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Consider a process of events on a line L, where, for the most part, the events occur randomly in both

time and location. A scatterplot of the pair that represents position on the line, and occurrence time,

will resemble a bivariate stochastic point process in a plane, P say. If, however, some of the points on

L arise through a more regular phenomenon which travels along the line at an approximately constant

speed, creating new points as it goes, then the corresponding points in P will occur roughly in a

straight line. It is of interest to locate such lines, and thereby identify, as nearly as possible, the points

on L which are associated with the (approximately) constant-velocity process. Such a problem arises

in connection with the study of seismic data, where L represents a fault-line and the constant-velocity

process there results from the steady diffusion of stress. We suggest methodology for solving this

needle-in-a-haystack problem, and discuss its properties. The technique is applied to both simulated

and real data. In the latter case it draws particular attention to events occurring along the San Andreas

fault, in the vicinity of Parkville, California, on 5 April 1995.

Keywords: earthquake; hypothesis test; large-deviation probability; ley-line; point process; Poisson

process; San Andreas fault; spatial process

1. Introduction

The problem and data which motivate this paper arise in geophysics, and are as follows.

Consider an approximately linear segment of a geological fault-line, and suppose seismic

events along the fault are recorded as pairs x ¼ (x1, x2), where x1 denotes the distance

along the line (from a fixed point) of the place where the event occurred, and x2 is the

occurrence time of the event. A small fraction of the pairs result from bursts of energy

which propagate along the fault at approximately constant speeds, causing seismic events as

they go. These bursts generate roughly linear clusters of points in the (space, time) plane,

the gradient of the line being proportional to the speed at which energy travels along the

fault. Identifying these clusters is of intrinsic geophysical interest. (If the triggering event

were to start within the study region then a V-shaped pattern might be observed in the

plane; it could be detected as two separate lines.)

The fault-line in question is a section of the San Andreas fault near Parkfield, California.

Data from this region are described by Malin and Alvarez (1992) and Malin et al. (2002);

see Section 3.2 for further sources. A typical data set is graphed in Figure 1.1. The actual
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data include spatial locations, and occurrence times with millisecond precision, of

microearthquake events between 1987 and mid-1998.

Motivated by this problem, we suggest a method for detecting approximately linear

clusters of points in the plane. Our algorithm searches for a surplus of points within a short

but thin strip, A, relative to the numbers of points in two other strips, B1 and B2, on either

side of A. We employ B1 and B2 to estimate the distribution of the number of points which

would be expected to lie within the thinner, central strip A, and thereby to provide an

informal hypothesis test of significance. The null hypothesis is that the points are Poisson-

distributed, although the intensity of this point process is not required to be uniform.

Indeed, intensity is estimated locally each time the informal test is implemented; the method

is used in the continuum. In particular, the maximum dimensions of A, B1 and B2 are quite

small, and so our approach is spatially and temporally adaptive. We show that our method

is close to being optimal, in the sense that no other approach can correctly identify

approximately linear clusters containing an order of magnitude fewer points.

In the context of our geophysical data, the approach described above has several

advantages relative to some existing techniques. First, it is straightforward to apply in

Figure 1.1. (a) Vertical and (b) longitudinal locations, in minutes of longitude and latitude

respectively, and occurrence times of microearthquake events along the San Andreas fault near

Parkfield, California. See Section 3.2 for further details.
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inhomogeneous cases, where point-process intensity varies in the plane. Spatio-temporal

fluctuation of intensity is a characteristic of seismic events, and requires a methodology

which is intrinsically local in character. The need to accommodate this type of variation,

even at the basic level of modelling the point process, means that methods for solving the

problem are bound to be computer-intensive.

Secondly, the ease with which our informal test can be calibrated means that

implementation adds relatively little computational complexity to the burden of calculation.

In particular, the test does not require Monte Carlo simulation. Related techniques, based on

probability calculations and stochastic-geometric formulae, can be difficult to implement

without simulation, especially if the lines of points are not very clearly defined.

Thirdly, the informal test readily accommodates cases where prospective lines contain

relatively many points, even though the points may not all be particularly close to lying on

the same straight line.

In the discussion above we have stressed the informal nature of our test, to emphasize the

fact that the test is part of a diagnostic procedure and not an end in itself. Indeed, the role

of our test is quite similar to that of tests in many classification problems, where the

diagnostic for classification can be viewed as an approximation to a likelihood ratio statistic

that might be used to conduct a hypothesis test. This parallel becomes closer if we consider

that we are trying to classify a linear cluster of points as being part of an approximate line,

or as having arisen purely by chance, respectively. Implementing our approach depends on

selecting a number of tuning parameters, which cannot be chosen adequately without

referring to the data; and that reference cannot be made without, to some extent, impinging

on the level and power of the informal tests, just as in the case of many tests that are parts

of classification procedures. In Section 3.2, where we apply our method to a real data set,

we shall argue that it is possible to make the reference conservatively, so that the errors are

small and do not impact seriously on the performance of our method.

The reader will have noticed that our approach involves converting a three-dimensional

problem, where data have two spatial coordinates x and y and a temporal coordinate t, into

two bivariate problems, with data sets in the (x, t) and (y, t) planes respectively. The

advantages of this approach are threefold. Firstly, if we were to treat the problem in its

original trivariate form then the strips we would use for informal testing would become

cylinders, with axial cylinders running down their cores. Since the orientation of a cylinder

has two degrees of freedom, rather than one (a cylinder should be rotated in two angular

dimensions), then the amount of calculation needed in three dimensions is greatly increased,

relative to that required in two one-dimensional subproblems. Secondly, even in the setting

of the Parkfield data, with some 5000 points, data sparsity becomes a problem if we work

in three rather than two dimensions. Thirdly, if we attempt to solve two one-dimensional

problems then each provides a check on the other, in the sense that a line which is clearly

present in the three-dimensional problem should be manifest in both the two-dimensional

subproblems. As we shall show in Section 3.2, this opportunity for ‘cross-validating’ the

results between the two bivariate data sets provides helpful insight into whether a suggested

line might be illusory. In particular, after analysis of the (x, t) and (y, t) point patterns, the

findings in the two patterns can be combined. This will prove to be a powerful tool in our

analysis of the real-data example.
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The Poisson assumption, on which our analysis is partly based, is perhaps open to query.

It tends to produce accurate or conservative results (i.e. informal tests which err on the side

of relatively low level) in the case of processes where the variance of the number of points

in a region is less than a constant multiple of the area of the region. However, it tends to be

anticonservative otherwise. The Poisson assumption, or its conditioned version (i.e. a

uniform distribution of points in a region), is commonly made in related work, such as that

discussed above, and seems difficult to avoid unless one has a specific alternative model

and is prepared to simulate extensively in order to compute critical points. One might

expect the process producing the seismic data to be closer to a Poisson cluster process than

a pure Poisson process. In this case the conservatism (or otherwise) of our procedure would

likely depend on the distribution of spatial clump size.

There is a related literature in the area of archaeology, termed ‘post-hole analysis’, which is

devoted to the problem of finding regular structures (usually of rectangular shape, representing

the outlines of rooms or buildings) in scanned excavation plans. See, for example, Fletcher and

Lock (1981, 1984, 1991) and material cited therein. The work of Fletcher and Lock includes

discussion of alternative methods for assessing the significance of alignments, based on

perturbing the data sufficiently to destroy alignments but not enough to alter the distribution of

scattering. See also Small (1996), who addresses movable-strip methods in this context. In

related work, Mack (1950) derives elegant formulae for the expected numbers of sets of k

points, out of n points randomly distributed in the plane, that can be covered by a square or

triangle. Still another approach to discovering geometric structure is given by Kent et al.

(1983) in the context of palaeomagnetic data.

In related work, Broadbent (1980) studies the incidence of ‘ley-lines’, or approximate straight

lines linking sites of archaeological interest, in Britain. Kendall and Kendall’s (1980) study of

theoretical properties of triads plays a role in the development of statistical shape theory (see

Silverman and Brown 1978; Kendall 1984, 1985, 1986; Small 1984, 1988; Goodall 1991).

Small (1982) extends Kendall and Kendall’s (1980) methodology. Gates (1986) introduces

measures of collinearity alternative to those proposed by Kendall and Kendall (1980).

Statistical work on testing significance by reference to movable strips is well known in

statistics, for example through a very large literature on the scan statistic. See Cressie

(1977) and Saunders (1978) for early accounts of its properties, Kulldorff et al. (1998) for a

recent example of its application to space-time clustering, and Weinstock (1981) and Priebe

et al. (1997) for related examples, in medical settings, of applications of the scan statistic to

detecting clusters.

There is a very extensive, and more recent, literature in the area of computer vision and

machine understanding, on the problem of locating lines among scattered points. It includes

work by Stewart (1995a, 1995b), Danuser and Stricker (1998), Frigui and Krishnapuram

(1999), Meer et al. (2000), Desolneux et al. (2003a, 2003b) and Susaki et al. (2004).

2. Methodology

We search for lines of points by using a sequence of ‘test strips’. A test strip, S, is an

a3 b rectangle divided into three disjoint, parallel substrips. One substrip is a c3 b
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rectangle, where 0 , c , a, and is axial to the main a3 b rectangle. The other substrips

are 1
2
(a� c)3 b rectangles, and lie on either side of the axial substrip. We shall call b the

length of the test strip and of the substrips, and shall refer to a as the width of the test

strip.

Thus, the axial c3 b substrip is sandwiched between two other substrips. Supposing that

points in the plane come from a Poisson process, P say, and assuming the hypothesis H0

that Poisson intensity does not vary significantly within S, we shall use data that fall within

the two 1
2
(a� c)3 b substrips to estimate the average intensity of P in S. Employing this

estimator, we shall reject H0 if the number of points of P that lie in the axial substrip is

unduly large, in particular if it exceeds an empirically determined critical point. If the axial

substrip is quite narrow relative to its length, and if our test leads to rejection, then we

argue that the axial substrip contains an approximately linear array of points that has been

adjoined to the Poisson process P.
More generally, provided the test strips are not particularly large, we do not need to

assume P is homogeneous, although we do ask that point-process intensity not change

dramatically in the plane. Neither do we have to specify the test strip, or its substrips,

particularly narrowly; wide latitude in their choice is possible.

The informal hypothesis test discussed above will be applied repeatedly, for many

different locations, orientations and sizes of the test strip. Next we discuss critical points for

these tests. Let log� t ¼ log t, the natural logarithm of t, if t > e, and let log� t ¼ 1

otherwise. Put

xu(t) ¼ t þ u(t log� t)1=2, (2:1)

where u . 0. Given a region R of area kRk, and a constant º . 0, we may interpret

xu(º kRk) as a critical point of the distribution of the number of points of a homogeneous

Poisson process, with intensity º, within R. Indeed, if, in (2.1), we were to replace log� t by

simply 1, and if º and R were to vary in such a way that º kRk diverged to infinity, then the

probability that the number of points within R exceeded xu(º kRk) would converge to the

probability that a standard normal random variable exceeded u. We shall use xu(º kRk), with
º replaced by an estimator, and incorporating a minor adjustment, as a critical point for

repeated testing during our search for lines of points.

Suppose the points of P are distributed within a region containing R, and let N (R)

denote the number of points which fall within R. Given a test strip S, let A denote its axial

c3 b substrip, and write B ¼ SnA ¼ B1 [ B2 for the union of the other two substrips, B1

and B2 say. Put º̂º j ¼ N (B j)=kBjk. As our estimator of average point-process intensity

within S we could use either

~ºº ¼ N (B)=kBk ¼ 1
2
(º̂º1 þ º̂º2) or º̂º ¼ max(º̂º1, º̂º2): (2:2)

However, º̂º gives a procedure which is more robust against departures from homogeneity, and

so is less likely to produce false positive results owing to fluctuations in point-process

intensity. To appreciate why, note that the maximum is never less than the average, and so, if

we use the maximum to estimate background point-process intensity, then in order for an
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informal test to result in rejection there has to be a greater number of points in the axial

substrip than would be required if we used the average.

In a slight abuse of notation, we shall consider S to denote all dimensional and

configurational information about the test strip S ¼ S(a, b, c, x, Ł) and its substrips. In

particular, the notation S conveys the values of a, b and c, and the centre x of S and the

orientation, Ł, of S with respect to a fixed axis in the plane.

Assume P is a Poisson process, not necessarily homogeneous. Let v . 0, let xu and º̂º be

as at (2.1) and (2.2), and consider the hypothesis H0 ¼ H0(S) that the integral average of

point-process intensity within the axial substrip A exceeds the maximum of the average

intensities within B1 and B2. Our informal test of H0(S) will be based on the following

rule:

reject H0(S) if and only if N (A) > maxfxu(º̂º kAk), vg: (2:3)

By inserting v . 0 here we are guarding against false positives arising from stochastic

fluctuations, for example of the estimator º̂º.

3. Simulation results and application to real data

3.1. Simulation

To assess performance of our method we simulated data sets of n points sampled

independently and uniformly within the unit square. Such points can be considered to come

from a homogeneous Poisson process, conditioned on the number of points in the square

equalling n. The goal of the simulation study was to address performance of the test when

(i) no line was present inside the unit square (call this H0), (ii) a single straight line of

points was added to the square (H1 without noise), or (iii) points on the added line were

observed with error (H1 with noise). In case (iii) we ‘jittered’ the points on the line by

adding random noise, using the S-Plus function jitter. In the present case this is virtually the

same as perturbing a point x to xþ R, where each component of R is uniformly distributed

in [�z, z] and z ¼ ‘noise factor’ 3(1=50). The ‘noise factor’ was taken to lie between 0:1
and 3; see below for details. For all the results reported in this section we took v ¼ 2.

To implement the test we searched for lines on a 103 10 grid as follows. First, the

centre of a test strip was located at each point of the grid. Then we rotated the test strip 5

degrees at a time, so that 36 tests were carried out at each grid point (resulting in 3600

tests in each simulation run.) In practice a greater number of locations and rotations would

be considered; see Section 3.2. The fact that every parameter configuration had to be

simulated many times was a limiting factor in the present section.

As expected, the mean number of falsely detected lines was a decreasing function of u

and an increasing function of c. For example, when (n, a, b, c) ¼ (100, 0:1, 0:6, 0:01), and
simulation was under H0, the average number of false positive tests was approximately 3

for 5:9 < u < 6; 6 for 5:4 < u < 5:8; 9 for 4:1 < u < 5:3; and 12 for u ¼ 4. Each small

cluster of points in the plane that gave rise to at least one detection, produced about two
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other false positive tests for different rotations or locations of the test strips. Hence, the

above numbers have to be divided by 3 in order to give the number of small clusters of

points which misleadingly suggested the presence of a line. These false clusters therefore

numbered, on average, approximately 1, 2 and 3 for 5:9 < u < 6, 5:4 < u < 5:8 and

4 < u < 5:3, respectively. When c was increased from 0:01 to 0:05 the average number of

these misleading clusters rose to approximately 3 and 4 for 5:4 < u < 5:8 and

4:1 < u < 5:3, respectively. (The number stayed at about 1 when 5:9 < u < 6.)

Of course, in practice the putative line of points is not perfectly straight. To provide

information about the effects of perturbation we shall report false discovery rates, and

detection probabilities, under the model ‘H1 with noise’. To generate the results in Figure

3.1 we took (n, a, b, c) ¼ (100, 0:1, 0:6, 0:01), as used above, and added a line of 10

points, except that the points in the line were jittered using noise factors 0.1, 0.25, 0.5 and

1.0 in the respective panels, from left to right, in each of the two parts of Figure 3.1. The

added line was said to be ‘partially detected’ if at least two of its points were among those

in the axial substrip which gave rise to a significant test result; and ‘fully detected’ if all its

points were among those points. More generally, any collection of points that gave rise to a

positive result was said to have produced a ‘detected line’.

Figure 3.1(a) shows average numbers of line detections (i.e. statistically significant tests,

either true positive or false positive), shown as circles, and average numbers of (at least)

partial detections (true positives), shown as plus signs. Figure 3.1(b) gives the chance

(expressed as a percentage) of detecting at least one cluster of points containing at least two

points from the added line, shown as a circle, and also the probability of detecting a cluster

which contains all 10 of the added points, shown as a plus sign.

As in the n ¼ 100 example discussed earlier, on average each small cluster of points in

the plane that gave rise to at least one detection in the experiments summarized in Figure

3.1, produced approximately two other detections. This is true for the cluster produced by

the added line as well as for spurious linear-looking clusters. Therefore, each count in each

panel is usually greater, by about two or three, than the respective counts reported earlier

when n ¼ 100; see Figure 3.1(b). (The last of the four panels there is an exception, and

will be discussed shortly.) These two or three extra significant test results correspond to

correct detections of the added line. Equivalently, the number of small point-clusters

detected is roughly 2, 3 or 4 when 5:9 < u < 6, 5:4 < u < 5:8 or 4 < u < 5:3, respectively,
except that the number tends to decrease as the amount of noise (used to perturb points on

the added line) increases.

This reflects the decreasing likelihood of detecting any of the added points as the noise

factor increases. The probability is virtually 100% in the first panel (representing noise

factor 0.1). It falls to between 75% and 100% in the third panel, and to between 20% and

70% in the fourth, depending on the value of u. Using a larger u increases the probability

of detecting at least part of the added line, but, as shown in Figure 3.1(a), and of course as

expected, it also increases the number of false positives. The chance of detecting all 10

points on the line never exceeds 30%, and is virtually zero in the case of the fourth panel.

This is not necessarily a practical problem, however; having detected a cluster of points

containing the added line, visual inspection can then usually determine most of the 10

points, generally with some ‘false’ points as well.
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3.2. Application to real data

The Parkfield data set, summarized in Figure 1.1, is comprised of 5102 points. It contains

time and location information on microearthquake activities of the San Andreas fault near

Parkfield, California, between 1987 and 1998.

The measurements that produced the data were obtained using a network of borehole

seismographs placed in different locations in the area. From a geophysical viewpoint, both

vertical and longitudinal ‘migrations’ of events are of interest. Among the studies that have

been made of seismic events in the Parkfield area, and of mathematical models for those
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Figure 3.1. Numbers of detected lines and probabilities of detections obtained with (n, a, b, c) ¼
(100, 0.1, 0.6, 0.1) and with the noise factors as indicated at the top of each panel. (a) Monte Carlo

estimates of expected numbers of positive test results (indicated by circles) and the numbers of those

which contain at least two points of the added line (shown by plus signs). The number of detections

should be divided by about 3 to get the number of small-point clusters, in the unit square, that

produced statistically significant test results. In particular, the added line of 10 points was at least

partially detected approximately three times, if it was detected at all. (b) The probability, expressed as

a percentage, that the added line was at least partially detected (indicated by circles) or wholly

detected (shown by plus signs).
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events, we mention the contributions of McEvilly et al. (1967), Bakun and McEvilly (1979,

1984), Bakun and Lindh (1985), Stuart et al. (1985), Lindh and Malin (1987), Segall and

Harris (1987), Malin and Alvarez (1992) and Malin et al. (2002).

Compared to the simulations in Section 3.1 we used a greater number of grid points,

employing a 203 20 lattice and increasing the number of test-strip rotations from one every

5 degrees to one every degree. Therefore, in total we carried out 4003 180 ¼ 72 000 tests.

For simplicity, and for a degree of comparability with the results obtained in Section 3.1,

we standardized both axes so that the data were analysed on the unit square; the discussion

below should be interpreted in this context.

The main challenge facing an experimenter is choosing the tuning parameters a, b, c, u

and v. Taking (a, b, c) ¼ (0:05, 0:1, 0:001) corresponds to using a test strip of which the

length is exactly twice the width. This shape reflects the fact that, in the case of

inhomogeneity, we do not want the strip to be too wide in a direction perpendicular to the

line we are trying to detect, in case it reaches into regions where point-process intensity is

significantly different from that near the line. On the other hand, we want the test strip to

be wide enough to ensure that the intensity estimators º̂º1 and º̂º2 are based on sufficiently

many data.

When (a, b, c) ¼ (0:05, 0:1, 0:001) and the point process in the unit square is

homogeneous with the same number of points as the real data set, the estimators º̂º1 and

º̂º2 are each based on approximately 12:5 data, whereas the axial substrip contains only

0:245 data, on average. (For the real data, and with (a, b, c) ¼ (0:05, 0:1, 0:001), the mean

number of points in the two substrips on either side of the axial substrip was 13.5.) For a

homogeneous Poisson process with the same number of points asthe real data set, Monte

Carlo simulations in the unit square show that when u > 7 and v ¼ 10 the probability of

one or more positive results among the 23 72 000 tests (i.e. one test for each of 72 000

test-strip positions in the longitudinal-migration and lateral-migration data sets) is much less

than 0:1.
While these results encourage the choices (a, b, c) ¼ (0:05, 0:1, 0:001), u > 7 and

v ¼ 10, they do not adequately treat the case of extreme counts in high-intensity parts of

a Poisson process that resembles the real data set. To address this aspect of the problem

we argued as follows. For each of the 72 000 locations of the test strip, there are two non-

axial substrips in the case of longitudinal-migration data, and two non-axial substrips in

the vertical-migration setting. The maximum number of counts in these substrips is 220,

occurring in a non-axial substrip for one of the 72 000 locations in the case of

longitudinal migrations. Dividing 220 by the area, 0.002 45, of the non-axial substrip, we

obtain 89 800, being the largest of the 43 72 000 ¼ 288 000 local intensity estimates º̂º1
and º̂º2. Reflecting this value, we consider properties of a Poisson processes, in the unit

square, with intensity 90 000. In a simulation study of 200 such processes, none of the

2003 72 000 ¼ 1:443 107 tests with (a, b, c) ¼ (0:05, 0:1, 0:001), u > 7 and v ¼ 10 gave

a positive result.

Together these conclusions suggest that, for the real data set, spurious lines are unlikely

to arise if we take (a, b, c) ¼ (0:05, 0:1, 0:001), u > 7 and v ¼ 10. This will be our choice

below, although we shall also report results for smaller values of u, in order to set the

larger values into context.
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For u ¼ 4, and looking at vertical migrations (i.e. using the data shown in Figure

1.1(a)), our test found 19 lines in 7 different locations. Here ‘location’ is defined as the

coordinates of the centre of the test strip, and a line is specified by its location and angle,

which are measured counterclockwise from the horizontal. For u ¼ 5, 7 and 8 the numbers

of lines (again for vertical migrations) reduced to 16, 5 and 3, respectively. In the case of

horizontal migrations we found 18, 12, 5 and 4 lines for u ¼ 4, 5, 7 and 8, respectively.

As with the simulation results reported in Section 3.1, the size (and indeed the

discreteness) of these numbers reflects the number of points in the grids of locations and

rotation angles. It nevertheless indicates which locations and angles are of particular

interest.

Table 3.1 details the lines which are statistically significant when u ¼ 7, 7.5 or 8. It can

be seen that in each case there are essentially three timepoints which generate all the lines.

Two of these are shared between the two data sets represented in Figures 1.1(a) and 1.1(b),

respectively. Hence, for each set of deleted lines there is one timepoint which is not

represented in the other. These timepoints may correspond to false positives; in the case of

Table 3.1. Date, time and (a) latitude or (b) longitude of the centres of test strips for different values

of u. Angles are measured in degrees, counterclockwise from horizontal axis. The symbol • indicates

that a statistically significant result, for the given value of u, was obtained for a test strip

corresponding to the stated date, time, position and angle

(a)

Date and time Minutes north of

35 degrees

Angle u

7 7.5 8

7 Aug. 94, 08:41:22.753 58.02 86 •
58.02 87 • • •
58.02 88 • • •

5 Apr. 95, 20:29:12.341 58.02 119 • • •

5 Oct. 90, 11:35:20.859 59.48 87 •

(b)

Date and time Minutes west of

120 degrees

Angle u

7 7.5 8

7 Aug. 94, 08:41:22.753 32.13 87 • • •
32.13 88 • • •

5 Dec. 94, 09:52:00.954 32.13 54 • • •
5 Apr. 95, 20:29:12.341 32.13 118 • •

32.13 119 • • •
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vertical migration, the corresponding line is not statistically significant when u ¼ 8. The

remaining two timepoints, repeated in each part of Table 3.1 and representing events which

occurred in August 1994 and April 1995, respectively, are therefore singled out for special

attention.

Figure 3.2 shows the test strips which produce statistically significant results when

u ¼ 8, for (a) vertical migration (and (b) longitudinal migration. As indicated in Table 3.1,

there are essentially only two test strips in the vertical case, corresponding to events

occurring on 7 August 1994 and on 5 April 1995. As suggested by Table 3.1(a), the two

lines of points deriving from events of 7 August 1994 are so close together that the

respective test strips appear as one. In Figure 3.2(b) there are, however, three visible test

strips, corresponding to: two coalesced test strips representing the events of 7 August

1994; one test strip for the events of 5 April 1995 (both of which dates are ‘shared’ with

Figure 3.2(a)); and a third test strip, produced by events of 5 December 1994, which has

no counterpart in Figure 3.2(a) and which is possibly a false positive.

Although the lines in August 1994 and April 1995 are both statistically significant, there

are intrinsic differences between them. Perhaps most importantly, the line in August 1994 is

nearly vertical, whereas that in April 1995 is at an angle which corresponds to that of the

San Andreas fault. This line should therefore be considered more significant from a

seismological point of view, independently of any measure of statistical significance it might

have.
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Figure 3.2. Lines detected in the data set of events in Parkfield, California. (a) Vertical and (b)

longitudinal migration lines, respectively, and the test strips for which they are statistically significant.

Both time and location axes were transformed linearly to the interval [0,1].
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4. Theoretical properties

First, we construct an asymptotic model which we shall use to assess properties of our tests.

We shall allow the intensity of points in P to increase, in proportion to ‘, say. This will

permit us to search in increasingly small regions for approximately linear arrays of points.

Therefore, at the same time as we increase ‘ we shall shrink the test strips S. Indeed, we
shall let

a ¼ Æh and b ¼ �h, where h ¼ h(‘) converges to zero as ‘ ! 1, but Æ

and � are constrained to lie within fixed intervals, specifically Æ 2 [Æ1, Æ2] (4:1)

and � 2 [�1, �2], with 0 , Æ1 , Æ2 , 1 and 0 , �1 , �2 , 1:

Construct the a3 b test strip S ¼ S(a, b, c, x, Ł), centred at x 2 D, with its sides of length b

making an angle Ł 2 [0, �) to some fixed line in the plane, and with axial substrip A of

width c.

We shall suppose too that c ¼ c(‘) satisfies

c 2 [0, ªh], where ª 2 (0, Æ1) is fixed: (4:2)

In particular, we allow the width of the axial substrip A to be arbitrarily small; no lower

bound is placed on c. Of course, this reflects the fact that we are seeking an array of points

arranged approximately in a straight line. Responding to this objective, we could ask that

0 < c < �, where � ¼ �(‘) satisfies �=h ! 0 as � ! 0, implying that we search only

within thin axial substrips. However, the nature of our informal test makes this unnecessary.

The following theorem shows that for a wide range of choices of the tuning parameters,

there is only a small probability that our algorithm ‘detects’ spurious lines. This result and

Theorems 4.2 and 4.3 below show that if the test strip is broadly of the type used in

Section 3 – for example, with its sides in moderate proportion and its axial substrip not so

narrow that it could not cover most of the points on a ‘jittered’ line – then our sequence of

informal tests is able to fill the functions intended of it, and reliably find added lines

without suffering too many false positives. The theorems are not intended to provide an

algorithm for choosing the tuning parameters. Derivations of Theorems 4.1 and 4.2 are

given in Section 5, and a proof of Theorem 4.3 is provided in a longer version of this paper

(Hall et al., 2005).

Theorem 4.1. Assume the point process P is Poisson with intensity ‘ f (x), at x 2 R2, where

the fixed function f has two bounded derivatives and satisfies f . 0 in R2. Suppose too that

for some � . 0, h ¼ O(‘�1=6��) and ‘1��h2 ! 1 as ‘ ! 1. Let D denote a bounded,

measurable subset of the plane, and consider all configurations of test strips S ¼
S(a, b, c, x, Ł), where x 2 D, Ł 2 [0, �), and substrip dimensions a, b, c are constrained

only by (4:1) and (4:2). Taking u fixed and using v ¼ w log ‘, for fixed w, conduct the test

described at (2:3) for all such configurations of S. Then, provided u, w . C, where C . 0 is

sufficiently large, the probability that the hypothesis test rejects H0(S), for some S, converges
to 0 as ‘ ! 1.
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Provided the area, kDk, of D is non-zero, Theorem 4.1 continues to hold if the identity

‘v ¼ w log ‘’ is replaced by ‘v ¼ w log �̂� ’, where �̂� ¼ N (D)=kDk is an estimator of the

average intensity of P in D. In this sense the critical points for the test can be chosen

empirically.

The condition h ¼ O(‘�1=6��) as ‘ ! 1, imposed in the theorem, is needed to ensure

that the estimate of intensity within the axial substrip A, being based on the substrips B1

and B2 on either side of A, is not unduly biased upwards through the intensity of P being

too large on either side of A. It is readily seen that significant bias can occur if h is too

large. Note also that, in view of the assumption that the Poisson intensity equals ‘ f , each
test strip includes approximately ‘h2 points. Therefore, the assumption that ‘1��h2 ! 1 as

‘ ! 1 ensures that the estimator º̂º is, with high probability, based on at least const:3 ‘�

points, that is, on a polynomially large number of points of P.
Next, we address the power of our procedure when an approximately linear, randomly

perturbed array of points is added to P. Specifically, suppose n ¼ n(‘) points are adjoined

to P within a �3 �h strip centred in D, where � 2 [�1, �2]. (The distribution of the

adjoined points within the �3 �h strip can be arbitrary.)

Theorem 4.2. Assume the conditions of Theorem 4.1, and that n ¼ n(‘) and � ¼ �(‘) satisfy
‘�h ! 1, �=h ! 0,

lim
‘!1

n�1(‘�h)1=2 ! 0, lim sup
‘!1

n�1 log ‘ < �: (4:3)

Let S denote any test strip S ¼ S(a, b, c, x, Ł) which satisfies (4:1) and has as its axial

substrip A the �3 �h region within which the n new points, adjoined to P, are distributed.

Write �(‘) for the probability that our algorithm rejects H0(S). Then, provided � . 0 in (4:3)
is sufficiently small, relative to the fixed values of u and w in the critical point

maxfxu(º̂º kAk), w log ‘g, �(‘) ! 1 as ‘ ! 1.

Of course, it is likely the algorithm defined by (2.3) will reject H0(S) for a number of

test strips S, not just those specified in Theorem 4.2. However, it follows from Theorem 4.1

that the test is not likely to reject H0(S) for any S whose axial substrip A does not include

any of the n adjoined points. In practice, if an approximately linear cluster of n points

exists then it is straightforward to find it using the information gained from the hypothesis

tests described by (2.3). As an aid in this process one can choose S to maximize the

probability that, under H0(S), the inequality at (2.3) is satisfied. This allows us to estimate

the orientation of the line on which the points approximately lie, and hence to estimate the

speed at which the associated seismic events are propagated down the fault. See Section 3

for discussion.

The first part of (4.3) asks that n be of larger order than the standard deviation of our

estimator of the mean number of points that would lie in the axial substrip, A, if that

number were Poisson-distributed and the strip were of width �. Indeed, under the Poisson

assumption, and the condition in Theorem 4.1 that the intensity of points per unit area is

approximately ‘, the expected number of points in a strip with dimensions �3 �h, centred
near x, is approximately ‘�h � f (x), and the variance is equal to the square root of this
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quantity. The second part of (4.3) asks that n not be less than a small constant multiple of

the lower level, v ¼ w log ‘, of the critical point maxfxu(º̂º kAk), vg at (2.3).

Next we show that the level of performance described by Theorem 4.2 is optimal, in the

sense that no method can detect ‘contamination’ of P by n points for an order of

magnitude smaller value of n than allowed by (4.3). For simplicity, take D to be a unit

square, and divide it into m columns and m rows, of sizes a ¼ b ¼ h ¼ m�1. As this

notation suggests, we are viewing each square subdivision of D as a test strip S. The axial

substrips of the test strips are parallel to the rows of D. Denote their common widths by �.
Let h ¼ h(‘) and � ¼ �(‘) satisfy the conditions imposed in Theorems 4.1 and 4.2:

h ¼ O ‘�1=6��
� �

, ‘1��h2 ! 1, ‘�h ! 1, �=h ! 0, (4:4)

for some � . 0. Assume too that

the Poisson process in the plane is homogeneous with intensity ‘: (4:5)

That is, in the notation of Theorem 4.1, we take f � 1. Thus, the number of points

within each axial substrip is Poisson-distributed with mean ‘�h.
To each of the m2 �3 h axial substrips we decide with probability 1

2
to add a further n

points, and decide with probability 1
2
not to augment the Poisson-distributed points already

in the substrip, making the decision independently for each substrip. We know from

Theorem 4.1 that the probability that our test can identify the fact that no new points have

been added to any of the axial substrips, given that none have, converges to 1 as ‘ ! 1.

Likewise, we know from Theorem 4.2 that if n ¼ n(‘) satisfies (4.3) then the probability

that our test can correctly identify the fact that n points have been distributed in one of the

axial substrips, given that they have, also converges to 1 as ‘ ! 1. Theorem 4.3 below

provides a converse to Theorem 4.2. The second part of Theorem 4.3 holds for a general

technique, not just the one discussed in Theorems 4.1 and 4.2. In the theorem the addition

of n points to one of the h3 h regions is referred to as a ‘contamination’.

Theorem 4.3. Assume conditions (4:4) and (4:5); in the definition of the critical point at

(2:3), take u . 0 and v ¼ w log ‘ for w . 0; and take f , in the notation of Theorem 4.1, to

be identically equal to 1. If n ¼ n(‘) satisfies (4:3), and if u, w are sufficiently large and �
(at (4:3)) sufficiently small, then, applying the test at (2:3) to each of the m2 test strips, for

each k > 1,

sup
1< j<k

f1� P(algorithm correctly detects each contamination and each

non-contamination j there are exactly j contaminations)g ! 0 (4:6)

as ‘!1. Conversely, suppose that for some algorithm, (4:6) holds. Then n satisfies the first

part of (4:3). If, in addition, (‘�h)�1 log ‘ is bounded, then the second part of (4:3) is also

true, for some � . 0.
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5. Technical arguments

5.1. Proof of Theorem 4.1

Without loss of generality, D is a square; in the contrary case, replace D by a square region

containing the original D. Let d . 0 be a constant, let � ¼ �(‘) denote the integer part of

‘d , and place � regularly spaced points along each side of D, with one point at either end

of each side. The set of point pairs that results is a �3 � lattice within D; call it

Dd ¼ Dd(‘). Likewise, divide ¨ ¼ [0, �], L ¼ [Æ1h, Æ2h], M ¼ [�1h, �2h] and N ¼
[0, ªh] into respective lattices ¨d , Ld , Md and N d of � regularly spaced points. Let S

(Sd) denote the set of all test strips that are centred at a point in D (in Dd), are inclined at

an angle in ¨ (in ¨d), whose widths and lengths equal elements of L and M (of Ld and

Md), and whose axial substrip widths are elements of N (of N d).

Given a test strip S 2 S, and D > 2, let A denote the axial substrip of S, and let T (A)

be the set of all points in the plane that are no further distant than ‘�D from the perimeter

of A. We may choose d ¼ d(D) so large that for each S 2 S with axial substrip A, there

exists S9 2 Sd , with axial substrip A9, such that A˜A � T (A9), where A˜A9 denotes the

symmetric difference of A and A9. In this case,

N (A) < N (A9)þ N (A˜A9) < N (A9)þ NfT (A9)g: (5:1)

Let K > 1 be an integer. Since D > 2, the probability that T (A9) contains at least K þ 1

points of P equals O(‘�K�1), uniformly in S9 2 Sd , as ‘ ! 1. Since the number, #Sd say,

of elements of Sd increases with ‘ only polynomially fast as ‘ increases, then if K ¼ K(d)

is sufficiently large, #Sd ¼ O(‘K ). In this case, the probability that, for some S9 in Sd ,

T (A9) contains at least K þ 1 points equals O(‘�1) as ‘ ! 1. Therefore, by (5.1), it

suffices to show that for any fixed integer k > 1, the probability that

N (A9)þ k > maxfxu(º̂º kA9k), vg for some S9 2 Sd with axial substrip A9, converges to

0. For this it is sufficient to prove that if k > 1 and K . 0 are given, and u, w . 0 are

sufficiently large,

sup
S2Sd

P N (A9)þ k > max xu(º̂º kA9k), w log ‘
n oh i

¼ O ‘�K
� �

: (5:2)

Of course, in this formula º̂º is computed from data in the two non-axial substrips, B91 and B92
say, within S9.

Let the random variable M(º) have a Poisson distribution with parameter º . 0. Given

x . 0, let m denote the least integer not less than ºþ º1=2x. In particular, m > ºþ º1=2x.
Using Stirling’s formula, and taking C1 and C2 to be positive absolute constants, we may

prove that
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P M(º) > ºþ º1=2x
n o

¼ PfM(º) > mg

<
ºm

m!
e�º

X1
j¼0

1þ º�1=2x
� �� j

¼ 1þ º�1=2x
� � ºmþ(1=2)

m! x
e�º

< C1 1þ º�1=2x
� � ºmþ1=2

mmþ1=2 x
em�º

< C2 x
�1 1þ º�1=2x
� �1=2�(ºþº1=2x)

exp º1=2 x
� �

¼ C2 x
�1 1þ º�1=2x
� �1=2

exp �º � x=º1=2
� �n o

, (5:3)

where �(t) � (1þ t) log(1þ t)� t ¼ 1
2
t2 þ O(jtj3) as t ! 0.

More simply, if m is an integer then

sup
0,º<e

PfM(º) > mg < C3=m! < C4 expf�m(log m� C4)g,

for absolute constants C3, C4 . 0. The latter formula implies that if m > (1þ a)log ‘, where
a . 0, then

sup
0,º<e

P M(º) . max ºþ a(º log� º)1=2, m
n oh i

< sup
0,º<e

PfM(º) . mg < C4 expf�m(log m� C4)g ¼ O ‘�K
� �

for all K . 0. From this result and (5.3) we deduce that if K . 0 is given and a ¼ a(K) is

sufficiently large,

sup
0,º,1

P M(º) . max ºþ a(º log� º)1=2, (1þ a)log ‘
n oh i

¼ O ‘�K
� �

: (5:4)

Given a subset C of the plane, put º(C) ¼ ‘
Ð
C f (x) dx, denoting the expected number of

points of P that lie within C. Recall that A denotes the axial substrip of the test strip S,
and that B1 and B2 are the substrips that sandwich A. Put º̂º j ¼ N (B j)=kBjk and

º̂º(S) ¼ max(º̂º1, º̂º2). Since f has two bounded derivatives then

maxfº(B1)

kB1k
,
º(B2)

kB2k
g >

º(A)

kAk þ O ‘h2
� �

,

uniformly in test strips S satisfying the conditions of Theorem 4.1. Moreover, if K . 0 is

given, and if C5 ¼ C5(K) . 0 is sufficiently large, then by (5.3),

sup
S2Sd

max
j¼1,2

P jº̂º j � º(B j)j . C5fº(B j) log ‘g1=2
h i

¼ O ‘�2K
� �

:

From these results, and the fact that º(B j) is bounded below by a constant multiple of ‘h2,
and ‘1��h2 ! 1 for some � . 0, we deduce that for some C6 . 0,
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sup
S2Sd

P kAk�1 º̂º(S) kAk � º(A)
n o

< �C6 ‘h
2

h i
¼ O ‘�K

� �
:

Since h ¼ O(‘�1=6��) then ‘h2 kAk ¼ ofº(A)1=2g, uniformly in S 2 Sd . Hence, for each

� . 0,

sup
S2Sd

P º(A)�1=2 º̂º(S) kAk � º(A)
n o

< ��
h i

¼ O ‘�K
� �

: (5:5)

Result (5.2) follows from (5.4) and (5.5).

5.2. Proof of Theorem 4.2

Let � be as in the statement of the theorem, and let S denote the test strip whose axial

substrip, A, is the �3 b strip within which the additional n points are located. The

presence of these points increases N (A) by n, but has no impact on the value of º̂º(S) kAk.
When computed solely from points in P, N (A) is asymptotically normal with mean º(A)

and standard deviation º(A)1=2, and moreover, the value of º̂º(S) kAk is not less than

º(A)þ º(A)1=2 þ o pfº(A)1=2g. (The proof of the latter property is similar to that leading to

(5.5).) Note too that º(A)=‘�h is bounded away from zero and infinity as ‘ ! 1, and so

by choice of �, n=º(A)1=2 ! 1. Therefore,

P N (A) > xufº̂º(S) kAkg
h i

! 1, (5:6)

where the probability is calculated under the model in which the n points are added to P as

prescribed by Theorem 4.2. More simply, if w . 0 and if � in (4.3) satisfies � , w�1 then

PfN (A) > w log ‘g ¼ 1. This property and (5.6) imply that the probability that the

hypothesis test described at (2.3), when applied to our particular choice of S, leads to

rejection, converges to 1 as ‘ ! 1.
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