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This paper is concerned with the stochastic equation X �

l
B(X�C ), where B, X and C are

independent. This equation has appeared in a number of contexts, notably in actuarial science. An

apparently new property of gamma variables (Theorem 1) leads to the derivation of a new explicit

example of solution of the stochastic equation (Theorem 2), where B is the product of two

independent beta variables, C is gamma and X is the product of independent beta and gamma

variables. Also, a number of previously known explicit examples are seen to be direct algebraic

consequences of a well-known property of gamma variables.
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1. Introduction

Suppose fBn; n � 1g and fCn; n � 0g are two independent i.i.d. sequences, and consider the

stochastic di�erence equation

Xn�1 � Bn�1�Xn � Cn�; �1�

where X0 � x0 is a constant. Iterating (1) we get

Xn � x0B1 . . .Bn �

Xnÿ1

k�0

CkBk�1 . . .Bn: �2�

fXng is a homogeneous Markov chain. A related process is

Yn �

Xn

k�1

CkB1 . . .Bk: �3�

fYng is not a Markov chain, but it can be seen that, given x0 � 0, Xn and Yn have the same

distribution for any ®xed n � 1 (just reverse the order of the indices of the Bs and Cs, and

use the independence assumption).

Equations such as (1), (2) or (3) arise in a number of contexts (see Vervaat 1979, for some

examples). In actuarial science, Xn might represent the accumulated value of amounts
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fC0;C1; . . . ;Cnÿ1g, when the accumulating factors (i.e. one plus the rate of return) are

fB1;B2; . . . ;Bng. Dufresne (1990) describes the actuarial applications and also gives

formulae for the moments Xn and Yn.

Vervaat (1979) states the following su�cient conditions for the existence and uniqueness

of the limit distribution of Xn as n!1:

E�logB1� < 0; E�log jC1j�� <1: �4�

The same conditions ensure the almost sure convergence of Yn. When Xn converges in law

the limit X must satisfy

X �

l
B�X � C�; B;X and C independent: �5�

A number of explicit examples of solutions of (5) have been found; see Vervaat (1979) and

Chamayou and Letac (1991). Embrechts and Goldie (1994) provide further results on the

convergence of Xn and Yn.

Theorem 2 is a new explicit solution of (5), based on a certain property of gamma

variables (Theorem 1). The law of X turns out to be the product of independent beta and

gamma distributions.

It is necessary to make some brief observations on notation. The variableGa has a ÿ�a; 1�

distribution, that is to say, it has density

f �x� � ÿ�a�
ÿ1
x
aÿ1

e
ÿx
1
�0;1�

�x�:

Primes and numerals will be used to indicate that two or more gamma variables are

independent. B has a beta distribution of the ®rst kind with parameters a and b, denoted

B � �
�1�

a; b
, if its density is

fB�x� �
ÿ�a� b�

ÿ�a�ÿ�b�
x
aÿ1

�1ÿ x�
bÿ1

1
�0; 1��x�; a; b > 0:

X has a beta distribution of the second kind with parameters a and b, denoted X � �
�2�

a; b
, if

its density is

fX�x� �
ÿ�a� b�

ÿ�a�ÿ�b�
x
aÿ1

�1� x�
ÿaÿb

1
�0;1�

�x�; a; b > 0:

If Vi �li, i � 1; 2; are independent, then the distribution of their product U � V1V2 will

be denoted l1 �l2.

Remark 1. Letting b! 0 in Theorem 1 we obtain: for any a; b > 0

Ga

Ga � G 0

b

� �G
00

a � G
000

b � �
l
Ga: �6�

(This also results from the familiar independence of Y1 � Ga=�Ga � Gb� and Y2 �

Ga � Gb.) The following (known) explicit examples of (5) ± the ®rst taken from Letac

(1986), the second and third from Chamayou and Letac (1991) ± may be given simple
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algebraic proofs based on (6). This is in contrast with earlier proofs, which used ad hoc

di�erential equation or Mellin transform arguments.

B � �
�1�

a; b
; C � ÿ�b; 1�; X � ÿ�a; 1�:

B � �
�2�

a; a�b
; C � 1; X � �

�2�

a; b
:

ÿB � �
�1�

a; b
; C � ÿ1; X � �

�1�

a; a�b
:

Detailed calculations may be found in Dufresne (1995).

2. A new explicit result

Theorem 1. For any a; b; c > 0,

Ga

Ga � G 0

b� c

�G
00

b � G
000

c �

l Gb� c

G 0

a � Gb� c

�G
00

a� c: �7�

Proof. Suppose X � �
�1�

a; b
� ÿ�c; 1�. Then (letting B � �

�1�

a; b
)

Ee
tX
� E�1ÿ tB�

ÿc
� F�a; c; a� b; t�; t < 1;

where �z 2 C;Re � > Re 
 > 0�

F��; 
; �; z� �

�
1

0

ÿ���

ÿ�
�ÿ�� ÿ 
�

t

ÿ1

�1ÿ t�
�ÿ
ÿ1

�1ÿ tz�
ÿ�

dt; jarg �1ÿ z�j < p:

F��; 
; �; z� is known as the hypergeometric function (see Chapter 9 of Lebedev 1972). Thus

the moment generating function of the variable on the right of (7) is F�b� c; a� c;

a� b� c; t�, t < 1. Using the identity

F��; 
; �; z� � �1ÿ z�
�ÿ�ÿ


F�� ÿ �; � ÿ 
; �; z�; jarg �1ÿ z�j < p

(Lebedev 1972, p. 248), we get

F�b� c; a� c; a� b� c; t� � �1ÿ t�
ÿc
F�a; b; a� b� c; t�; t < 1: h

Lemma. For any a; b; c > 0, �
�1�

a; b� c
� ÿ�b; 1� � �

�1�

b; a� c
� ÿ�a; 1�.

Proof. The lemma results from the well-known property F��; 
; �; z� � F�
; �; �; z�. h

Theorem 2. Suppose B � �
�1�

a; c � �
�1�

b; c
and C � ÿ�c; 1�. Then (5) has unique solution

X � �
�1�

a; b� c
� ÿ�b; 1�:
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Proof. Conditions (4) are obviously satis®ed. Theorem 1 says that

X � C �

l Gb � G
0

c

G 00

a � Gb � G 0

c

�G
000

a� c; �8�

and so

B�X � C� �
l G

�4�

a

G
�4�

a � G
�5�

c

�

G
�6�

b

G
�6�

b
� G

�7�

c

�

Gb � G
0

c

G 00

a � Gb � G 0

c

�G
000

a� c:

There are four factors in the expression on the right. By (6), the ®rst and fourth factors may

be replaced by G
�8�

a . As to the second and third factors, de®ne f1�x; y� � x=�x� y�,

f2�x� y� � x� y, U � �Gb;G
0

c�, U
0

� �G
�6�

b
;G

�7�

c �, and g� f1; f2; v� � f1 f2=�v� f2�. The

variables f f1�U�, f2�U�, G
00

a g are independent and so

g� f1�U
0

�; f2�U�;G
00

a � �
l
g� f1�U�; f2�U�;G

00

a � �

Gb

G 00

a � Gb � G 0

c

: �9�

Finally, the lemma implies

B�X � C� �
l G

00

a

G 00

a � Gb � G 0

c

�G
000

b �

l
X : h

Remark 2. Given (8), the proof of Theorem 2 may also be completed using the Mellin

transform X 7! EX
t
. The above proof shows that the underlying `algebraic structure'

(given in Theorem 1) is nearly su�cient to obtain Theorem 2; the only other fact needed is

the lemma.

Remark 3. As pointed out in the proof, the law of X may also be expressed as �
�1�

b; a� c
�

ÿ�a; 1�. The Mellin transform of A � �
�1�

a; b
being

EA
t
�

ÿ�a� b�

ÿ�a� b� t�

ÿ�a� t�

ÿ�a�
;

it can be seen that the law of B is also �
�1�

a; b� cÿa
� �

�1�

b; a� cÿb
.

Corollary. Suppose B � �
�1�

a; 2c
and C � ÿ�c; 1�. Then (5) has unique solution

X � �
�1�

a� c; a� c � ÿ�a; 1� � �
�1�

a; a�2c
� ÿ�a� c; 1�:

Proof. Let b � a
0

and a � a
0

� c in Theorem 2, then proceed as in (9) to verify that

B � �
�1�

a� c; c � �
�1�

a; c � �
�1�

a; 2c
: h
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