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Consistency and asymptotic normality of an
approximate maximum likelihood estimator
for discretely observed diffusion processes
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Denmark

Most often the likelihood function based on discrete observations of a diffusion process is unknown, and
estimators alternative to the weli-behaved maximum likelihood estimator must be found. Traditionally, such
estimators are defined with origin in the theory for continuous observation of the diffusion process, and areasa
consequence strongly biased unless the discrete observation time-points are close. In contrast to these
estimators, an estimator based on an approximation te the (unknown) likelihood function was proposed in
Pedersen (1994). We prove consistency and asymptotic normality of this estimator with no assumptions on the
distance between the discrete observation time-points.
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1. Introduction

Consider the problem of estimating the unknown parameter 6 € © C R? in the stochastic
differential equation

AX, = b(1, X 8)dt + o(1, X 0) AW, Xy = x5, £ 20, (1

where W is an r-dimensional Wiener process, &: [0, c0) x R =R and - [0, c0) x RY v+ M¥*" (the
set of d x r matrices), from discrete observations of X at time-points 0 = 15 < 1; < ... < 1.

If the transition denstties p(s, x, 1, y: ) of X are known, an obvious choice of estimator for & is the
maximum kikelihood estimator 8, which maximizes the log-likelihood function for 4

6(0) = Z]'Og{p(ti—l!Xf,-n{thﬁg)}f

since it is known in many cases to be consistent and asymptotically normally distributed as » tends
to infinity (see Billingsley 1961; Dacunha-Castelle and Florens-Zmirou 19386). Unfortunately the
transition densities of X are usually unknown.

In such cases most alternative estimators are defined by making at some stage an approximation
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to the estimation theory for continuous observation of X' (see Hutton and Nelson 1986; Fiorens-
Zmirou 1989; Genon-Catalot 1990), These estimators are, as a consequence, strongly biased unless
the discrete observation time-points are ciose, that is unless max; ¢; <, [; — ;_ | 1s small. Moreover,
they inherit some difficulties regarding the parameter dependence of the diffusion coefficieni o, from
the fact that maximum likelihood estimation of unknown parameters in « is impossible when it is
based on continuous observation of X. A brief review and discussion of such estimators is given in
Pedersen (1994).

In contrast to these estimators, an approximation £, (#) to the log-likelihood function £,(8) was
proposed in Pedersen (1994). The approximate log-likelihood function £, v(8) depends on an
integer N that is controlled by the statistician. For N = ] it is a generalization of the discretization of
the log-likelihood function for € based on continuous observation of X, and as N tends to infinity it
converges for each § in probability to £,(8) (see Section 2). Details of the actual caiculation of £, 5(8)
for large values of N can be found in Pedersen (1994), where the performance of the approximate
maximum likelihood estimator §, y obtained by maximizing £, v(8) is studied by simulation.

Here we study the estimator 6',1 w from a purely theoretical point of view. Since the derivation of
9,, w 1s motivated by the good properties of the maximum likelihood estimator 8,. we accordingly
restrict attention to cases where 8, is consistent and asymptotically normally distributed. Under this
and various additional conditions, we prove the consistency and asymptotic normality of 8, y as »
and N tend to infinity. In some cases we can prove that 8, y converges to 8, in probability as N tends
10 mnfinity, and the consistency and asymptotic normality of 8, y is then an immediate consequence
of the consistency and asymptotic normality of 6,. In other cases we use general results concerning
consistency and asymptotic normality. We show when these apply for 6‘,1 » under the assumption
that they apply for §,. Thus we prove that 6, x is as good as 9,,, with the significant difference
that 6, v can quite generally be calculated in practice whereas 6, can only rarely be caiculated in
practice.

In Section 2 we review the definition and basic properties of £, »(8) and give an example. Section 3
contains our general results on the consistency and asymptotic normaiity of 4, . These results
are presented in a very general setting, and cover for instance cases where the log-likelihood
function for some reason must be approximated. It is then shown when the corresponding
approximaie maximum likelihood estimator in a certain sense inherits presumed asymptotic
properties of the maximum likelihood estimator. The results of Section 3 are applied in Section 4
to a class of one-dimensional diffusion processes, and we discuss the possibilities for generalizing the
methods.

2. The approximate log-likelihood function

In this section we give the definition and basic properties of the approximate log-likelihood function
¢, »(6), and prove the consistency and asymptotic normality of 8, v in an example.

Even though the transition densities of X are usually unknown they do in fact exist quite generally
(see Friedman 1975; Stroock and Varadhan 1979), and so it makes sense to approximate them when
they are unknown. In fact an approximation of the transition densities of X constitutes the basis of
the definition of the approximate iog-likelihood function. Having defined for each N e N the
approximate transition densities py{s.x, 2.3:8) with respect to X (the d-dimensional Lebesgue
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measure), we define for each N € N the approximate log-likelihcod function

L (0) = 3 log{ pulti-1, X, o1 X, 0)).

=1

The approximate transition densities py(s, x,2,y;60) can be derived under the following very
natural assumptions, Of course the stochastic differential equation (1) must have a (weak) solution
forall x, € R and # € ©, and for statistical inference to be meaningful the solutions must be unique
in law, This is equivalent to requiring for all § € ® that the martingale problem for b and a = oot
is well posed {see Rogers and Williams 1987). Conditions that ensure this ¢can be found in Rogers
and Williams (1987) and Stroock and Varadhan (1979). Sufficient conditions are the local Lipschitz
and growth conditions for each 8 € ©. Finally, we assume that a(z, x; 8} is positive definite for all
1> 0, x € R? and § € ©, and denote by alt, x; 6)1”2 the positive definite square root of a(t, x; 8).

Under these assumptions any solution to (1} is also a solution to the stochastic differential
equation

dX, = b(1, X;;8)dt + a(r. X; )2 dW, Xy = x,, 120, (2)
where

t 5
W, = L a(s, X,; )72 d(X, - X - L blu, X,; 6) du)a 20,

is a d-dimensional Wiener process. Furthermore, the solutions to (1) and (2} induce foreach § € ©a
unique probability measure Py on the space C{[0, o), R?) of continuous trajectories from 0, 0a)
into R? endowed with its Borel o-field 4. The family {Py: 8 € ©} of probability measures on 4 is
assumed 1o be uniquely parametrized, that is to say, Pp = Py, implies that §; = 6;. Due to the
positive definiteness of a(¢, x; 8) a solution to (2) can be realized on the probability space (C{[0, c0),
R?), 4B, Py), since

| 5
Wi = L a(s, X,;8)"'/2 d(Xs - xp - J b(u, X,; 6) du), 120,
0
15 a d-dimensional Wiener process under P, and
1 T
X, =X +J b5, X;0) ds +j als, Xy )2 aw?, >0
0 0

More generally, we have for each § € © a unique family {P; ; .+ 5 > 0,x € R’} of probability
measures on {C{[0,00),R%),#) induced by the solutions to (1) and (2) for 1> s with initial
conditions X, = x (see Friedman 1975; Stroock and Varadhan 1979). For each s > 0, x € R? and
f € 8 we have that

P X,=x05u<s)=1.

Moreover, we have under Py, , that

! T

X, = x+J b(u, X ;) du+J a(u, X,;0)2aw?s. 1>,
5 5
where

!
whe = J a(u, X,; 8)*”2d(Xu -x- rb(v, X.; 6 dv), t >,
5 3
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is a d-dimensional Wiener process after time 5. The importance of the probability measures P, ; . 15
that they determine the transition function P(s,x,1,4;6) of X under P;. For 0 < 5 <1, x € R,
8 € © and 4 ¢ B(R) we have that

P(s,x,1, A;0) = Py ; (X, € A) = Po{X, € A| X, = x) = Py- X,{A| X, = X),

where Py(-|X, = x) denotes the conditional probability under P, given X,=1x, and
Pg- X,(-| X; = x) denotes the conditional distribution under P, of X, given X, = x.

The definition of the approximate transition densities px (s, x, ¢, ¥;8), forfixed 0 < s < t, x € R,
f € © and N € N, is motivated by the following Euler—Maruyama approximation of X, under Py , ,
(see Kloeden and Platen 1992). Define, for k =0,1,2,.... N,

t—s
= bk ——
Tk 5+ N
YS.A" =X
Yon="Yr 1N+ = b('rk W Ye i) +aln Y, .ng)UZ(WiS Wis[

Under the local Lipschitz and growth conditions we have that
Y, v= Yin— X,

in LYPy, ) as N — o0 (see Kloden and Platen 1992) and we define y— py(s, x,1,;8) to be the
density (with respect to %) of the distribution Posx- Y. nof ¥, y under Py, .. For N = 1 we can
choose the continuous version of the density

(s, £,3:0) = {2n(0 — )} a(s, x; 8)| 17

xexp(—z(fl_s){ — (1= $)b(s. x:0)} als, %) { p — x = (1 — 5)b(s, x;B)}),

where |a(s, x; )| denotes the determinant of a(s, x;6), and for N > 2 we have for any version of
215, x. 1, +; 6) the expression

pN(S! X 4L 9) = EPg__..,(Pl (TN- 1+ YTN_ LN LY 9))

This expression for py(s, x, 2, 6} enables us to calculate £, »(9) and 9:,! ~ in practice by means of
simulations of Y,y under Py ., as described in Pedersen (1994).

From the very definition of px(s, x.t, +;8) and p(s, x, #, -;8) as densities with respect to A% it is
clear that proving the pointwise convergence of py(s, x, 1,15 8) to p(s,x,1,y:6) as N — oo is a non-
trivial task, since it involves choosing definitive versions (for example, continuous) of py (s, x, t, +:8)
and p(s, x,1, -:6). This is possible in examples where closed expressions for concrete versions of
Pn(s,x,t, -1 8) and p{s, x, t, - ;8) are available (see the example below), but in general it is a delicate
matter. It has, however, been proved in Pedersen (1994) that (any version of) py(s,x,z, +:8)
converges in L' (3%) to (any version of ) p(s, x. 1, » ;) as N — o0.If a(1, x; ) = a(8) is independent of
rand x this holds under weak assumptions on b (continuous, focal Lipschitz and growth conditions),
whiie both the proof and the assumptions become more involved when a(z, x; §) is allowed to depend
on ¢ and/or x. The L'(A*)-convergence of py(s,x.1, -:6) to p(s,x,t, -;6) as N — oo has the
following important consequence, proved in Pedersen (1994).
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Corollary 1 If py(s,x.t, 16} — p(s,x. ¢, ;6)in L' (3 as N s o for all 0 < s < ¢, x € R and
6 € 8, then £, (8} — £,(8) in probability under Ps as N — oo for all # € © and n € N, where 6;
denotes the true parameter vaiue.

Example
For the Omnstein—Uhienbeck process

dX, = aX,dt + 0dW, Xy = x5, 120

with 8 = (@, 6%}T € (—00,0) x (0,00) and time-equidistant observations (1; = iA for i = 0,1,2,...
and some fixed A > 0), we have that

n H
U= ZXMX(S-I);‘_\/ZX(?—])A — B
i=1 i=|

Py -almost surely as n — oo. Consequently, we have for sufficiently large values of n the following
expressions for the maximum likelihood estimators:

G, = %log ()

2 =24, 1 .
aznﬁn(l—ez*ﬁd»);(‘r‘ﬁ Xy-nae ).

From the equivalence of {X,4}7-, with the AR(1) process, these estimators are easily seen to be
consistent and asymptotically normally distributed as » — oc. In fact

V(B — 85) = N2(0,i(85, A)7")
in distribution under Py as # — oc, where
1 o ezﬂgﬂ 20(2, o_% 1 _ 520913
ey R

208 od 1-eM8 od 1-e¥2 gl 26f(1 + 2R

D AT @B oIA? Pmd * h ] —gidt

{6, 8)" =

1s the 1nverse of the Fisher information matrix. In this example it is possible to choose continuous

versions of py{r,x, +;8) and p(t, x, -;8), and for these we have pointwise convergence as N — oo.
Since

Ao\
ﬁN:(l-PT)—)e'&a:ﬁ
A ]—ﬁz I—Bzaa 2
2:0'2— N-—) 2 =T
™ Nl— N},N < e T
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as N — oo for all o < 0 and ¢* > 0, we see that

1 - 2
ot x, y;8) = 2_;. exp (_(y zszX) )
V 2Ty N

1 (y—Bx)
— expl - ————
v 2nr? ( 27
= pl1,x, 5, 8)
pointwise as N — co. Using this expression for py (1, x, y; §) we find, for sufficiently large values of n,
that
. N .
Gy N = —A—(wfx’-" -1)

2 N1y

GN,N_AI'! 1_'11);21‘

where

2
l ”n
R (;f=lXi'aX[i—-l}a)
r::;_ X[i—l]ﬂu 1 n , N
= ;ZXG—l)a
=1

Since —N{(1 — x¥¥) = log(x) as N — oc for all x > 0, we have, for sufficiently large values of »,
that

9,,".\; - gn

Py, -almost surely as N — oo. Finally, it follows from Lemma A in the Appendix that there exists a
subsequence N(n) — oo such that

B, iny — o
in probability under Py, as n — oc, and such that

VA nmy — 80) — Na(0, (65, AY

in distribution under P, as 5 — occ. Furthermore, if N'(n) — co is a faster subsequence
(N'(m) > N(n) for all n € N), then the same results hold for this subsequence.

In the rest of the paper we prove consistency and asymptotic normality of #, » in the above sense,
that is, we prove the existence of a subsequence N{(n) — oc such that é,,' Neny 18 consistent and
asymptotically normally distributed as #» — oc. It is important to stress that N(n) — oo is not the
only subsequence for which 6, y is consistent and asymptotically normally distributed, since the
same results hold for any faster subsequence. In practice, this means that we do not have to worry



Approximate ML estimator for discretely observed diffusion processes 263

about choosing the right value of N for a given (large) number # of observations. The message is
simply to choose N as large as practicaily possible (with respect to computer time, computer power,
etc.; see Pedersen 1994). Simulations, however, show that moderate values of N (for exampie,
N = 25) are sufficient in most cases (see Pedersen 1994).

3. Consistency and asymptotic normality of the approximate maximum
likelihood estimator

For all 8 ¢ ©, we have that £, y(8) — £,{8) in probability under Py as N — oo (cf. Corollary 1
and the preceding discussion). If in fact ¢, y(f) converges uniformly in £ to £,{¢) in probability
under Py as N — oo, then we can prove that 9,, N— 9 in probability under Py as N — co (see
Theorem 1 below}. The consistency and asymptotic normality of 6',1 » asnand N tend to infimity is
then an immediate consequence of the consistency and asymptotic normality of 9 as n— oo
(see Corolilary 2 below). In cases where we cannot prove that §, v — &, in probability under Py, as
N — 0o, we may still prove the consistency and asymptotic normality of 8, » by means of general
results on consistency and asymptotic normality (see Theorems 2 and 3 below). In both cases our
results are of a general nature, and we present them in a general setting. First, we introduce the
general setting.

Consider on some measurable space ({2, #) a sequence of random experiments indexed by n € N,
and a uniquely parametrized family of probability measures P, indexed by ¢ € ¥ C RY, giving the
possible laws of the experiments. On the basis of the nth experiment and the fundamental outcome
w € £ we estimate 3 by means of some function

b OQx¥—R

that measures how likely the different values of > are. The higher the value of A,(w, ¥'), the more
faith we have in ¢. Consequently, if 4,{w,) has a unique maximum point ,{w) € ¥, then we
estimate v by ,{w). A classical situation is when we have an increasing seguence
FICF,C...CF,C... of sub-c-algebras of &, representing an increasing amount of infor-
mation about the random experiments, such that the restricted probability measures
{P}. = Py|g,: ¥ € ¥} are equivalent for each fixed n € N. Then we may take 4, to be the log-
likeiihood function

) )

where P is some fixed member of {P,: 4 € ¥}. If, for instance, the outcomes of the random
experiments can be represented by a sequence X, X5, ... of random vectors on (2, #) and &, is
generated by X,..., X, then the log-likelihood function (3) is given by the expression

dP,-(Xy,... . X,
I ¥) = log (R (i) Xyl ).

In general, however, we merely assume for all » € N and ¢ € ¥ that /, is a measurable function of w.
and denote by 4,(1) the random variable w— #,(w, ¥). The application we have in mind is of course

dp;
o ) = log( 7%
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(cf. Section 2)
(Q,F) = (C([0,00),RY), B),¥ = 8,9 =p,Py = Py

APy (X, ,... X,
in(6) = log (e )

and

= Zlog ; 11 InXI 1 9)) = e’f(g)

In the general setting we further have for each » € N a sequence of functions
By v X TR, N=12,...,

each with the same interpretation as #,. We think of 4, y as an approximation to 4, that in some
sense improves as N — 0o. Again we merely assume in general that f, » is a measurabie function of
w for all n, N € N and v € ¥, and denote by &, y(v) the random vanable w— #, y(w, ). The
intention is, of course, to take

hon(8) =Y _log(px(ti-1,X,_,, 10X, 6))

=]
in the application above.

The approximate maximum likelihood estimator §,  is meant in practice to serve as a substitute
for 6, when this cannot be calculated. For the Ornstein-Uhlenbeck process (cf. Section 2) we
already know that 6‘,, v isindeed a good substitute for 6, for large values of N, in that we have proved
that 4, y — 8, in probability under Py as N — oc. In Section 4 we prove this for a class of one-
dimensional diffusion processes by applying the foliowing theorem.

Theorem 1 Let ¥ C RY be a compact subset and assume that the following two conditions are
satisfied P, -almost surely for some fixed n € N:

(i) 9 k,(¥) is continuous and has a unique maximum point 3, € ¥.
(i) ¥~ h, y{¥) is continuous, at least when N is larger than some fixed Ny € N.

Finally, assume that
(ili) supyey |A, n(¥) — Au(¥)| — O in probability under Py as N — oo

Then there exist { Py, -almost surely) sequences {in. 1N =1 © ¥ of maximum points for the functions
{h, n{¥)}% -1, and for any such sequence we have that

J}n,N - ﬂan
in probability under P, as N — oc.

Proof
Any subsequence N, — oo has a further subsequence N, — oo for which the convergence in (iii)
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holds Py -almost surely, and for this subsequence
T;r:, Ny, - zj’n

P, -almost surely as / — oa. O

Corollary 2 Let the assumptions of Theorem 1 hold for all » larger than some fixed r, € N,
and assume that the estimator 1, is consistent and asymptotically normally distributed, that is:

() ¥, — g in probability under Py, as n — oo;
(ii) there exists a sequence {A,{o)}s= of non-random and non-singular ¢ x ¢ matrices such
that

An(wﬂ)("j)n - "‘:DO) - Nq(oa V("PO))

in distribution under P, asn — oo, where ¥ (3,) is some non-random positive defintte ¢ X ¢
matrix.

Then there exists a subsequence N(n) — oc such that

Y nim) — Yo

in probability under P, as » — oo, and such that

An(90) (¥ nm) — %0) = N (0, ¥ (300))

in distribution under P, as n — occ. Furthermore, if N'(n) — o is a faster subsequence, then the
same results hold for this subsequence.

Proof
Apply Theorem 1 and Lemma A in the appendix. O

The general idea underlying the proofs of consistency and asymptotic normality of 6‘,, N 15 tO
prove that 8, _x in some sense inherits these properties from 4,. In cases where this does not take
place in the strong sense of Theorem 1 and Corollary 2, we may still prove the consistency and
asymptotic normality of 9,, » by means of some general results on comsistency and asymptotic
normality, in that we show when these apply for Bn w under the assumption that they apply for 8,.
For this purpose we use the general results in Jensen (1986) (see also Sweeting 1980}, but we could
just as well have used similar results such as those in Biliingsiey (1961), Dacunha-Castelle and Duflo
(1983), Dacunha-Castelle and Florens-Zmirou (1986) or Barndorfi-Nielsen and Serensen (1994).
One notable difference between the results in Biilingsiey (1961), Sweeting (1980), Jensen (1986)
and Barndorff-Nielsen and Serensen (1994), and the results in Dacunha-Castelie and Duflo (1983)
and Dacunha-Castelle and Florens-Zmirou (1986) is, however, that the concepts of consistency and
asymptotic normality are local properties in the former whereas they are global properties in the
latter. The main difference between the two concepts is whether the properties hold for all (global)
sequences of maximum estimators or for at least one (loczal) sequence of maximum estimators. It is.
however, immaterial for our purposes which concept we consider. The main idea is to show that
even if §, v does not converge to 8, as N tends to infinity for any », it may stili enjoy the same
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asymptotic properties as §, as # and N tend to infinity, and this can be done assuming either of the
two concepts of consistency and asymptotic normality mentioned above for £,. We proceed by
formulating the assumptions and results in Jensen (1986} in the general setting above. Throughout
we assume that U € R? is an open subset.

The three assumptions in Jensen (1986} are given below.

Assumption |
The functions {4, }7= are measurable in « for all ¥ € ¥ and twice continuously differentiable in
for Py, -almost all w € .

For any twice continuously differentiable function f: ¥ — R we denote by f and f respectively the
vector of first derivatives and the matrix of second derivatives of f with respect to . Furthermore,
for any list T = [¢),...,9,) of vectors 9, € ¥, i=1,...,4, we denote by f(r ) the ¢ x ¢ matrix
of which the ith row equals the ith row of f(3;). Moreover, we denote by A, (), k,{+) and 4,(T") the
random variable/vector/matrix w — hy{w, 1), w- h L(w, ¥} and w— By (w, I'). On the space of ¢ x g
matrices we use for convenience the norm

4l = max |4},
which is equivalent to the usual Euclidean norm. We are now able to formulate Assumptions 2 and 3.
Assumption 2

There exists a sequence {4,(3) oz of non-random and non-singular ¢ x g matrices such that:

(i) Au(tg)™" — 0asn — oo,
(i) (A,(%9) Y h,(100) An(tbe) ™" — —F (%) in probability under P, as n — oc, where F(yjy) is
some non-random positive definite g % g matrix.
(iii) For ali § > 0:

Sup 1(Aa(30) )T (Aa{T) = An(0))An(80) ™t — O

in probability under Py, as n — oo, where ¥y, is the set of lists T = [3, . .. ,:pq] for which
I An(sp0) (3 — o)l S Sforalli=1,...,q4.

Assumption 3
(A (0) ") B (thg) — N, (0, G(gy)) in distribution under Py, as n — oo, where G(3p) is some non-
random positive definite ¢ x ¢ matrix.

Theorem 2 Under Assumptions 1-3 there exists, with P, -probability that tendsto l asn — oc, 2
sequence {4,}%., C ¥ of local maximum points for the functions {4,(y)}5=, such that

'J)n e Tﬁo
in probability under Py, as n — oo, and such that
An (Vo) — o) — No(0. F (o)™ Glthg) F(1g)™")

in distribution under P, as n - oc.
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This result is proved in Jensen (1986). Among its many applications it can be seen (see also
Billingsley 1961} that if the diffusion process corresponding to the stochastic differential equation (1)
is time-homogeneous and ergodic, the observation time-points are equidistant, and the transition
densities (exist and) satisfy some weak regularity conditions, then Theorem 2 applies with
F(8y) = G(8y) = I, and A,(6p) = +/ni(8,)"%, where i(fy) denotes the Fisher information matrix.
In this case we further have that

—£,(60)'2(8, — 60) — N,(0,1,)

in distribution under P, as n — oo.

In the next theorem we show when Theorem 2 applies for the functions {4, »( }"*I N under
the assumption that it applies for the functions {4,{+)};=:. This method for proving consistency
and asympiotic normality of 6,, ~ is applied in Section 4 to a class of one-dimensional diffusion
processes. The random vectors,-‘matrlces hn ~) h,, ~(2) and h,, ~{I") are defined below analo-
gously to K, (4), k,(3) and ky(T).

Theorem 3 In addition to Assumptions 1-3, assume, for all # and N larger than some fixed values
ny € Nand N, € N respectively, that k, y is measurable in w for all ¢ € ¥ and twice continuously
differentiable in ¢ for Py -almost all w € €. Assume, furthermore, that:

() ii,,, w(thp) — A, (%) in probability under Py as N — oo;
(ii) there exists an open subset & C R? such that ), € ¢ C ¥ and

Sup [l v (%) — Ra{th) |l — O
ped

in probability under P, as N — oo.

Then there exists a subsequence N(n) — oc and, with a P, -probability that tends to 1 asn — o0, a
sequence {¥,, yun tne of local maximum points for the functions {A, v (¥)}az) such that

b, N(m) — Y0
in probability under P, as n — oo, and such that
An(0) (b, Nim) = ) ~ No(0, Fltho) " Glapo) F(s) ")
n distribution under P, as # — oo. Furthermore, if N'(n) — oo is 2 faster subsequence, then the

same results hold for this subsequence.

Proof

According to assumptions (i) and (i) and Lemma A in the Appendix we can find a subsequence
Ny (n} — oo of the desired type such that Assumptions 2(1), 2(ii) and 3 are satisfied for {4, () }5%,
and {h, y (%) }s= (- Now it only remains to prove the existence of a subsequence N,(n) — oo of
the desired type such that

I_SUP (A (6) ™" Y (o, piyy (T) = o, Nt (%)) A (200) vt — O

in probability under P, as n — oo for all § > 0, since then we have that Assumptions 1-3 are
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Since

sup Eg {exp(20S, v~ 0°L, y)| X, = y}
d¢ o, )

< Eg {exp{2aS, y)| X, = y} + Eg_{exp (285, )| X, = y}

and
a:‘flpm EQ,{[S:,N - eLt,N]Z exp (2981.:: - 92Lr.N}| X.' = J"}
< 24/E, (S w1 X = ») { {/Eo,(cxp (daS, w)| X, = )
+/Eg (exp (485, M) X, = ) }
+ 282 M*[Ep {exp (225, v)| X, = y} + Eg {exp (285, y)| X, = »}]
and finally

sup Eg {[(S,w— 6L, n)" — L  exp(20S, y — 6°L, »)| X, = ¥}

A& e, ]
< 16y/Eq, (SEx1 X, = ) {/Eq, (exp (aS, w)[ X, = )
+/Eo, (exp (485, 0)| X, = ) |
+ 200 MA(88% M + 1)[Ey {exp (2aS, ¥)| X, = y}
+ EQI‘{C}{p (zﬁS:,NN X, = y}l!

it is clearly enough to prove that

Eg {exp (7S, w)l X, =y} <o, Vy€eR (11)

in order to prove (6}, (8) and (10). Similarly, it 15 enough 10 prove that
Ep {exp (vS))| X, = y} < o0, vveR (12)
in order to prove {3), (7) and (9). But for a given v € R we have that

Eo {exp (vS. v X, = y}
X = J"}

N
< EQ,{eXP (]‘ﬂMZ | Xy ~ Xuc-l):mi)
N
Z Yk =¥y- x}a
k=1

k=1
where Y;,..., ¥y are stochastically independent and distributed as N (0, 1/N), from which (11)

= E{exp(l‘ylMZN:IYkl)

k=1
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follows. Furthermore, we have, by means of 1td’s formula, that

Eo {exp (vS)1 X, = »}

< exp( [ b a) EQ,{exp(m [, ecates)|x -5}

< exp (‘y J B(u) du) exp (1 ly|M) < oo,
X
and thus (12) is proved. O

Lemma2 ForallnelN
sup |EH,N(9) - En(e)i -0

fela. g

sup [, x(8) = £,(6)] — O

6€[a, B

sup {6, x(6) — £,(8)] — 0
fea B

in probability under P; as N — oc. In particular,
£, n(B0) — £,(60)

b w(B0) — £,(60)

in probability under Py as N — oo.

Proof
The first three convergences can be proved by the same procedure. Here we prove that

sup b, n(6) — ,(8)] — 0
8¢ (e, 5

in probability under Py as N — oo for alln € N. Let s € N be fixed. Clearly it is enough to prove
that

sup iEN(s! I, 9) - f(sr L 8)| -0
bzla 3

in probability under Py as N — oc forall 0 < s < ¢, where

PN(I -5 X.ﬂ Xi’; g)pN(I -5 X,, X:‘; 8) - pN(I =3, Xs‘: XI; 9)2

548 =
‘sN( ) pN(I_ssXS':Xr;S)Z

'__p(f _S‘!XJ! X.l‘:e)p(r _ssXs-:XI'.-'e) _P(t B S:XHXI;H)Z

1,8
£s.1.6) P 5. X, X,: 6)
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But this follows from Lemmas B and C in the Appendix, with
=(0,00) xRxR,  f(x.yz -/, T=lof
and
Xw(8) = (pult = 5. X5, X;38), palt = 5. X, X138, (1t — 5, X, X 6))T
X(6) = (p(t =5, X0, X3 0), plt = 5, X, X2 0), plt — 5, X, Xs )7,
as soon as we have established that

sup pnlt— 5, X, X:8) — plt -5, X, X,;;8)| - 0
felo, 5

sup lp}\-’ r—3, XssXHG) (f _S‘XS:X:; 9)1 -0
b€ o, 3

Sup ipN(t__'s XMX??B) (I-_S Xsa XHG)! - 0
fcio. 5

in probability under Py as N — oo for all ¢ < s < 7. These three convergences are proved in exactly
the same manner so we prove only the last, Applying the arguments used in the proof of Corollary 1,
it 1s enough 1o prove that

sup [Bn(t,x,:0) — plt,x, -16)f — 0 (13)
LE

in L'(A) as N — o for all 1 > 0 and x € R. Now let £ > 0 and x € IR be fixed, and define for all
f€a,Bjand NeN

p?
U v = [(S;. N QL:,N)E —- L, ylexp (95:.;\-' - '2_L1_N)

U,(8) = [(S, — 6L,) — L] exp (as, - f’;L) .

Then it follows from Dunford-Pettis’ theorem that if

sup |U, y(6)—U, (@)} — 0 {14}
8¢ (a5

in probabiiity under O, as N — oo and
sup Eg, ( sup |U,x(6) - UO)F) < o, (15)
N feja. @
then

Eo. ( sup_|Us.v(6) - V)| X, = ) o(-5%,0) = 0

fcfa,f
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in L'{\) as N — . But since

sup I.ﬁN(fex:)’? 6') _p('[:' X, 0 6”
€ o, 5]

< EQ:( sup | U w{(8) — U0} ‘ X, = }') (¥ x, 1)
dela, g

we see that (13) holds in that case. Thus it only remains to prove (14) and (15).
To prove (14), we apply Lemmas B and C in the Appendix with

U=R, floyy=xe'. T=[af
and

T
82
X}\'(Q) = ((SI,N - eLLN)z - LLN‘ QSI,N - ELJ.N)

T
92
X(6) = ((S: - 91‘:‘)2 - L,88, - ?L!) :

Notice that condition (i) in Lemma B in the Appendix is fulfilled in this case since

sup |X(8) — ¥\ (8))

gcia g
<L,y =L |+ |53 = SH+BILEy = L+ 248 1Ly xSy — LS| = 0

in probability under @, as N — oo (see Jacod and Shirvayev 1987; Revuz and Yor 1991; Pedersen
1994) and

21
sup Xy (8) — XD (9)|
fc o,

<1811Sx = SN +LBIL, y ~ L]~ 0

in probability under O, as N — oc.
To prove (15), we treat each term on the right-hand side of the inequality

sup EQX( sup |U, x(8) — U:(e)lz)
N fefo.

<2sup Ep [ sup U, v(8)*] +2E sup U,(6)
- Np Q"(ee{fﬁ} LN()) Qx(ﬁeiapﬁj ;(})

separately. By direct calculation we see that

Ey, (32& U, (8

< 16\/1~:QX(S,3__N) {\/EQ,(exp (4aS; ) + \/ Egp (exp (46S, ) }
+20°M 488> M* + 1)[Eg {exp (205, )} + Eg {exp (285, »)}].
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s 2
€xp ("."S:.N - :%'LI._ N) — &Xp ('Ysr - %Lr)

in probability under @, as N — oo, we see as in the proof of Theorem 2 in Pedersen (1994} that
the convergence is in fact in L'(Q,). Consequently, there exists a constant 0 < C; < oo such

that
>
Ep, {exp VSN — ?L:,N)} <€
forall N — N, and so

2 p;
EQ_‘. {exp ["J\-‘ :.N)} S EQx {cxp ('}‘S:_N _ %LI.N’) } exp (% M 2)
72
< C)exp ?er

Ben = b(X o vyyw),s (k—1)t/N <s < kt/N,

Now let v € R. Since

for all N € N. Define

forall0 < s <:tand N € N. Then

' m
Eo (%) = EQX{ (L b, yd WS) }

< CmEQ‘.(L:nN)
< C "M (16)

according to the Burkholder—Gundy-Davis inequality, where 0 < C,, < oc in some constant that
only depends on m € N. Consequently,

Ep [ sup U n(6)?) < C< oo
Q“(ee[ol?a; o )

for all N € N, where 0 < € < oc¢ is some constant that does not depend on & € N. Notice that
inequality (16} also holds for §,. Using this and the inequality

2 2
Eg {exp (78))} < Ep {eXP (’YS: - %L;) } exp (% M 2)

=exp(:£:zM2), vy e R,
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we see that

Ep, (3:1;53| U,(6)) < o0

and (13} is proved. O

Thus if 8, is unique (Pg -aimost surely) for some # € N, then we have from Lemmas | and 2 and
Theorem 1 that 8,  exists for all ¥ € N and that

én__N - én

in probability under Py, as N — oc. Furthermore, if g, is unique ( £y -almost surely) for all » larger
than some ny € N, then it follows from Corollary 2 that consistency and asymptotic normality of 6,
implies the same for 9ﬂ . The maximum likelihood estimator §, is, for instance, consistent and
asymptotically normally distributed if the log-ikelihood function satisfies Assumptions 1-3 in
Section 2 (cf. the discussion after Theorem 2), and according to Lemmas 1 and 2 and Theorem 3 we
then have that the same holds for 8, . In conciusion, both approaches in Section 3 for proving
consistency and asymptotic normality of 8, » apply to the diffusion process soiving (4).

The rather restrictive assumptions in this section on the drift coefficient  were made entirely in
order to simplify the exposition and can be relaxed considerably by refining the arguments. More
importantly, there are good possibilities for extending the use of the results in Section 3 to the time-
inhomogeneous case and to multidimensional diffusion processes and parameters, since the
arguments used in the present section essentially rely on the general Lemmas B and C in the
Appendix and on the closely related expressions for py(s,x.t,y;8) and p{s,x.t y:8). Such
expressions also exist in the following special case of the stochastic differential equation (1):

dX, = b(1, X;;0)di + o(8)dW,,  Xg=1xp 1> 0.

In this case {see Pedersen 1994)
dPé‘sx . dQE‘.s.x'Xf
=Eg,,  {exp (Ss..:(f?) — 3L (NN X, = y}wa( %, (1 — 5)a(8))
puls,x. 6. p:8) = By, {exp{S;, ~(8) 1L,  w() X, =¥} wa(3:x, (1 — 5)al8)),

where (g ; , is the probability measure Py . (cf. Section 2) corresponding to the case b =0.
wa(-;4,Z) denotes the density with respect to A¢ of the d-dimensional normal distribution
Nglp, Z), and

Pls,x, 1,y 8) = EQ“\(

*

&Am=jﬁwanﬁfmm”dn
S.n(8) = Z}mq :0)Ta(d) " (Xo, - Xy, )

L.(6) = JMuXﬁ)(r(uxem
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N
- f—5
L, n(0)= Zb(Tk—hX@_ﬁe)TﬂW) b1, X'-“";B)_N_
k=1

-5

Tk-—-5+k—-}'\-{-—, k=0,1,....N.
If, in addition, ¢ is independent of #and b depends linearly on 4, then it should be straightforward to
extend the methods of this section, but also more generally it should be possible to apply the results
of Section 3 using the expressions above. As longas @y ; .+ X, is absolutely continuous with respect
to A¢ we still have this kind of expression for p(s, x, 1, y; 8), but the expression for py(s, x, t, »; 8)
depends very much on the fact that & is independent of both 1 and x. Thus we find, as in the proofs
of the L' (Ad) convergence of py(s,x,1, -;6) to p(s,x,1, -:9) as N ~— oc (see Pedersen 1994), that
the dependency of ¢ on ¢ and/or x determines the complexity of the analysis, at least by our
methods.

Appendix

n=

X, in probability (distribution) as &k — oo for allr € N and that X, — X in probability (distribution)
as n— oo. Then there exists a subsequence k(r) — o< such that X, ., — X in probability
{distribution} as n — oo, and if &'{n) — oo is a faster subseguence (k'(n) > k(n) for all n € N},
then the same holds for this subsequence.

Lemma A Let {X, )27, _,, {X.}32; and X be R?-valued random vectors. Suppose that X, , —

Proof

Let x, ;. x, and x be elements of some metric space (M,d) for all n,k € N. Assume that
d(x, 4, x,) = 0 as k — oo for all #n € N and that d(x,,x) — 0 as » — co. Define k(n} € N for all
n € N such that d(x, , x,} < 27" for all integers k > k(n). Then

d(xn.k[n)s x) d(xn,k(n): xn} + d(xn.- x)
S 2'” + d(xn!x)s

and the same inequality holds for all integers k > k(). Since both convergences in the lemma can be
viewed as convergences in metric spaces, the lemma is proved. O

LemmaB Let X,{#),n=1,2,...,and let X(¢) be R?-valued random vectors on some probability
space (), #,P)forall # € T C R?, and let f be a real-valued function on R that is continuous on
some open subset U € RY. Assume that:

() supger_,;X,,(f)(S) — X8| = 0 in probability as n — oo for i=1,...,d. where X\(8)
and X“/(8) denote ihe ith coordinate of X,,(¢) and X(#), respectively;
(i) for ali e > O there exists a compact subset K C R? such that K C U and

PXB)eKVIeT)> e
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Then
ggglf(z\’n(e)} - (X)) —0

in probability as n — co.

Proof
For given é > 0 and ¢ > 0 we must show that there exists an N € N such that

P(sup | £(X,(8)) ~FX BN € 8) > 1~
8eT

for all # > N. According to assumption (ii) there exists a compact subset K C R such that K C U
and

PX(B)e K,V0eT)>1—¢/2.
Now we can find a é; > 0 such that

BIK,6) = {x € RY] inf Ix— ¥}l < &)
ye kK

is a subset of U. Notice that B[K, ] is a compact subset of RY and that
ue Kk, lu—vl €6 = ve BK, &)

Since f is absolutely continuous on B[K, §;} we can find a é; € (0, &) such that | f(u} — f(v}] < éfor
all u,v € BK.é] with {lu — v|| < é. Assumption (i) implies the exisience of an ¥ € N such that

P sup X, (6) - X(0)]| < &) > 1 — ¢/2
feT
foralln > N, Let

A={X{8)e K,¥v8e T}

B, = {X,(6) € BK.5,),v0 € T}

C,= {321?3_ X, (8} ~ X ()] < 62}

D, = {1 X.(6) ~ X(6)|| < b, Y0 € T}.
Then P(ANC,) > 1 —eforalln > N. Now
ANC, CAND,
=ANB,ND,
Al AX@) - f(X(0)| < 8,6 € T}
c {glelglf(Xn(f’)) —S(X(6)}| < 6}

and consequently we have for all n > N that

P(sup| /(X,(6)) = (X (6)| S 6) 2 HANC,) > 1 —e. O
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Lemma C Let X(#) be an R?-valued random vector on some probability space (€2, #, P) for all
e TCR? andlet U C R? be an open subset such that

PX()e U ¥eeT)=1
Assume the following:

(i) There exists an increasing sequence {K,}5% , of compact subsets of R? such that X, C U for
all » € N, and such that K, 1 U as n — oo. Furthermore, the interior of X is non-empty.
(i) T C B? is a compact subset.
{iii) The mapping 8+ X (@) is continuous with probability 1,

Then condition (i) of Lemma B is satisfied, that is, for all ¢ > 0 there exists a compact subset
K C R such that K C U and

PX(#)eK,¥0eT)>1—c
Proof

Let
C(T, U} = {x: T— Ul x is continuous}

be equipped with the usual metric of uniform convergence on T'. Then
CAT. U)y=4{xeC(T,U)|x(8) e K,,V8 € T}
is a Borel set in C{T, U) for all n € N since it is determined by a countable number of coordinate
mappings on C(T, U). Since x(T) C U is a compact subset for all x € C(T, U) we have that
C,(T, )1 C(T, 1)
as n — oc, and consequently,
PX® eK,v0eT)=P-X(C,(T,U)) — 1
as n — oc, where P+ X denotes the disuibution on C(T, U) of the random function

wi— (01— X (8,w)) € C(T, U). O
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