(C) of C is a skew 3-quasi cyclic code of length 15 over
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F9.

Example 4.13 Let R = F9 + vF9 + v2F9 be the ring with v3 = v and θ be the Frobenius
automorphism over F9, that is, θ(r) = r3 for any r ∈ F9, where F9 = F3[α], α2 + α+ 2 = 0. Then

x6 − 1 = (2 + (2 + α)x+ (1 + 2α)x3 + x4)(1 + (2 + α)x+ x2)

= (2 + x+ (2 + 2α)x2 + x3)(1 + x+ 2αx2 + x3)

∈ F9[x, θ].

If g1(x) = g2(x) = 2 + (2 + α)x + (1 + 2α)x3 + x4 and g3(x) = 2 + x + (2 + 2α)x2 + x3, then
C1 = 〈g1(x)〉, C2 = 〈g2(x)〉 and C3 = 〈g3(x)〉 are the skew cyclic codes of length 6 over F9 with
dimensions 2, 2 and 3 respectively. Thus the code

C = 〈(1− v2)g1(x) +
p+ 1

2
(v2 + v)g2(x) +

p+ 1

2
(v2 − v)g3(x)〉

is a skew cyclic code of length 6 over R. Also, the Gray image ϕ(C) of C is a skew 3-quasi cyclic
code over F9 with parameters [18, 7, 4].

6 Conclusion

In this paper, we have studied the structural properties of skew cyclic codes over the principal
ideal ring Fq + vFq + v2Fq by taking the automorphism θt : a + vb + v2c 7→ ap

t

+ vbp
t

+ v2cp
t

.
We have proved that the Gray image of a skew cyclic code of length n over Fq + vFq + v2Fq is a
skew 3-quasi cyclic code of length 3n over Fq. It has also been shown that skew cyclic codes over
Fq + vFq + v2Fq are principally generated. Further, we have obtained idempotent generators of
skew cyclic codes over Fq + vFq + v2Fq.
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