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Abstract

The author introduces two new subclasses of functions which are analytic in the open unit disk.
He obtains coefficient inequalities for functions belonging to this class. Furthermore, he gives
some results associated with distortion bounds.
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1 Introduction

Let A denote the class of functions f(z) normalized in the form:

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disk U := {z : z ∈ C, |z| < 1} . Further, let S denote the subclass
of A consisting of all functions f(z) which are also univalent in U.

We denote by S∗ (α) and K (α), the familiar subclasses of A consisting of functions which are,
respectively, starlike of order α in U , convex of order α in U . Thus, by definition, we have

S∗ (α) :=

{
f : f ∈ A,<e

(
zf ′(z)

f(z)

)
> α, 0 ≤ α < 1, z ∈ U

}
, (1.2)

K (α) :=

{
f : f ∈ A,<e

(
1 +

zf ′′(z)

f ′(z)

)
> α, 0 ≤ α < 1, z ∈ U

}
. (1.3)

It is easily observed from the definitions (1.2)-(1.3) that

f(z) ∈ K (α)⇔ zf ′(z) ∈ S∗ (α) .

(See for details, [2] and [3].)
Silverman [6] gave the following coefficient inequalities for the function classes S∗ (α) and K (α).

Theorem 1.1 ([6]) If f(z) ∈ A satisfies the following coefficient inequality:

∞∑
n=2

(n− α) |an| ≤ 1− α (0 ≤ α < 1) , (1.4)
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then ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− α(z ∈ U, 0 ≤ α < 1) (1.5)

that is, that f(z) ∈ S∗ (α) .

Theorem 1.2 ([6]) If f(z) ∈ A satisfies the following coefficient inequality:

∞∑
n=2

n (n− α) |an| ≤ 1− α (0 ≤ α < 1) , (1.6)

then ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < 1− α (z ∈ U, 0 ≤ α < 1) (1.7)

that is, that f(z) ∈ K (α) .

Let A(n) denote the class of functions of the form

f(z) = z −
∞∑

k=n+1

akz
k (ak ≥ 0, n ∈ N = {1, 2, 3, ...}) (1.8)

that are analytic in the unit disk U . A function f(z) ∈ A(n) is said to be in the class P (n, λ, α) if
it satisfies

<e
{

zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ) f(z)

}
> α (1.9)

for some α (0 ≤ α < 1), λ (0 ≤ λ ≤ 1) and for all z ∈ U.
Altıntas [1] gave the following coefficient inequalities for the function class P (n, λ, α).

Theorem 1.3 A function f(z) ∈ A(n) is in the class P (n, λ, α) if and only if

∞∑
k=n+1

(k − α) (λk − λ+ 1) ak ≤ 1− α. (1.10)

More recently, Owa, Ochiai and Srivastava [4], ( see also [5] ) considered the subclass M (α) of
the class A consisting of functions f(z) such that∣∣∣∣ f(z)

zf ′(z)
− 1

2α

∣∣∣∣ < 1

2α
(z ∈ U, 0 < α < 1) . (1.11)

Owa, Ochiai and Srivastava [4] proved the following theorems

Theorem 1.4 Let 0 < α < 1. If f(z) ∈ A satisfies the following coefficient inequality:

∞∑
n=2

(n− α) |an| ≤
1

2
(1− |1− 2α|) =

{
α;

(
0 < α ≤ 1

2

)
1− α;

(
1
2 ≤ α < 1

) , (1.12)
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then f(z) ∈ M (α) .

For f(z) belonging to A, Salagean [5] has introduced the following operator called the Salagean
operator:

D0f(z) = f(z)

D1f(z) = Df(z) = zf
′
(z) = z +

∑∞
n=2 nanz

n

...

DΩf(z) = D(DΩ−1f(z)) = z(z +
∑∞
n=2 n

Ω−1anz
n)

′
= z +

∑∞
n=2 n

Ωanz
n

where Ω ∈ N0 = N ∪ {0}.
In this paper, we consider a new subclass M (α, λ,Ω) of the class A consisting of functions f(z)

such that ∣∣∣∣ (1− λ) (DΩf(z)) + λ(DΩ+1f(z))

(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ −
1 + λ

2α

∣∣∣∣ < 1 + λ

2α
(1.13)

z ∈ U, 0 < α < 1, 0 ≤ λ < 1, Ω ∈ N0.
Now, we shall give a sufficient coefficient inequality for functions to belong to the class M (α, λ,Ω).

2 The coefficient inequality for the class M(α, λ,Ω)

Theorem 2.1 Let 0 < α < 1 and 0 ≤ λ < 1. If f(z) ∈ A satisfies the following coefficient
inequality:

∞∑
n=2

nΩ (λn+ 1− λ) {|2α− (1 + λ)n|+ (1 + λ)n} |an| ≤ (1 + λ)− |2α− (1 + λ)|

=

{
2α; 0 < α ≤ λ+1

2

2(λ+ 1− α); λ+1
2 ≤ α < 1 + λ

(2.1)

then f(z) ∈ M (α, λ,Ω) .

Proof. By virtue of the condition (1.13), we have to show that∣∣∣∣( 2α

1 + λ

)
(1− λ) (DΩf(z)) + λ(DΩ+1f(z))

(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ − 1

∣∣∣∣ < 1 (2.2)

We first observe that ∣∣∣∣( 2α

1 + λ

)
(1− λ) (DΩf(z)) + λ(DΩ+1f(z))

(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ − 1

∣∣∣∣
=

∣∣∣∣∣∣
2α
[
(1− λ) (DΩf(z)) + λ(DΩ+1f(z))

]
− (λ+ 1)

[
(1− λ) z(DΩf(z))

′
+ λz(DΩ+1f(z))

′
]

(λ+ 1) [(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ ]

∣∣∣∣∣∣
=

∣∣∣∣ [2α− (1 + λ)] z +
∑∞
n=2 n

Ω [λn+ (1− λ)] [2α− (1 + λ)n] anz
n

(1 + λ) z +
∑∞
n=2 n

Ω+1 (1 + λ) [λn+ (1− λ)] anzn

∣∣∣∣
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≤
|2α− (1 + λ)|+

∑∞
n=2 n

Ω [λn+ (1− λ)] |2α− (1 + λ)n| |an| |z|n−1

(1 + λ)−
∑∞
n=2 n

Ω+1 (1 + λ) [λn+ (1− λ)] |an| |z|n−1

<
|2α− (1 + λ)|+

∑∞
n=2 n

Ω [λn+ (1− λ)] |2α− (1 + λ)n| |an|
(1 + λ)−

∑∞
n=2 n

Ω+1 (1 + λ) [λn+ (1− λ)] |an|
. (2.3)

By using the coefficient inequality (2.1), we can write

∞∑
n=2

nΩ (λn+ 1− λ) |2α− (1 + λ)n| |an|+
∞∑
n=2

nΩ+1 (λn+ 1− λ) (1 + λ) |an| ≤ (1 + λ)−|2α− (1 + λ)|

or

∞∑
n=2

nΩ (λn+ 1− λ) |2α− (1 + λ)n| |an| ≤ (1 + λ)−|2α− (1 + λ)|−
∞∑
n=2

nΩ+1 (1 + λ) (λn+ 1− λ) |an| .

By using this last inequality in (2.3), we obtain∣∣∣∣( 2α

1 + λ

)
(1− λ) (DΩf(z)) + λ(DΩ+1f(z))

(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ − 1

∣∣∣∣
<
|2α− (1 + λ)|+ (1 + λ)− |2α− (1 + λ)| −

∑∞
n=2 n

Ω+1 (1 + λ) {(1− λ) + λn} |an|
(1 + λ)−

∑∞
n=2 n

Ω+1 (1 + λ) {(1− λ) + λn} |an|
= 1

or ∣∣∣∣ (1− λ) (DΩf(z)) + λ(DΩ+1f(z))

(1− λ) z(DΩf(z))′ + λz(DΩ+1f(z))′ −
1 + λ

2α

∣∣∣∣ < 1 + λ

2α
,

that is, f(z) ∈ M (α, λ,Ω) .

Theorem 2.2 If f(z) ∈ M (α, λ,Ω) , then Re

{
(1−λ)z(DΩf(z))

′
+λz(DΩ+1f(z))

′

(1−λ)DΩf(z)+λDΩ+1f(z)

}
> α

1+λ .

Proof. Let ϕ (z) = zF
′
(z)

F (z) and F (z) = (1− λ)DΩf (z) + λDΩ+1f (z), f(z) being an element of

M (α, λ,Ω), we write ∣∣∣∣ 1

ϕ (z)
− 1 + λ

2α

∣∣∣∣ < 1 + λ

2α
.

By simple calculation, we can obtain∣∣∣∣ 1

ϕ (z)
− 1 + λ

2α

∣∣∣∣ < 1 + λ

2α
⇒
∣∣∣∣ 1

ϕ (z)
− 1 + λ

2α

∣∣∣∣2 < (1 + λ

2α

)2

⇒

∣∣∣∣2α− (1 + λ)ϕ (z)

2αϕ (z)

∣∣∣∣2 < (1 + λ

2α

)2

⇒ |2α− (1 + λ)ϕ (z)|2 < (1 + λ)
2 |ϕ (z)|2 ⇒

(2α− (1 + λ)ϕ (z))
(

2α− (1 + λ)ϕ (z)
)
< (1 + λ)

2
ϕ (z)

(
ϕ (z)

)
⇒

4α2 < 2α (1 + λ)
{
ϕ (z) + ϕ (z)

}
⇒
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4α2 < 2α (1 + λ) {2Reϕ (z)} ⇒ Re {ϕ (z)} > α

1 + λ
.

Thus, we obtain Re

{
(1−λ)z(DΩf(z))

′
+λz(DΩ+1f(z))

′

(1−λ)DΩf(z)+λDΩ+1f(z)

}
> α

1+λ .

Remark 2.3 If f(z) ∈ M (α, λ,Ω) , then F (z) ∈ S∗
(

α
1+λ

)
.

Remark 2.4 Let denote by M∗ (α, λ,Ω) the subclass of the class M (α, λ,Ω) which satisfies the
coefficient inequality (2.1) for some α and which consists of thef (z) ∈M (α, λ,Ω).

3 Some results associated with distortion bounds

In 2006, S.Owa, K.Ochiai and H.M.Srivastava [4] have represented the integro-differential operator
for a function f (z) ∈ A which is denoted in the form of Ikf (z) and defined as shown below:

I−1f (z) = f
′
(z) , I0f (z) = f (z)

and

Ikf (z) =

∫ z

0

Ik−1f (t) dt

for k ∈ N = {1, 2, 3, ...} .
Using this definition in (1.1), we obtain

Ikf(z) =
1

(k + 1)!
zk+1 +

∞∑
n=2

n!

(n+ k)!
anz

n+k (3.1)

Now, we should give some results related to the distortion bounds for the functions belonging to
the subclass M∗ (α, λ,Ω) using integro-differential operator.

Theorem 3.1 If f (z) ∈M∗ (α, λ,Ω) , then we have following inequality:

1

(k + 1)!
|z|k+1 − (1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2 ≤ |Ikf (z)|

≤ 1

(k + 1)!
|z|k+1

+
(1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2

for z ∈ U , k ∈ N ∪ {−1, 0}, 0 < α < 1, 0 ≤ λ < 1 and Ω ∈ N0 = N ∪ {0}.
Proof: If the absolute of both hands of the equality (3.1) is taken and the triangle inequality is

applied, we obtain

|Ikf(z)| =

∣∣∣∣∣ 1

(k + 1)!
zk+1 +

∞∑
n=2

n!

(n+ k)!
anz

n+k

∣∣∣∣∣ ≤ 1

(k + 1)!
|z|k+1

+ |z|k+2
∞∑
n=2

n!

(n+ k)!
|an|

<
1

(k + 1)!
|z|k+1

+ |z|k+2
∞∑
n=2

n!

(n+ k)!
|an| . (3.2)
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Besides, we can write

1

2!
(k + 2)!2Ω (1 + λ) {|2 (1 + λ)− 2α|+ 2 (1 + λ)}

∞∑
n=2

n!

(n+ k)!
|an|

≤ 1

2!
(k + 2)!2Ω (1 + λ) {|2 (1 + λ)− 2α|+ 2 (1 + λ)} 2!

(k + 2)!

∞∑
n=2

|an|

≤
∞∑
n=2

nΩ (λn+ (1− λ)) {|2α− (1 + λ)n|+ n (1 + λ)} |an|

≤ (1 + λ)− |2α− (1 + λ)|

or
∞∑
n=2

n!

(n+ k)!
|an| ≤

(1 + λ)− |2α− (1 + λ)|
(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

.

Using this last inequality in (3.2), we obtain

|Ikf (z)| ≤ 1

(k + 1)!
|z|k+1

+
(1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2

. (3.3)

With similar operations, we can write

|Ikf (z)| ≥ 1

(k + 1)!
|z|k+1 − (1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2

. (3.4)

By joining (3.3) and (3.4), we obtain

1

(k + 1)!
|z|k+1 − (1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2 ≤ |Ikf (z)|

≤ 1

(k + 1)!
|z|k+1

+
(1 + λ)− |2α− (1 + λ)|

(k + 2)!2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|k+2

.

Taking k = −1, 0, 1 in the Theorem 3.1, we obtain the following Corollary 3.2.

Corollary 3.2 Iff(z) ∈M∗ (α, λ,Ω), then we have the following inequalities:

1− (1 + λ)− |2α− (1 + λ)|
2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

|z| ≤
∣∣∣f ′

(z)
∣∣∣ ≤ 1 +

(1 + λ)− |2α− (1 + λ)|
2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

|z|

for k = −1,

|z| − (1 + λ)− |2α− (1 + λ)|
2Ω+1 (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

|z|2 ≤ |f (z)|

≤ |z|+ (1 + λ)− |2α− (1 + λ)|
2Ω+1 (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

|z|2
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for k = 0 and

1

2
|z|2 − (1 + λ)− |2α− (1 + λ)|

6.2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}
|z|3 ≤ |I2f (z)|

≤ 1

2
|z|2 +

(1 + λ)− |2α− (1 + λ)|
6.2Ω (1 + λ) {|α− (1 + λ)|+ (1 + λ)}

|z|3

for k = 1.
Putting λ = 0, Ω = 0 in Theorem 3.1, we get the Theorem 3.3 given by Owa, Ochiai and

Srivastava [4].

Theorem 3.3 If f(z) ∈M∗ (α), then we have the following inequalities:

1

(k + 1)!
|z|k+1 − 1− |1− 2α|

(k + 2)! (2− α)
|z|k+2 ≤ |Ikf (z)| ≤ 1

(k + 1)!
|z|k+1

+
1− |1− 2α|

(k + 2)! (2− α)
|z|k+2

for z ∈ U , k ∈ N ∪ {−1, 0}.
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