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Abstract

The article aims to explore some new classes of differential and integral equations for some
hybrid families of Legendre polynomials. Beginning with the recurrence relations and shift
operators, the authors derived the differential, integro-differential and partial differential equa-
tions for the hybrid Legendre-Appell polynomials. Certain examples are framed for the hybrid
Legendre-Bernoulli, Legendre-Euler and Legendre-Genocchi polynomials to show the applica-
tions of main results. Further, the homogeneous Volterra integral equations for the hybrid
Legendre-Appell and other hybrid families of special polynomials are derived. The inclusion of
integral equations is a bonus to this article.
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1 Introduction and preliminaries

It is known that the special polynomials of two variables provided new means of analysis for the
solutions of large classes of partial differential equations often encountered in physical problems.
The introduction of the 2-variable Legendre polynomials Sn(x, y) [6] is of great interest due to their
intrinsic mathematical importance and for their applications in physics.

The 2-variable Legendre polynomials (2VLeP) Sn(x, y) are specified by means of the following
generating equation:

eytJ0(2t
√
−x) =

∞∑
n=0

Sn(x, y)
tn

n!
. (1.1)

where J0(xt) is the 0th order ordinary Bessel function of first kind [2] defined by

Jn(2
√
x) =

∞∑
k=0

(−1)k (
√
x)
n+2k

k! (n+ k)!
. (1.2)

We also note that

exp(−αD−1
x ) = J0(2

√
αx), D−nx {1} := xn/n! (1.3)

is the inverse derivative operator.

Tbilisi Mathematical Journal 11(1) (2018), pp. 127–139.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 16 June 2017.
Accepted for publication: 07 January 2018.



128 M. Riyasat

The class of Appell polynomial sequences [3] arise in numerous problems of applied mathe-
matics, theoretical physics, approximation theory and several other mathematical branches. These
sequences are defined by the following generating function:

R(x, t) := R(t)ext =

∞∑
n=0

Rn(x)
tn

n!
, Rn := Rn(0), (1.4)

where R(t) is an analytic function at t = 0 and is given by

R(t) =

∞∑
n=0

Rn
tn

n!
, R0 6= 0, Ri (i = 0, 1, 2, · · · ) being real coefficients. (1.5)

The Appell polynomials Rn(x) are defined by the following series expansion:

Rn(x) =

n∑
k=0

(
n

k

)
Rn−k x

k, R
′

n(x) = n Rn−1(x). (1.6)

By making appropriate selection of R(t), the members belonging to the Appell polynomials
family can be obtained. These are given in Table 1 below.

Table 1. Certain members belonging to the Appell family

S.No. Name of polynomials R(t) Generating function Series definition

I. Bernoulli t
et−1

(
t

et−1

)
ext =

∞∑
n=0

Bn(x) tn

n!
Bn(x) =

n∑
k=0

(
n
k

)
Bkxn−k

polynomials

(
t

et−1

)
=
∞∑

n=0
Bn

tn

n!

and numbers [8] Bn(:= Bn(0) = Bn(1))

II. Euler 2
et+1

(
2

et+1

)
ext =

∞∑
n=0

En(x) tn

n!
En(x) =

n∑
k=0

(
n
k

)Ek
2k

(
x − 1

2

)n−k

polynomials 2et

e2t+1
=
∞∑

n=0
En

tn

n!

and numbers [8] En := 2nEn

(
1
2

)
III. Genocchi 2t

et+1

(
2t

et+1

)
ext =

∞∑
n=0

Gn(x) tn

n!
Gn(x) =

n∑
k=0

(
n
k

)
Gkxn−k

polynomials 2t
et+1

=
∞∑

n=1
Gn

tn

n!

and numbers [17] Gn := Gn(0)

We give first few values of Bernoulli numbers Bn, Euler numbers En and Genocchi numbers Gn
in Table 2 below, which will be used later.

Table 2. Values of five four Bn, En and Gn

n 0 1 2 3 4

Bn 1 ± 1
2

1
6

0 − 1
30

En 1 0 -1 0 5

Gn 0 1 -1 0 1

Note 1. From the above table, we note that the degree of Gn(x) is n−1, however the degree of all
other Appell polynomials is n. Therefore, Gn(x) is considered in the class of polynomial sequences
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which are not Appell in the strong sense, see for details [1].

In 2012, Khan and Raza [11] constructed and studied a hybrid class of the Legendre-Sheffer
polynomials Ssn(x, y), which are defined by the generating function of the form:

R(t) eyH(t) J0(2H(t)
√
−x) =

∞∑
n=0

Ssn(x, y)
tn

n!
. (1.7)

As, for H(t) = t the Sheffer polynomials sn(x) [18] reduce to the Appell polynomials Rn(x).
Therefore, by taking H(t) = t in equation (1.7), we obtain the hybrid Legendre-Appell polynomials
(LeAP), which are defined by

R(t) eyt J0(2t
√
−x) =

∞∑
n=0

SRn(x, y)
tn

n!
, (1.8)

or, equivalently

R(t) eyt eD
−1
x t2 =

∞∑
n=0

SRn(x, y)
tn

n!
. (1.9)

The hybrid LeAP SRn(x, y) are defined by the following series expansion:

SRn(x, y) = n!

[n/2]∑
k=0

Rn−2k(y)xk

(n− 2k)!(k!)2
. (1.10)

Based on appropriate selection for R(t), different members belonging to the family of hybrid
LeAP can be obtained. These members are given in Table 3 below.

Table 3. Certain members belonging to the HLeAP family

S. Name of hybrid R(t) Generating function Series definition
No. polynomials

I. Hybrid Legendre-Bernoulli t
et−1

(
t

et−1

)
eyt J0(2t

√
−x) =

∞∑
n=0

SBn(x, y) tn

n! SBn(x, y) = n!
[n/2]∑
k=0

Bn−2k(y)xk

(n−2k)!(k!)2

polynomials

II. Hybrid Legendre-Euler 2
et+1

(
2

et+1

)
eyt J0(2t

√
−x) =

∞∑
n=0

SEn(x, y) tn

n! SEn(x, y) = n!
[n/2]∑
k=0

En−2k(y)xk

(n−2k)!(k!)2

polynomials

III. Hybrid Legendre-Genocchi 2t
et+1

(
2t

et+1

)
eyt J0(2t

√
−x) =

∞∑
n=0

SGn(x, y) tn

n! SGn(x, y) = n!
[n/2]∑
k=0

Gn−2k(y)xk

(n−2k)!(k!)2

polynomials

Note 2. In view of the fact given in Note 1, we can say that the hybrid LeGP SGn(x, y) do not
belong to the class of hybrid LeAP SRn(x, y) in a strong sense.

The study of differential equations is a wide field in pure and applied mathematics, physics
and engineering. Differential equations play an important role in modelling virtually every physi-
cal, technical, or biological process, from celestial motion to bridge design, to interactions between
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neurons. The differential equations and other characterizations of Appell and hybrid Appell poly-
nomials are considered in [5, 7, 9, 10,12,13,15,16,19–22].

Let {pn(x)}∞n=0 be a sequence of polynomials such that deg(pn(x)) = n, (n ∈ N0 := {0, 1, 2, . . .}) .
The differential operators Θ−n and Θ+

n satisfying the properties

Θ−n {pn(x)} = pn−1(x) and Θ+
n {pn(x)} = pn+1(x), (1.11)

are called derivative and multiplicative operators, respectively. The polynomial sequence {pn(x)}∞n=0

satisfying equation (1.11) is then called quasi-monomial. Obtaining the derivative and multiplica-
tive operators of a given family of polynomials give rise to some useful properties such as

(Θ−n+1Θ+
n ){pn(x)} = pn(x) and (Θ+

n−1Θ+
n−2 . . .Θ

+
2 Θ+

1 Θ+
0 ){p0(x)} = pn(x). (1.12)

If Θ−n and Θ+
n are given by differential realizations, then the above equations give rise to the

differential equation satisfied by pn(x). The technique used in obtaining differential equations via
(1.12) is known as the factorization method [10].

The article is organized as follow. In Section 2, the recurrence relations and shift operators for
the hybrid Legendre-Appell polynomials are established followed by differential, integro-differential
and partial differential equations via factorization method. In Section 3, certain applications are
framed to give the results for the hybrid Legendre-Bernoulli, Legendre-Euler and Legendre-Genocchi
polynomials. In section 4, the integral equations associated with hybrid Legendre-Appell and other
hybrid special polynomials are derived.

2 Recurrence relations and differential equations

This section is followed by deriving recurrence relation, shift operators and differential equations for
the hybrid Legendre-Appell polynomials. To derive the recurrence relations for the hybrid LeAP

SRn(x, y), we prove the following result:

Theorem 2.1. The hybrid Legendre-Appell polynomials satisfy the following recurrence relation:

SRn+1(x, y) = (y + α0)SRn(x, y) +

n∑
k=1

(
n

k

)
αk SRn−k(x, y) + 2nD−1

x SRn−1(x, y), (2.1)

where the coefficients {αk}k∈N0
are given by following expansion:

R′(t)

R(t)
=

∞∑
k=0

αk
tk

k!
. (2.2)

Proof. Differentiation of both sides of generating relation (1.9) with respect to t and then rearrang-
ing the terms, it follows that(

y + 2D−1
x t+

R′(t)

R(t)

)
R(t)eyteD

−1
x t2 =

∞∑
n=0

RSn+1(x, y)
tn

n!
, (2.3)
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which on using of equations (1.9) and (2.2) and then applying the Cauchy product rule in the l.h.s.
of the resultant equation, gives

∞∑
n=0

(
y SRn(x, y) +

n∑
k=0

(
n

k

)
αk SRn−k(x, y) + 2nD−1

x SRn−1(x, y)

)
=

∞∑
n=0

SRn+1(x, y)
tn

n!
. (2.4)

Equating the coefficients of like powers of t on both sides of the above equation and then
interchanging the sides of resultant equation yields assertion (2.1). q.e.d.

Theorem 2.2. The shift operators for the hybrid Legendre-Appell polynomials are given by

y£
−
n :=

1

n
Dy, (2.5)

x£
−
n :=

1

n
D−1
y Dx, (2.6)

y£
+
n := y + α0 +

n∑
k=1

αk
k!
Dk
y + 2D−1

x Dy, (2.7)

x£
+
n := y + α0 +

n∑
k=1

αk
k!
D−ky Dk

x + 2D−1
y , (2.8)

where

Dx :=
∂

∂x
, Dy :=

∂

∂y
and D−1

x :=

∫ x

0

f(ξ)dξ.

Proof. Differentiating both sides of generating relation (1.9) with respect to y and then equating
the coefficients of like powers of t on both sides of the resultant equation, it follows that

∂

∂y
{SRn(x, y)} = n SRn−1(x, y). (2.9)

Consequently, we have

y£
−
n {SRn(x, y)} =

1

n
Dy = SRn−1(x, y), (2.10)

which proves assertion (2.5).
Again, differentiating both sides of generating relation (1.9) with respect to x and then equating

the coefficients of like powers of t on both sides of the resultant equation, it follows that

∂

∂x
{SRn(x, y)} = n(n− 1)SRn−2(x, y).

The above equation can also be written as

∂

∂x
{SRn(x, y)} = n

∂

∂y
{SRn−1(x, y)}, (2.11)
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which finally gives

x£
−
n {SRn(x, y)} =

1

n
D−1
y Dx = SRn−1(x, y). (2.12)

Thus assertion (2.6) is proved.
In order to derive the expression for raising operator (2.7), the following relation is used:

SRn−k(x, y) = (y£
−
n−k+1 y£

−
n−k+2 . . . y£

−
n−1 y£

−
n ){SRn(x, y)}, (2.13)

which in view of equation (2.5) can be simplified as:

SRn−k(x, y) =
(n− k)!

n!
Dk
y{SRn(x, y)}. (2.14)

Making use of equation (2.14) in recurrence relation (2.1) and using y£
+
n {SRn(x, y)} = SRn+1(x, y),

we find

y£
+
n :=

(
y + α0 +

n∑
k=1

αk
k!
Dk
y + 2D−1

x Dy

)
{SRn(x, y)} = SRn+1(x, y), (2.15)

which proves assertion (2.7).
Next, to find the raising operator x£

+
n , the following relation is used:

SRn−k(x, y) = (x£
−
n−k+1 x£

−
n−k+2 . . . x£

−
n−1 x£

−
n ){SRn(x, y)}, (2.16)

which in view of equation (2.6) can be written as:

SRn−k(x, y) =
(n− k)!

n!
D−ky Dk

x{SRn(x, y)}, (2.17)

Making use of equation (2.17) in recurrence relation (2.1) and using x£
+
n {SRn(x, y)} = SRn+1(x, y),

we find

x£
+
n :=

(
y + α0 +

n∑
k=1

αk
k!
D−ky Dk

x + 2D−1
y

)
{SRn(x, y)} = SRn+1(x, y), (2.18)

which proves assertion (2.8). q.e.d.

Theorem 2.3. The hybrid Legendre-Appell polynomials satisfy the following differential equation:(
(y + α0)Dy +

n∑
k=1

αk
k!
Dk+1
y + 2xDx − n

)
SRn(x, y) = 0. (2.19)

Proof. Using expressions (2.5) and (2.7) of the shift operators in the following factorization relation:

yL−n+1 yL+
n {SRn(x, y)} = SRn(x, y), (2.20)

we find ((
y + α0

)
Dy +

n∑
k=1

αk

k! D
k+1
y + 2D−1

x D2
y − n

)
SRn(x, y) = 0,

which on using relation ∂2

∂y2 = ∂
∂xx

∂
∂x , yields assertion (2.19). q.e.d.
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Theorem 2.4. The hybrid Legendre-Appell polynomials satisfy the following integro-differential
equation:((

y + α0

)
Dx +

n∑
k=1

αk

k! D
−k
y Dk+1

x + 2DxD
−1
y − (n+ 1)Dy

)
SRn(x, y) = 0. (2.21)

Proof. Use of expressions (2.6) and (2.8) of the shift operators in the following factorization relation:

xL−n+1 xL+
n {SRn(x, y)} = SRn(x, y), (2.22)

yields assertion (2.21). q.e.d.

Theorem 2.5. The hybrid Legendre-Appell polynomials satisfy the following partial differential
equation:((

y + α0

)
Dn
y Dx + nDn−1

y Dx +
n∑
k=1

αk

k! D
n−k
y Dk+1

x + 2DxD
n−1
y − (n+ 1)Dn+1

y

)
SRn(x, y) = 0.

(2.23)

Proof. Differentiation of integro-differential equation (2.21) n-times with respect to y yields asser-
tion (2.23). q.e.d.

In the next section, certain examples are considered as applications of the results derived above.

3 Applications

In this section, the recurrence relation, shift operators, differential, integro-differential and partial
differential equations for some members (given in Table 2) belonging to the hybrid LeAP are derived
by considering the following examples:

Example 3.1. Taking R(t) =
(

t
et−1

)
(that is when the hybrid LeAP SRn(x, y) reduce to the

hybrid LeBP SBn(x, y)) and in view of equation (2.2) and equations (Table 1(I)), we have

αn = −Bn+1(1)

n+ 1
; α0 = −1

2
. (3.1)

Finally, on substituting the values from equation (3.1) in equations (2.1), (2.5)-(2.8), (2.19),
(2.21) and (2.23), we find the corresponding results for the hybrid LeBP SBn(x, y). These results
are given in Table 4 below.
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Table 4. Results for the hybrid LeBP SBn(x, y)

S.No. Results Expressions

I. Recurrence relation SBn+1(x, y) =
(
y − 1

2

)
SBn(x, y) −

n∑
k=1

(
n
k

)Bk+1(1)

k+1 SBn−k(x, y) + 2nD−1
x SBn−1(x, y)

II. Shift operators y£−n := 1
n

Dy ,

x£−n := 1
n

D−1
y Dx

y£+
n :=

(
y − 1

2

)
−

n∑
k=1

Bk+1(1)

(k+1)!
Dk

y + 2D−1
x Dy

x£+
n :=

(
y − 1

2

)
−

n∑
k=1

(−1)k
Bk+1(1)

(k+1)!
D−k

y Dk
x + 2D−1

y

III. Differential equation

(
(y − 1

2
)Dy +

n∑
k=1

Bk+1
(k+1)!

Dk+1
y + 2xDx − n

)
SBn(x, y) = 0

IV. Integro-differential equation

((
y − 1

2

)
Dx −

n∑
k=1

Bk+1
(k+1)!

D−k
y Dk+1

x + 2DxD−1
y − (n + 1)Dy

)
SBn(x, y) = 0

V. Partial differential equation

((
y − 1

2

)
Dn

y Dx + n Dn−1
y Dx −

n∑
k=1

Bk+1
(k+1)!

Dn−k
y Dk+1

x + 2DxDn−1
y − (n + 1)Dn+1

y

)
SBn(x, y) = 0

Example 3.2. Taking R(t) =
(

2
et+1

)
(that is when the hybrid LeAP SRn(x, y) reduce to the

hybrid LeEP SEn(x, y)) and in view of equation (2.2) and equations (Table 1(II)), we have

αn =
En
2

; α0 = −1

2
. (3.2)

where the numerical coefficients Ek (k = 1, 2, . . . , n− 2, n− 1) are linked to the Euler numbers Ek

by En = −1
2n

n∑
k=0

(
n
k

)
En−k.

Finally, on substituting the values from equation (3.2) in equations (2.1), (2.5)-(2.8), (2.19),
(2.21) and (2.23), we find the corresponding results for the hybrid LeEP SEn(x, y). These results
are given in Table 5 below.

Table 5. Results for the hybrid LeEP SEn(x, y)

S.No. Results Expressions

I. Recurrence relation SEn+1(x, y) =
(
y − 1

2

)
SEn(x, y) + 1

2

n∑
k=1

(
n
k

)
EkSEn−k(x, y) + 2nD−1

x SEn−1(x, y)

II. Shift operators y£−n := 1
n

Dy

x£−n := 1
n

D−1
y Dx

y£+
n :=

(
y − 1

2

)
+ 1

2

n∑
k=1

Ek
k!

Dk
y + 2D−1

x Dy

x£+
n :=

(
y − 1

2

)
+ 1

2

n∑
k=1

Ek
k!

D−k
y Dk

x + 2D−1
y

III. Differential equation

(
(y − 1

2
)Dy + 1

2

n∑
k=1

Ek
k!

Dk+1
y + 2xDx − n

)
SEn(x, y) = 0

IV. Integro-differential equation

((
y − 1

2

)
Dx + 1

2

n∑
k=1

Ek
k!

D−k
y Dk+1

x + 2Dx −D−1
y − (n + 1)Dy

)
SEn(x, y) = 0

V. Partial differential equation

((
y − 1

2

)
Dn

y Dx + nDn−1
y Dx + 1

2

n∑
k=1

Ek
k!

Dk+1
x Dn−k

y + 2DxDn−1
y − (n + 1)Dn+1

y

)
SEn(x, y) = 0
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Example 3.3. Taking R(t) =
(

2t
et+1

)
(that is when the hybrid LeAP SRn(x, y) reduce to the

hybrid LeGP SGn(x, y)) and in view of equation (2.2) and equations (Table 1(III)), we have

αn =
Gn
2

; α1 = −1; α0 = 1. (3.3)

Finally, on substituting the values from equation (3.3) in equations (2.1), (2.5)-(2.8), (2.19),
(2.21) and (2.23), we find the corresponding results for the hybrid LeGP SGn(x, y). These results
are given in Table 6 below.

Table 6. Results for the hybrid LeGP SGn(x, y)

S.No. Results Expressions

I. Recurrence relation SGn+1(x, y) = (y + 1)sGn(x, y) − nsGn−1(x, y) + 1
2

n∑
k=2

(
n
k

)
Gk SGn−k(x, y) + 2nD−1

x SGn−1(x, y)

II. Shift operators y£−n := 1
n

Dy

x£−n := 1
n

D−1
y Dx

y£+
n := y + 1 −Dy + 1

2

n∑
k=2

Gk
k!

Dk
y + 2D−1

x Dy

x£+
n := y + 1 −D−1

y Dx + 1
2

n∑
k=2

Gk
k!

D−k
y Dk

x + 2D−1
y

III. Differential equation

(
(y + 1)Dy −D2

y + 1
2

n∑
k=2

Gk
k!

Dk+1
y + 2xDx − n

)
SGn(x, y) = 0

IV. Integro-differential equation

(
(y + 1)Dx −D−1

y D2
x + 1

2

n∑
k=2

Gk
k!

D−k
y Dk+1

x + 2Dx D−1
y − (n + 1)Dy

)
SGn(x, y) = 0

V. Partial differential equation
(
(y + 1)Dn

y Dx + n Dn−1
y Dx −Dn−1

y D2
x + 1

2

n∑
k=2

Gk
k!

Dn−k
y Dk+1

x + 2Dx Dn−1
y

−(n + 1)Dn+1
y

)
SGn(x, y) = 0

In the next section, the homogeneous volterra integral equations for the Hybrid LeAP SRn(x, y)
and for the members belonging to this family are explored.

4 Volterra integral equations

First, we derive the integral equation for the hybrid LeAP SRn(x, y) by proving the following result:

Theorem 4.1. For the hybrid Legendre-Appell polynomials, the following homogeneous Volterra
integral equation holds true:

ϕ(y) = − 1

α1
(2xDx − n)

(
n

n−1∑
k=0

(
n− 1

k

)
Rn−1−k

k + 1
yk+1 +

n∑
k=0

(
n

k

)
Rn−k y

k

)
− y + α0

y + α1
n

n−1∑
k=0

(
n− 1

k

)

Rn−1−ky
k +

y∫
0

(
− 1

α1

(
2xDx − n

)
(y − ξ) +

y + α0

α1

)
ϕ(ξ)dξ. (4.1)

Proof. Consider the second order differential equation for the hybrid LeAP SRn(x, y) in the follow-
ing form: (

D2
y +

1

α0
(y + α0)Dy +

1

α1

(
2xDx − n

))
SRn(x, y) = 0. (4.2)
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The initial conditions are obtained as follows:

SRn(0, y) = Rn(y) =

n∑
k=0

(
n

k

)
Rn−k y

k, (4.3)

d

dy
SRn(0, y) = n Rn−1(y) = n

n−1∑
k=0

(
n− 1

k

)
Rn−1−k y

k. (4.4)

Next, consider
D2
ySRn(x, y) = ϕ(y). (4.5)

Integrating the above equation and using initial conditions (4.3) and (4.4), we have

DySRn(x, y) =

y∫
0

ϕ(ξ)dξ + n

n−1∑
k=0

(
n− 1

k

)
Rn−1−k y

k, (4.6)

SRn(x, y) =

y∫
0

ϕ(ξ)dξ2 + n

n−1∑
k=0

(
n− 1

k

)
Rn−1−k

k + 1
yk+1 +

n∑
k=0

(
n

k

)
Rn−k y

k. (4.7)

q.e.d.

Use of expressions (4.6) and (4.7) in equation (4.2) yields assertion (4.1).

Further, we find the volterra integral equations for the hybrid LeBP, hybrid LeEP and hybrid
LeGP. For this, we consider the following remarks:

Remark 4.1 Substituting the values of coefficients α0 = − 1
2 , α1 = −B2(1)

2 = − 1
12 ; αn = −Bn+1(1)

n+1
in integral equation (4.1) of the hybrid LeAP, we deduce the following consequence of Theorem 4.1:

Corollary 4.2. For the hybrid Legendre-Bernoulli polynomials, the following homogeneous Volterra
integral equation holds true:

ϕ(y) = 12 (2xDx − n)

(
n

n−1∑
k=0

(
n− 1

k

)
Bn−1−k

k + 1
yk+1 +

n∑
k=0

(
n

k

)
Bn−k y

k

)
+ 12(y − 1

2
) n

n−1∑
k=0

(
n− 1

k

)

× Bn−1−ky
k +

y∫
0

(
12
(

2xDx − n
)

(y − ξ) − 12(y − 1

2
)

)
ϕ(ξ)dξ. (4.8)

Remark 4.2 Substituting the values of coefficients α0 = − 1
2 , α1 = E1

2 = − 1
4 ; αn = En

2 in integral
equation (4.1) of the hybrid LeAP, we deduce the following consequence of Theorem 4.1:

Corollary 4.3. For the hybrid Legendre-Euler polynomials, the following homogeneous Volterra
integral equation holds true:

ϕ(y) = 4 (2xDx − n)

(
n

n−1∑
k=0

(
n− 1

k

)
En−1−k

k + 1
yk+1 +

n∑
k=0

(
n

k

)
En−k y

k

)
+ 4(y − 1

2
) n

n−1∑
k=0

(
n− 1

k

)

× En−1−k y
k +

y∫
0

(
4
(

2xDx − n
)

(y − ξ) + 4(y − 1

2
)

)
ϕ(ξ)dξ. (4.9)
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Remark 4.3 Substituting the values of coefficients α0 = 1, α1 = −1; αn = Gn

2 in integral equation
(4.1) of the hybrid LeAP, we deduce the following consequence of Theorem 4.1:

Corollary 4.4. For the hybrid Legendre-Genocchi polynomials, the following homogeneous Volterra
integral equation holds true:

ϕ(y) = (2xDx − n)

(
n

n−1∑
k=0

(
n− 1

k

)
Gn−1−k

k + 1
yk+1 +

n∑
k=0

(
n

k

)
Gn−k y

k

)
(y − 1) n

n−1∑
k=0

(
n− 1

k

)

× Gn−1−k y
k +

y∫
0

((
2xDx − n

)
(y − ξ) + (y − 1)

)
ϕ(ξ)dξ. (4.10)

In view of relation Sn(x, y) = Hn(y,D−1
x ), the Legendre polynomials Sn(x, y) reduce to the

2-variable Hermite Kampé de Fériet polynomials Hn(y,D−1
x ) [4], which are defined by

eyt+D
−1
x t2 =

∞∑
n=0

Hn(y,D−1
x )

tn

n!
. (4.11)

From the above fact, we find that the results derived in this paper for the hybrid LeAP SRn(x, y)
reduce to the results for the hybrid Hermite-Appell polynomials HRn(y,D−1

x ) [14,21].

The second form of the hybrid Legendre-Appell polynomials RRn(x,y)
n! is defined by

R(t)J0(2
√
xt) J0(2

√
−yt) =

∞∑
n=0

RRn(x, y)

n!

tn

n!
. (4.12)

By using the similar lines of proof, we can obtain the recurrence relation, shift operators and

differential equations for the second form of the hybrid Legendre-Appell polynomials RRn(x,y)
n! .
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