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Abstract

Families of Newton type methods for solving non-linear equations are obtained.
These families consist of second and third order methods. Concrete two step meth-
ods are presented which are obtained as a unification of some existing methods in
the literature and the standard secant method. It is shown that by this unification,
the order of convergence of the methods increases. All the methods presented in
this paper are well supported by examples.
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1 Introduction

Non-linear equations arise in almost all areas of sciences, in particular, in physical and
mathematical sciences. Practically, it is rarely possible to solve a non-linear equation
analytically. So iterative methods are generally employed in such situations. The most
common among such methods for solving a non-linear equation f(x) = 0 are the Newton
method

xn+1 = xn −
f(xn)

f ′(xn)

and the secant method

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn).

Over the years, tremendous variants of these methods have appeared showing one
or the other advantages over these methods in some sense. In [6], Sharma studied the
following variant of the Newton method:

xn+1 = xn −
f(xn)

f ′(xn)− pf(xn)
, (1.1)

where p is a real number. For p = 0, this method coincides with the Newton method. It

was shown in [6] that method (1.1) is of order 2 for general p and if p = f ′′(xn)
2f ′(xn) then it

is of order 3. In fact, the corresponding method is the well known Halley method.
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In the present paper, we begin our study by reinvestigating method (1.1). We produce
a family of second order methods of which (1.1) is a member. We go on further with our
procedure and produce another family around (1.1) consisting of third order methods.
The motivation of the construction of such families comes from the work of Gander [2]
and Jain [3].

Next, in order to increase the order of Newton method, Kasturiarachi [4] used it-
erations, alternatively, from Newton method and from secant method. The resulting
method was proved to be of order 3. Also, in [3], Jain mixed iterations from the well
known Steffensen method with the secant method and proved his method to be of third
order as compared to the quadratic convergent Steffensen method. We shall give the
same treatment to method (1.1) by mixing its iterations with the secant method and
show that the corresponding method is of order 3 (see Theorem 3).

Also, in this paper, we discuss a Steffensen type method which is obtained by replacing

f ′(x) in (1.1) by the expression f(x+f(x))−f(x)
f(x) so that the method becomes derivative

free. It is proved that the method is still of second order (see Theorem 4) and if its
iterations are mixed with secant method, it becomes of order 3 (See Theorem 5). All the
methods presented here are supported by examples.

2 A family of Newton type methods

We use the idea of Gander [2] and Jain [3] to prove the following

Proposition 2.1. Let the functions f and G have sufficient number of continuous deriva-
tives in a neighbourhood of α which is a simple zero of f. Consider the function

F (x) = x− f(x)

f ′(x)− pf(x)
G(x),

p being a real number. Then the iteration formula

xn+1 = F (xn), (2.1)

is of second order if and only if G(α) = 1.

Proof. Let us write
F (x) = x−A(x)G(x),

where we have denoted

A(x) =
f(x)

f ′(x)− pf(x)
. (2.2)

Clearly, A(α) = 0 and also it can be easily checked that A′(α) = 1. Since

F ′(x) = 1−A(x)G′(x)−A′(x)G(x)

we find that
F ′(α) = 1−A(α)G′(α)−A′(α)G(α) = 1−G(α). (2.3)
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It is known, see e.g., [5], that a numerical method

xn+1 = J(xn)

is of second order if and only if J ′(β) = 0, where β is a simple zero of the function J .
Consequently, in our case, the method (2.1) is of second order if and only if F ′(α) = 0
which in view of (2.3) gives that

G(α) = 1

and we are done. q.e.d.

Remark 2.2. In order to make use of Proposition 1, the zero α of f needs to be known
in advance which is not generally the case in practice. To handle this situation, we argue
as follows. Note that A(α) = 0. Thus if a function G1 is chosen such that

G(x) = G1(A(x)),

then G(α) = G1(0). Consequently, the condition G(α) = 1 can be replaced by G1(0) = 1.

In view of Remark 1, Proposition 1 leads to the following theorem.

Theorem 2.3. Let f be a differentiable function and G1 be any function with G1(0) = 1.
Then the method

xn+1 = xn −
f(xn)

f ′(xn)− pf(xn)
G1(A(xn))

is of second order, where the function A is as defined by (2.2).

Remark 2.4. The method described in Theorem 1 represents a family of second order
methods. If G1 is chosen to be the constant function G1(x) = 1, then this method is the
one considered by Sharma [6] which for p = 0 becomes the standard Newton method.
Note that there could be infinitely many possibilities for choosing G1, e.g., the polynomial
function

G1(x) = 1 + a0x+ a1x
2 + ...+ anx

n

works for any choice n ≥ 0 and a0, a1, ..., an.

Next, we generate a family of third order methods. We prove the following.

Proposition 2.5. Let f, F,G, α be as in Proposition 1. Then the iteration formula (2.1)
is of third order if and only if

G(α) = 1 and G′(α) =
1

2

(
f ′′(α)− 2pf ′(α)

f ′(α)

)
.
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Proof. As in the proof of Proposition 1, we write

F (x) = x−A(x)G(x),

where A is as given in (2.2). Recall that

A(α) = 0 and A′(α) = 1

so that
F ′(α) = 1−G(α). (2.4)

Also, it can be calculated that

A′′(α) =
−f ′′(α) + 2pf ′(α)

f ′(α)

which along with the above calculations gives that

F ′′(α) = −2G′(α) +
f ′′(α)− 2pf ′(α)

f ′(α)
. (2.5)

Now, it is known, see e.g., [5], that a numerical method

xn+1 = J(xn)

is of third order if and only if

J ′(β) = 0 and J ′′(β) = 0,

where β is a simple zero of the function J . In our case, in view of (2.4) and (2.5), the
method (2.1) is of third order if and only if

G(α) = 1 and G′(α) =
1

2

(
f ′′(α)− 2pf ′(α)

f ′(α)

)
.

This proves the assertion. q.e.d.

Remark 2.6. As in Remark 1, Proposition 2 cannot be used unless the zero of f is
known. Therefore some more work is to be done before this proposition could be used
effectively. In this regard, we prove the following.

Theorem 2.7. Let f be a function which is differentiable at least twice and H be a
function satisfying H(0) = 1 and H ′(0) = 1

2 . Then the iteration method

xn+1 = F (xn),

where

F (x) = x− f(x)

f ′(x)− pf(x)
H(B(x)),
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with

B(x) =
f(x)(f ′′(x)− 2pf ′(x))

f ′(x)
(2.6)

is of third order.

Proof. Clearly B(α) = 0. Also, it can be calculated that

B′(α) =
(f ′′(α)− 2pf ′(α))

f ′(α)
.

Using this setting, the conditions G(α) = 1 and G′(α) = 1
2

(
f ′′(α)−2pf ′(α)

f ′(α)

)
in Proposition

2 can be replaced respectively by H(0) = 1 and H ′(0) = 1
2 . The assertion thus follows.

q.e.d.

3 A method of order 3

Recall that in [6], the following method was studied:

xn+1 = xn −
f(xn)

f ′(xn)− pf(xn)
, (3.1)

which is of order 2. We shall prove that if we use iterates alternatively from the method
(3.1) and the standard secant method, then the resulting method will be of order 3. Thus
we propose the following method:

xn+1 = xn −
xn − xn

f(xn)− f(xn)
f(xn), (3.2)

where

xn = xn −
f(xn)

f ′(xn)− pf(xn)
. (3.3)

Such techniques have been used by Kasturiarachi [4] and Jain [3]. Kasturiarachi
mixed the standard Newton method with the secant method and proved that his method
is of order 3, i.e., one order higher than that of Newton method. Similarly, Jain mixed
the standard Steffensen method with the secant method and proveed his method to be
of order 3, again, one order higher than that of the Steffensen method. We prove the
following:

Theorem 3.1. Let the function f have sufficient number of continuous derivatives in a
neighbourhood of α which is a simple zero of f , i.e., f ′(α) 6= 0. Then the method (3.2)

is of order 3 whenever pf(xn)
f ′(xn) < 1, xn being the iterates of zeros of f .
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Proof. The expression (3.3) can be written as

xn = xn −
f(xn)

f ′(xn)

1[
1− p f(xn)

f ′(xn)

]
= xn −

f(xn)

f ′(xn)

[
1− p f(xn)

f ′(xn)

]−1

= xn −
f(xn)

f ′(xn)

[
1 + p

f(xn)

f ′(xn)
+

(
p
f(xn)

f ′(xn)

)2

+ ...

]

= xn −
f(xn)

f ′(xn)
− p

(
f(xn)

f ′(xn)

)2

− p2

(
f(xn)

f ′(xn)

)3

− ... (3.4)

Now, let en be the error in the term xn, i.e., let xn = α + en. Then it is easy to see
using Taylor’s expansion that

f(xn)

f ′(xn)
=

f(α+ en)

f ′(α+ en)
= en −Ae2

n + o(e3
n), (3.5)

where A = 1
2
f ′′(α)
f ′(α) . Thus, if en is the error in the term xn, i.e., if xn = α + en, then by

using (3.5) in (3.4), the error in (3.3) can be calculated as

en = en −
[
en −Ae2

n + o(e3
n)
]
− p

[
en −Ae2

n + o(e3
n)
]2

+ o(e3
n)

= (A− p)e2
n + o(e3

n). (3.6)

Next, it is easy to see that

f(xn)− f(xn) = (en − en)f ′(α)
[
1 + (en + en)A+ o(e2

n)
]

so that the error equation for (3.2) can be written as

en+1 = en −
(en − en)

[
enf

′(α) +
e2n
2 f
′′(α) + o(e3

n)
]

(en − en)f ′(α) [1 + (en + en)A+ o(e2
n)]

= en −
[
en +Ae2

n + o(e3
n)
]

1 + (en + en)A+ o(e2
n)

=
[
en +Ae2

n + o(e3
n)
] [

1 + (en + en)A+ o(e2
n)
]−1

= Aenen + e2
n(en + en)A2 + o(e3

n). (3.7)

Now, using the value of en from (3.6) in the last equation, we get

en+1 ≈ o(e3
n). (3.8)

Consequently, the method (3.2) is of order 3. q.e.d.
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Remark 3.2. When p = 0, method (3.2) coincides with the method of Kasturiarachi
[4]. Therefore our method (3.2) unifies both the method of Kasturiarchi as well as of
Sharma [6].

Remark 3.3. Although, theoretically method (3.2) works very well but because of the
machine limitations, there could be situations when in the denominator of (3.3), we have
subtraction of two almost equal floating point numbers. This observation was also made
by Sharma [6] for his method. To avoid such situations, we choose p > 0 or p < 0
accordingly as f(x)f ′(x) ≤ 0 or f(x)f ′(x) ≥ 0 respectively.

Example 3.4. Consider the non-linear equation

cosx− xex = 0.

This equation has a simple root in the interval (0, 1). Table 1 gives a comparison of a
root of the above equation as obtained by Newton method, the method (3.1) given by
Sharma [6] and our method (3.2) for p = 1,−1, 0.5.
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Table 1.
Method n xn

1 1
2 0.6530794035261767
3 0.5313433676065809
4 0.5179099131356748

Newton 5 0.5177573831648338
6 0.5177573636824587
7 0.5177573636824583
8 0.5177573636824583
9 0.5177573636824583
1 1
2 0.5802735237837837
3 0.5190247092041577
4 0.5177579050010849

Method (3.1) 5 0.5177573636825571
6 0.5177573636824583
7 0.5177573636824583
8 0.5177573636824583
1 1

Method (3.2) 2 0.501511456095896
(with p = 1) 3 0.5177579444077034

4 0.5177573636824583
1 1

Method (3.2) 2 0.5859726827620504
(with p = −1) 3 0.5181745832943766

4 0.5177573637940752
5 0.5177573636824583
1 1

Method (3.2) 2 0.5377490949862871
(with p = 0.5) 3 0.5177595697282191

4 0.5177573636824583
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4 Steffensen type methods of higher order

The standard Steffensen method differ from the Newton method in the sense that the
term f ′(x) in Newton method is replaced by the expression f(x+f(x))−f(x)

f(x) . Consequently

the Newton method becomes

xn+1 = xn −
f(xn)2

f(xn + f(xn))− f(xn)

which, in fact, is the Steffensen method. It is already known that this method is of order
2 and, of course, is derivative free.

Let us formulate a Steffensen type method which is obtained from the method (3.1)

by replacing the term f ′(x) with f(x+f(x))−f(x)
f(x) , i.e., the method

xn+1 = xn −
f(xn)2

f(xn + f(xn))− f(xn)− pf(xn)2
. (4.1)

In the theorem below, we prove that this method is of second order.

Theorem 4.1. Let the function f have sufficient number of continuous derivatives in a
neighbourhood of α which is a simple zero of f , i.e., f ′(α) 6= 0. Then the method (4.1)
is of order 2.

Proof. Let en be the error in xn, i.e., xn = α + en. The Taylor series expansion around
α gives

f(α+ en) = enf
′(α) +

e2
n

2
f ′′(α) + o(e3

n).

Therefore
f(α+ en)2 = e2

nf
′(α)2 + e3

nf
′(α)f ′′(α) + o(e4

n)

and

f(α+ en + f(α+ en)) = en(1 + f ′(α))f ′(α) +
e2
n

2

[
f ′(α) + (1 + f ′(α))2

]
f ′′(α)

+o(e3
n).

Consequently, we get

f(α+ en + f(α+ en))− f(α+ en)− pf(α+ en)2

= en(1 + f ′(α))f ′(α) +
e2
n

2

[
f ′(α) + (1 + f ′(α))2

]
f ′′(α)− enf ′(α)− e2

n

2
f ′′(α)

−pe2
nf
′(α)2 + o(e3

n)

= enf
′(α)2 +

e2
n

2
f ′(α)2

[
f ′′(α)− 2p+

3f ′′(α)

f ′(α)

]
+ o(e3

n)

= enf
′(α)2

[
1 +

en
2

(
f ′′(α)− 2p+

3f ′′(α)

f ′(α)

)
+ o(e2

n)

]
.
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In view of the above equations, the error equation for the method (4.1) becomes

en+1 = en −
e2
nf
′(α)2 + e3

nf
′(α)f ′′(α) + o(e4

n)

enf ′(α)2
[
1 + en

2

(
f ′′(α)− 2p+ 3f ′′(α)

f ′(α)

)
+ o(e2

n)
]

= en −
[
en + e2

n

f ′′(α)

f ′(α)
+ o(e3

n)

]
×
[
1 +

en
2

(
f ′′(α)− 2p+

3f ′′(α)

f ′(α)

)
+ o(e2

n)

]−1

= en −
[
en + e2

n

f ′′(α)

f ′(α)
+ o(e3

n)

]
×
[
1− en

2

(
f ′′(α)− 2p+

3f ′′(α)

f ′(α)

)
+ o(e2

n)

]
= en −

[
en −

e2
n

2

(
f ′′(α)− 2p+

3f ′′(α)

f ′(α)

)
+ e2

n

f ′′(α)

f ′(α)
+ o(e3

n)

]
= e2

n

[
f ′′(α)

2f ′(α)
+
f ′′(α)

2
− p
]

+ o(e3
n). (4.2)

This proves the assertion that the method (4.1) is of order 2. q.e.d.

Remark 4.2. The equation (4.2) suggests that the method (4.1) is at least of order 3,
if

p =
1

2
f ′′(α)

[
1 +

1

f ′(α)

]
.

Example 4.3. We demonstrate method (4.1) for the equation

cosx− xex = 0.

and the corresponding iterations are recorded in Table 2.

Next, it is natural to consider a method similar to (3.2) in which we use iterates
alternatively from the secant method and the method (4.1). Precisely, we propose the
method

xn+1 = xn −
xn − xn

f(xn)− f(xn)
f(xn), (4.3)

where

xn = xn −
f(xn)2

f(xn + f(xn))− f(xn)− pf(xn)2
. (4.4)

We prove in the following theorem that the method (4.3) is of order 3.
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Theorem 4.4. Let the function f have sufficient number of continuous derivatives in a
neighbourhood of α which is a simple zero of f , i.e., f ′(α) 6= 0. Then the method (4.3)
is of order 3.

Proof. Let en and en be the errors in xn and xn respectively, i.e.,

xn = α+ en and xn = α+ en.

Going through the proof of Theorem 4, in view of (4.2), the error equation for (4.4) can
be written as

en = e2
n

[
f ′′(α)

2f ′(α)
+ 2f ′′(α)− p

]
+ o(e3

n)

= e2
n

(
A+

f ′′(α)

2
− p
)

+ o(e3
n), (4.5)

where A = f ′′(α)
2f ′(α) . Also, the error equation of (4.3) in terms of en is already obtained in

Theorem 3 which is given by (3.7). Thus using the value of en from (4.5) in (3.7), we
obtain

en+1 = Aen

[
e2
n

(
A+

f ′′(α)

2
− p
)]

+Ae2
n

[
e2
n

(
A+

f ′′(α)

2
− p
)]

+ o(e3
n)

≈ o(e3
n).

This shows that the method (4.3) is of third order. q.e.d.

Example 4.5. We consider the same equation, i.e.,

cosx− xex = 0.

and carry out method (4.3). The corresponding iterations are recorded in Table 3.
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Table 2.
Method n xn

1 1
2 0.5802735237837837
3 0.5190247092041577
4 0.5177579050010849

Method (3.1) 5 0.5177573636825571
6 0.5177573636824583
7 0.5177573636824583
8 0.5177573636824583
1 1
2 0.3813025230211976
3 0.5063219067362609

Method (4.1) 4 0.5176654097603029
(with p = −1) 5 0.5177573576804625

6 0.5177573636824583
7 0.5177573636824583
8 0.5177573636824583
1 1
2 0.1041825137254052
3 0.4052566392923251

Method (4.1) 4 0.50455624053796
(with p = −0.5) 5 0.5175500351298677

6 0.5177573116891044
7 0.5177573636824551
8 0.5177573636824583
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Table 3.
Method n xn

1 1
Method (3.2) 2 0.5859726827620504
(with p = −1) 3 0.5181745832943766

4 0.5177573637940752
5 0.5177573636824583
1 1

Method (4.3) 2 0.4711208386842657
(with p = −1.0) 3 0.517816563944614

4 0.5177573636823349
5 0.5177573636824583
1 1

Method (4.3) 2 0.3617555141344706
(with p = −0.5) 3 0.5211770388024592

4 0.517757323061568
5 0.5177573636824583
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