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Weak convergence of the empirical copula process has been established by Deheuvels in the case of

independent marginal distributions. Van der Vaart and Wellner utilize the functional delta method to

show convergence in ‘1([a, b]2) for some 0 , a , b , 1, under restrictions on the distribution

functions. We extend their results by proving the weak convergence of this process in ‘1([0, 1]2)

under minimal conditions on the copula function, which coincides with the result obtained by

Gaenssler and Stute. It is argued that the condition on the copula function is necessary. The proof uses

the functional delta method and, as a consequence, the convergence of the bootstrap counterpart of the

empirical copula process follows immediately. In addition, weak convergence of the smoothed

empirical copula process is established.
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1. Introduction

Every multivariate cumulative distribution function (cdf) H on R p can be put in the form

H(x1, . . . , xp) ¼ C(F1(x1), . . . , Fp(xp)) (1)

for some function C : [0, 1] p ! [0, 1], where F1, . . . , Fp denote the marginal cdfs (see, for

example, Nelsen 1999). The function C is called the copula or dependence function

associated with H , and in itself is a distribution function on [0, 1] p with uniform marginals.

The representation in (1) is unique on the range of (F1, . . . , Fp), a result due to Sklar (1959).

For some historical notes, we refer to Schweizer (1991) and the recent surveys by Joe (1997)

and Nelsen (1999).

Copulas capture the dependence structure among the components X j of the vector

(X1, . . . , X p), irrespective of their marginal distributions Fj. In fact, Lemma 1 below

asserts that we may assume without loss of generality the X j to be uniformly distributed on

[0,1]. In other words, copulas allow marginal distributions and dependence structure to be

modelled separately; this ability has recently led to a revival of their use, for example, in

studying the joint probability of default of several borrowers in finance and actuarial

sciences, or, more generally, of a set of correlated extreme events. See, for example,
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Schweizer and Sklar (1974), Genest and McKay (1986a, 1986b), Genest and Rivest (1993),

Genest et al. (1995), Capéraà et al. (1997), Bouyé et al. (2000), Schönbucher and Schubert

(2001), and Embrechts et al. (2002).

In order to simplify our notation and exposition, we will consider only two-dimensional

copulas in this paper ( p ¼ 2). The general case, however, can easily be deduced from our

results. Let (X , Y ) be a bivariate random vector with joint cdf H(x, y) and continuous

marginal cdfs F(x) and G(y). Its associated copula C is defined, for all real numbers x and

y, by

H(x, y) ¼ C(F(x), G(y)): (2)

Since F and G are continuous, the copula C defined in (2) is unique, and we may write

C(u, v) ¼ H(F�(u), G�(v)), 0 < u, v < 1,

where F� and G� are the generalized quantile functions of F and G, respectively. Recall that

the generalized inverse of a cdf F is defined as

F�(u) ¼ inf ft 2 R j F(t) > ug, 0 < u < 1:

Based on independent copies (X 1, Y1), . . . , (X n, Yn), we construct the empirical distribution

function

Hn(x, y) ¼ 1

n

Xn
i¼1

IfX i<x,Yi< yg, �1 , x, y , þ1,

and let Fn(x) and Gn(y) be its associated marginal distributions, that is,

Fn(x) ¼ Hn(x, þ1) and Gn(y) ¼ Hn(þ1, y), �1 , x, y , þ1:

We define the empirical copula function Cn by

Cn u, vð Þ ¼ Hn F�n (u), G�
n (v)

� �
, 0 < u, v < 1,

and the (ordinary) empirical copula process

Zn(u, v) �
ffiffiffi
n

p
(Cn � C)(u, v), 0 < u, v < 1:

The function Cn was briefly discussed by Ruymgaart (1973, pp. 6–13) in the introduction

of his doctoral thesis. Deheuvels (1979) investigated the consistency of Cn and Deheuvels

(1981a; 1981b) obtained the exact law and the limiting process of Zn when the two margins

are independent. Rüschendorf (1976, Theorem 3.3) established weak convergence of the

related empirical multivariate rank-order process in the Skorokhod space endowed with

stronger metrics than the Skorokhod metric. As a corollary, we may conclude weak

convergence of Zn, but his technical conditions are not optimal. Gaenssler and Stute (1987)

proved weak convergence of the empirical copula process Zn in the Skorokhod space

D([0, 1]2). We will show weak convergence in the space ‘1([0, 1]2) using the functional

delta method and argue that the required regularity on C, to wit, that C has continuous

partial derivatives, cannot be dispensed with. The weak convergence of the bootstrap

counterpart follows almost immediately by the functional delta method for the bootstrap.
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Statistical applications in hypothesis testing for independence, asymptotic normality of rank

statistics, and the bootstrap are provided.

Section 3 deals with the smoothed empirical copula process that is obtained by taking

kernel estimates ĤHn, F̂Fn and ĜGn in lieu of the ordinary empirical cdfs considered in Section

2. The resulting estimate ĈCn ¼ ĤHn(F̂F�n , ĜG�
n ) and smoothed empirical copula process

ẐZn(x, y) ¼
ffiffiffi
n

p
(ĈCn � C)(x, y), 0 < x, y < 1,

have not been studied before, and we give conditions under which ẐZn � Zn converges to

zero.

2. Weak convergence of empirical copula processes

By an elegant application of the functional delta-method, van der Vaart and Wellner (1996,

p. 389) proved the weak convergence of the (ordinary) empirical copula process Zn to a

Gaussian process in ‘1([a, b]2) when a . 0 and b , 1. Theorem 3 below shows that

actually fZn(x, y), 0 < x, y < 1g converges weakly to a Gaussian process in ‘1([0, 1]2),

provided C(x, y) has continuous partial derivatives only. Gaenssler and Stute (1987, Chapter

5) proved weak convergence in D([0, 1]2) using standard empirical process techniques.

Lemmas 1 and 2 below allow us to obtain weak convergence in ‘1([0, 1]2) using the delta

method, as well as the bootstrap counterpart.

We first introduce some more notation. Define the pseudo-variables

(X�, Y�) ¼ (F(X ), G(Y )),

with distribution function

H�(x, y) ¼ PfX�1 < x, Y�1 < yg ¼ H(F�(x), G�(y)),

and marginal cdfs F�(x) ¼ H�(x, þ1) and G�(y) ¼ H�(þ1, y). Notice that F�(x) and

G�(y) are both uniform distributions on [0, 1]. The copula function associated with H�(x, y)

is denoted by C�(u, v) ¼ H�(F��u, G��v) for 0 < u, v < 1. Finally, let H�
n (x, y) be the

empirical distribution function based on (X�1 , Y�1 ), . . . , (X�n , Y�n ) with marginal distributions

F�n (x) ¼ H�
n (x, þ1) and G

�
n (y) ¼ H�

n (þ1, y), and let C
�
n (x, y) be its associated empirical

copula function. The following lemma states that we can assume with impunity that the

marginal distributions are uniform.

Lemma 1. Let F, G be continuous distribution functions. We have

C(x, y) ¼ C�(x, y) ¼ H�(x, y) for all x, y 2 [0, 1]:

Moreover,

Cn

i

n
,
j

n

� �
¼ C

�
n

i

n
,
j

n

� �
for i, j ¼ 0, 1, . . . , n: (3)

The first assertion is well known. The fact that Cn and C�n agree on the grid points
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(i=n, j=n) is more surprising and is stated, but not proved, in Gaenssler and Stute (1987,

p. 51). In fact, since both Cn and C�n are constant on the pavements

(i=n, (iþ 1)=n] 3 ( j=n, ( jþ 1)=n], we have Cn(u, v) ¼ C
�
n (u, v) for all 0 < u, v < 1.

Proof. The first claim of the lemma follows easily from the continuity of F and G, the

definitions of C, C� and H�, and the fact that F� and G� are uniform. For the proof of (3),

let X (1) , X (2) , . . . , X (n) be the order statistics of the sample X 1, . . . , X n. Similarly,

Y(1) , . . . , Y(n) are the order statistics of the sample Y1, . . . , Yn. Define X (0) ¼ Y(0) ¼ �1
and X (nþ1) ¼ Y(nþ1) ¼ þ1, and set in ¼ i=n and jn ¼ j=n. Observe that, with probability

one, X (i) > F�F(X (i)) . X ( j) and likewise Y(i) > G�G(Y(i)) . Y( j) for all i . j, so that

Hn(X (i), Y( j)) ¼ Hn(F�F(X (i)), G
�G(Y( j))). Hence, with probability one,

Cn(in, jn) ¼ Hn(X (i), Y( j)) as Fn(X (i)) ¼ in and Gn(Y( j)) ¼ jn

¼ Hn(F�F(X (i)), G
�G(Y( j)))

¼ H�
n (F(X (i)), G(Y( j))) since H�

n (x, y) ¼ Hn(F
�x, G� y)

¼ H�
n (X�(i), Y�( j)) where X�(i) ¼ F(X (i)) and Y�( j) ¼ G(Y( j))

¼ C
�
n (in, jn) since F�n (X�(i)) ¼ in and G

�
n (Y�( j)) ¼ jn:

This concludes the proof of the lemma. h

The next result shows that the map


(H)(u, v) ¼ H(F�(u), G�(v)), 0 < u, v < 1, (4)

is Hadamard differentiable at H�.

Lemma 2. Let H(x, y) have compact support [0, 1]2, and marginal distributions F(x) and

G(y) that are continuously differentiable on its support with strictly positive densities f (x)

and g(y), respectively. Furthermore, assume that H(x, y) is continuously differentiable on

[0, 1]2. Then the map 
 : D([0, 1]2) ! ‘1([0, 1]2) defined in (4), which transforms the cdf H

into its copula function CH , is Hadamard differentiable tangentially to C([0, 1]2).

Proof. As in van der Vaart and Wellner (1996, p. 389), we observe that mapping H into its

copula function can be decomposed as

H 7! (H , F, G) 7! (H , F�, G�) 7! H s (F�, G�):

The first map and the third map are Hadamard differentiable, as pointed out in the proof of

Lemma 3.9.28 in van der Vaart and Wellner (1996). The second map is Hadamard

differentiable as a consequence of Lemma 3.9.23 in van der Vaart and Wellner (1996, p. 386),

which states that the inverse mapping F 7! F� as a mapping D2 � D[0, 1] 7! ‘1[0, 1] is

Hadamard differentiable at F tangentially to C[0, 1]. Here D2 is the collection of distribution
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functions of measures that concentrate on [0, 1]. Apply the chain rule to show that

H 7! H s (F�, G�) is Hadamard differentiable. h

The combination of Lemmas 1 and 2 and the functional delta method immediately yields

the following result.

Theorem 3. Suppose that H has continuous marginal distribution functions and that the

copula function C(x, y) has continuous partial derivatives. Then the empirical copula process

fZn(x, y), 0 < x, y < 1g converges weakly to the Gaussian process fGC(x, y),

0 < x, y < 1g in ‘1([0, 1]2).

Proof. First notice that for all x, y 2 [0, 1], there exist in, jn such that Cn(x, y) ¼ Cn(in, jn),

which, coupled with Lemma 1, yields
ffiffiffi
n

p
(Cn � C)(x, y) ¼ ffiffiffi

n
p

(C�n � C�)(x, y). Since

H�(x, y) ¼ C(x, y) satisfies the conditions of Lemma 2, invoke the functional delta method,

Theorem 3.9.4 in van der Vaart and Wellner (1996), to conclude the proof. h

The limiting Gaussian process can be written as

GC(u, v) ¼ BC(u, v) � @1C(u, v)BC(u, 1) � @2C(u, v)BC(1, v),

where BC is a Brownian bridge on [0, 1]2 with covariance function

E BC(u, v) � BC(u9, v9)½ 	 ¼ C(u ^ u9, v ^ v9) � C(u, v)C(u9, v9)

for each 0 < u, u9, v, v9 < 1.

Regarding the assumption on C, we note that every copula C is Lipschitz and its partial

derivatives exist for almost all points in [0, 1]2 (see, for example, Nelsen 1999). Careful

inspection of the proof of Theorem 3 reveals that we require smoothness of the partial

derivatives only in order to apply the functional delta method (cf. Lemma 2). This

observation suggests that one might be able to relax this assumption. That would be useful,

since there are many statistically relevant cases where the desired copula function does not

have continuous partial derivatives. For example, C(s, t) ¼ max(0, sþ t � 1) (X is

symmetric and Y ¼ �X ) does not have continuous partial derivatives. Unfortunately, the

following result, which in a sense is the converse of Theorem 3, indicates that there is

actually very little we can do.

Theorem 4. Let F and G be continuous distribution functions. Assume that the inverses F�1

and G�1 exist and that there exists at least one point (s�, t�) 2 (0, 1)2 for which the four

quantities

A1 � lim
h%0

C(s� þ h, t�) � C(s�, t�)

h
, A2 � lim

h&0

C(s� þ h, t�) � C(s�, t�)

h
,

A1 � lim
h%0

C(s�, t� þ h) � C(s�, t�)

h
, A2 � lim

h&0

C(s�, t� þ h) � C(s�, t�)

h
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are not all equal. Then fZn(x, y), 0 < x, y < 1g does not converge to a tight Gaussian

process.

Proof. We have

Zn(s, t) ¼
ffiffiffi
n

p
Hn(F

�
n (s), G�

n (t)) � H(F�1(s), G�1(t))
� �

¼
ffiffiffi
n

p
(Hn � H)(F�n (s), G�

n (t)) � (Hn � H)(F�1(s), G�1(t))
� �

þ
ffiffiffi
n

p
[H(F�n (s), G�

n (t)) � H(F�1(s), G�1(t))] þ
ffiffiffi
n

p
(Hn � H)(F�1(s), G�1(t)):

(5)

The first term on the right of (5) is o p(1) since the process
ffiffiffi
n

p
(Hn � H) is stochastically

equicontinuous. The third term converges to a normal random variable for every fixed (s, t):
Evaluated at the point (s�, t�), the second term is equal toffiffiffi
n

p
[C(F s F�n (s�), G s G

�
n (t�)) � C(s�, t�)] ¼ A1

ffiffiffi
n

p
(F s F�n (s�) � s�)IfF�n (s�),F �1(s�)

þ A2

ffiffiffi
n

p
(F s F�n (s�) � s�)IfF�n (s�).F �1(s�)g þ A1

ffiffiffi
n

p
(G s G�

n (t�) � t�)IfG�
n ( t�),G�1( t�)g

þ A2

ffiffiffi
n

p
(G s G

�
n (t�) � t�)IfG�

n ( t�).G�1( t�)g þ o p(1): (6)

Thus, the asymptotic behaviour of (6) depends on the values of the left- and right-hand limits.

If one of the four constants A1, A2, A1 or A2 differs from the others, then (6) does not

converge for n ! 1. Notice that the events in the indicator functions occur with a non-zero

probability, and as a result the limiting process (if it exists) is not Gaussian. Moreover, a very

similar argument reveals that

Zn(s
� þ �, t�) � Zn(s

� � �, t�)

¼ A1�
�
1I F�n (s�þ�),F �1(s�þ�)f g þ A2�

�
1I F�n (s�þ�).F �1(s�þ�)f g

� A1�
�
2I F�n (s���),F �1(s���)f g � A2�

�
2I F�n (s���).F �1(s���)f g þ o p(1), (7)

where

��1 ¼ lim
n!1

ffiffiffi
n

p
(Fn(s

� þ �) � F(s� þ �)), ��2 ¼ lim
n!1

ffiffiffi
n

p
(Fn(s� � �) � F(s� � �)):

Assume that A1 6¼ A2. Then the right-hand side of (7) does not converge to 0 as � ! 0 and

n ! 1 because

lim
�&0

lim inf
n!1

PfF�n (s� þ �) , F�1(s� þ �); F�n (s� � �) . F�1(s� � �)g . 0:

This implies that the process Zn(s, t) is not stochastically equicontinuous, which establishes

the claim. h

The covariance structure of Zn might be complicated to estimate, and the bootstrap

methodology provides an attractive alternative to estimate the finite-sample distribution of
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Zn. We will show that the bootstrap ‘works’, but first we need some additional notation. Let

(X1,B, Y1,B), . . . , (X n,B, Yn,B) be the bootstrap sample obtained by sampling with

replacement from the original observations (X 1, Y1), . . . , (X n, Yn). We write Hn,B for the

empirical cdf based on the bootstrap sample, and denote its associated empirical copula

function by Cn,B.

Theorem 5. Let F, G be continuous distribution functions. The conditional distribution of

f ffiffiffi
n

p
(Cn,B � Cn)(x, y), 0 < x, y < 1g converges to the same limiting Gaussian process as

f ffiffiffi
n

p
(Cn � C)(x, y), 0 < x, y < 1g in ‘1([0, 1]2) in probability.

Proof. We can invoke the same uniform transformation trick as in Lemma 1. We already

know that Cn(in, jn) ¼ C
�
n (in, jn), and it is easily verified that Cn,B(in, jn) ¼ C

�
n,B(in, jn) as

well, where C
�
n,B is the empirical copula function based on (F(X i,B), G(Yi,B)). Henceffiffiffi

n
p

(Cn,B � Cn)(in, jn) ¼
ffiffiffi
n

p
(C�n,B � C�n )(in, jn):

The conclusion follows by observing that the map 
 : H� 7! C� ¼ CH� is Hadamard

differentiable (cf. Lemma 2), and hence
ffiffiffi
n

p
(
(Hn,B) � 
(Hn)) converges weakly if and only

if
ffiffiffi
n

p
(
(Hn) � 
(H)) is weakly convergent by Theorem 3.9.11 in van der Vaart and Wellner

(1996, p. 378). h

We mention some consequences of the convergence results. Deheuvels (1981a) proposed

among other related procedures the Kolmogorov–Smirnov type statistic

T � sup
0<s, t<1

j
ffiffiffi
n

p
(Cn � C)(s, t)j

for testing the independence hypothesis H0 : C(s, t) ¼ s � t. He calculated the limiting

distribution of T under this null hypothesis. The results established here are useful for

computing the asymptotic power of this test under various alternatives.

In the early 1970s there was considerable interest in multivariate rank-order statistics; see,

for example, Ruymgaart et al. (1972), Ruymgaart (1974) and Rüschendorf (1976). Such

statistics are of the form

Rn ¼
1

n

Xn
i¼1

J (Fn(X i), Gn(Yi)),

and asymptotic normality of Rn has been established under regularity assumptions on

J : [0, 1]2 ! R. However, by simply observing that

1

n

Xn
i¼1

J (Fn(X i), Gn(Yi)) ¼
ð

[0,1]2

J (u, v) dCn(u, v),

where Cn is the cadlag version of the empirical copula function defined in the proof of

Theorem 6 below, and

EJ (F(X ), G(Y )) ¼
ð

[0,1]2

J (u, v) dC(u, v),
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we can invoke the weak convergence of the empirical copula process to deduce asymptotic

normality of Rn. To our knowledge this method establishes normality of Rn under the

weakest set of assumptions in the literature.

Theorem 6. Let H have continuous marginals and let C have continuous partial derivatives.

Assume that J is of bounded variation, continuous from above and with discontinuities of the

first kind (Neuhaus, 1971). Then

1ffiffiffi
n

p
Xn
i¼1

J (Fn(X i), Gn(Yi)) � EJ (F(X i), G(Yi))f g !D
ð

[0,1]2

GC(u, v) dJ (u, v):

In particular, the limiting distribution is Gaussian.

Proof. Let

Cn(u, v) ¼ 1

n

Xn
i¼1

IfFn(X i)<u,G n(Yi)<vg, u, v 2 [0, 1]:

It is easily seen that Cn and Cn coincide on the grid f(i=n, j=n), 1 < i, j < ng. The subtle

difference lies in the fact that Cn is left-continuous with right-hand limits, whereas Cn on the

other hand is right-continuous with left-hand limits. The difference between Cn and Cn,

however, is small:

sup
0<u,v<1

jCn(u, v) � Cn(u, v)j < max
1<i, j<n





Cn

i

n
,
j

n

� �
� Cn

i� 1

n
,
j� 1

n

� �



 < 2

n
:

As a consequence, Theorem 3 also implies that the related process Zn �
ffiffiffi
n

p
(Cn � C)

converges weakly to GC , provided C has continuous partial derivatives. By the continuous

mapping theorem and using integration by parts, we obtain

1ffiffiffi
n

p
Xn
i¼1

J (Fn(X i), Gn(Yi)) � EJ (F(X i), G(Yi))f g ¼
ffiffiffi
n

p ð
[0,1]2

J (u, v) d(Cn � C)(u, v)

¼
ffiffiffi
n

p ð
[0,1]2

(Cn � C)(u, v) � (Cn � C)(u, 1) � (Cn � C)(1, v)
� �

dJ (u, v)

�
ð

[0,1]

ffiffiffi
n

p
(Cn(u, 1) � u) dJ (u, 0) �

ð
[0,1]

ffiffiffi
n

p
(Cn(1, v) � v) dJ (0, v)

¼
ð

[0,1]2

ffiffiffi
n

p
(Cn � C)(u, v) dJ (u, v) þ O(n�1=2) !D

ð
[0,1]2

GC(u, v) dJ (u, v):

The integration by parts formula is specified in Proposition 3:2:1 of Fermanian (1996). Since

a continuous, linear transformation of a tight Gaussian process is normally distributed, the

limit has a Gaussian distribution. h
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3. Weak convergence of smoothed empirical copula processes

The smoothed empirical distribution function ĤHn(x, y) is defined by

ĤHn(x, y) ¼ 1

n

Xn
i¼1

Kn(x� X i, y� Yi):

Here Kn(x, y) ¼ K(a�1
n x, a�1

n y), and

K(x, y) ¼
ðx
�1

ð y

�1
k(u, v) du dv,

for some bivariate kernel function k: R2 7! R, with
Ð
k(x, y) dx dy ¼ 1, and a sequence of

bandwidths an # 0 as n ! 1. For notational convenience, we have chosen the same

bandwidth sequence for each margin. This assumption can easily be dropped. For small

enough bandwidths an, the empirical cdf Hn and the smoothed empirical cdf ĤHn are almost

indistinguishable:

Lemma 7. Assume that F and G are Lipschitz, an ! 0,ð
R2

(jxj þ jyj) dK(x, y) , 1 and sup
x, y

ffiffiffi
n

p
jEĤHn(x, y) � H(x, y)j ! 0:

Then

ffiffiffi
n

p
sup
x, y

jĤHn(x, y) �Hn(x, y)j !P 0,

and, in particular, the smoothed empirical process f ffiffiffi
n

p
(ĤHn � H)(x, y), x, y 2 Rg converges

weakly to a tight Brownian bridge in D(R2).

Proof. According to van der Vaart (1994), we only have to check that

sup
s, t

ð ð
Ifxþ�<s, yþ�< tg � Ifx<s, y< tg
� �

dKn(�, �)

� �2

dH(x, y) ! 0: (8)

After applications of Jensen’s inequality and Fubini’s theorem, we can bound the term on the

left in (8) by

sup
s, t

ð
F(s) � F(s� anx)½ 	 þ G(t) � G(t � an y)½ 	ð Þ dK(x, y)

which tends to zero as an ! 0 by our assumptions on F, G and K. h

The assumption on the bias term in the statement of Lemma 7 can be handled by means

of some smoothness assumptions on H and regularity of K and an:

Lemma 8. Assume that H has a bounded pth derivative, limn!1
ffiffiffi
n

p
a p
n ¼ 0,
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ð
R2

xk y l k(x, y)dx dy ¼ 0, 1 < k þ l , p,

and
Ð
jxjk jyj ljk(x, y)j dx dy , 1, 1 < k þ l < p. Then we have

sup
x, y

ffiffiffi
n

p
jEĤHn(x, y) � H(x, y)j ¼

ffiffiffi
n

p
a p
n :

Proof. The result follows readily after a simple Taylor expansion. h

We study the weak convergence of the smoothed empirical copula process

ẐZn(x, y) ¼
ffiffiffi
n

p
(ĈCn � C)(x, y), 0 < x, y < 1,

based on the smoothed empirical copula function

ĈCn(x, y) ¼ ĤHn(F̂F�n (x), ĜG�
n (y)):

The following lemma establishes asymptotic tightness of the smoothed empirical process.

The proof is given at the end of the section.

Lemma 9. Let C(x, y) have continuous partial derivatives and assume that the assumptions

of Lemma 7 hold. Then the process fẐZn(x, y) : (x, y) 2 [0, 1]2g is stochastically equi-

continuous, that is, for all � . 0,

lim
�#0

lim sup
n!1

P sup
jx�x9j<�,j y� y9j<�

jẐZn(x, y) � ẐZn(x9, y9)j . �

( )
¼ 0:

We have obtained the following result:

Theorem 10. Under the assumptions of Lemma 7 and provided C has continuous partial

derivatives, the smoothed empirical copula process fẐZn(u, v), 0 < u, v < 1g converges

weakly to the Gaussian process fGC(u, v), 0 < u, v < 1g in ‘1([0, 1]2).

Proof. In view of Lemma 9, we only have to show the finite-dimensional convergence of the

process fẐZn(u, v), 0 < u, v < 1g. Take x, y 2 R arbitrarily, and set u ¼ F(x), v ¼ G(y) and

ûu ¼ F̂Fn(x) and v̂v ¼ ĜGn(y). Note that ûu�!P u and v̂v�!P v by Lemma 7, and argue that, since

ẐZn is stochastically equicontinuous,
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ẐZn(u, v) ¼ ẐZn(ûu, v̂v) þ o p(1)

¼
ffiffiffi
n

p
(ĤHn � H)(x, y) þ

ffiffiffi
n

p
C(u, v) � C(ûu, v̂v)½ 	 þ o p(1)

¼
ffiffiffi
n

p
(ĤHn � H)(x, y) þ

ffiffiffi
n

p
(F � F̂Fn)(x)@1C(u, v) þ (G � ĜGn)(y)@2C(u, v)
h i

þ o p(1)

(9)

¼
ffiffiffi
n

p
(Hn � H)(x, y) þ

ffiffiffi
n

p
(F � Fn)(x)@1C(u, v) þ (G �Gn)(y)@2C(u, v)½ 	 þ o p(1)

(10)

¼ Zn(u, v) þ o p(1);

(9) holds since C has continuous partial derivatives, and (10) by Lemma 7. The required

finite-dimensional convergence of the process follows from Theorem 3. h

Note that we could not prove the last result in the same way as for the empirical copula

process Zn. Indeed, the transformation of Lemma 1 no longer works for smoothed empirical

cdfs. In contrast, we can repeat the same arguments leading to Theorem 10 to prove

Theorem 3.

Proof of Lemma 9. Observe that

P sup
ju�u9j<�,jv�v9j<�

jẐZn(u, v) � ẐZn(u9, v9)j . �

( )
< I þ II ,

with

I ¼ P

(
sup

ju�u9j<�,jv�v9j<�





 ffiffiffinp
ĈCn(F̂Fn(F̂F

�
n u), ĜGn(ĜG

�
n v)) � C(F(F̂F�n u), G(ĜG�

n v))
� 	

�
ffiffiffi
n

p
ĈCn(F̂Fn(F̂F

�
n u9), ĜGn(ĜG�

n v9)) � C(F(F̂F�n u9), G(ĜG�
n v9))

� 	



 . �

2

)

II ¼ P

(
sup

ju�u9j<�,jv�v9j<�





 ffiffiffinp
C(F̂Fn(F̂F

�
n u), ĜGn(ĜG

�
n v)) � C(F(F̂F�n u), G(ĜG�

n u))
� 	

�
ffiffiffi
n

p
C(F̂Fn(F̂F

�
n u9), ĜGn(ĜG�

n v9)) � C(F(F̂F�n u9), G(ĜG�
n v9))

� 	



 . �

2

)
:

We will deal with the two terms I and II separately. The first term can be handled by noticing

that, by Lemma 7,
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ĈCn(x, y) ¼ Hn(F̂F
�
n (x), ĜG�

n (y)) þ o p(n
�1=2) ¼ H�

n F(F̂F�n (x)), G(ĜG�
n (y))

� 	
þ o p(n�1=2),

where H�
n (u, v) is the empirical cdf based on (F(X 1), G(Y1)), . . . , (F(X n), G(Yn)).

Therefore, denoting
ffiffiffi
n

p
H�

n � H�� �
by W�

n , the first probability can be bounded by

I < P 2sup
(x,x9):jF̂Fn(x)�F̂Fn(x9)j<�,

( y, y9):jĜG n( y)�ĜG n( y9)j<�

jW�
n(F(x), G(y))

8>><
>>: :

�
ffiffiffi
n

p
H�

n � H�� �
(F(x9), G(y9))j . �

4

9>>=
>>;þ o(1)

< P sup
(u,u9):ju�u9j<3�,

(v,v9):jv�v9j<3�

jW�
n(u, v) �W�

n(u9, v9)j .
�

4

8><
>:

9>=
>;

þ P sup
x

jF̂Fn(x) � F(x)j . �

� �
þ P sup

y

jĜGn(y) � G(y)j . �

( )
þ o(1),

which tends to 0 as n ! 1 and � # 0 from the weak convergence of the process W�
n.

The second term II can be made arbitrarily small by invoking the fact that C has

continuous partial derivatives so that

C u, vð Þ � C FF̂F�n u, GĜG�
n v

� 	h i
� C u9, v9ð Þ � C FF̂F�n u9, GĜG

�
n v9

� 	h i
¼ �C9(u, v) : (F̂Fn � F)F̂F�n u9� (F̂Fn � F)F̂F�n u, (ĜGn � G)ĜG�

n v9� (ĜGn � G)ĜG�
n v

� 	
þ o(kF̂Fn � Fk1 þ kĜGn � Gk1)

for u ! u9, v ! v9. Next, observe that
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P sup
ju�u9j<�

ffiffiffi
n

p
j(F̂Fn � F)F̂F�n u9� (F̂Fn � F)F̂F�n uj . �

( )

¼ P sup
x,x9:jF̂Fn x�F̂Fn x9j<�

ffiffiffi
n

p
j(F̂Fn � F)x9� (F̂Fn � F)xj . �

( )

< P sup
x,x9:jFx�Fx9j<3�

ffiffiffi
n

p
j(Fn � F)x9� (Fn � F)xj . �

2

( )

þ P kF � F̂Fnk1 . �
n o

þ P
ffiffiffi
n

p
kF̂Fn � Fnk1 .

�

4

n o

¼ P sup
ju�u9j<3�

ffiffiffi
n

p
j(F�n � F�)u9� (F�n � F�)uj . �

2

( )

þ P kF � F̂Fnk1 . �
n o

þ P
ffiffiffi
n

p
kF̂Fn � Fnk1 .

�

4

n o
! 0, n ! 1, � # 0,

by the weak convergence of the uniform empirical process and Lemma 7. Similarly, we can

show that

lim
�#0

lim sup
n!1

P sup
jv�v9j<�





(ĜGn � G)ĜG�
n v9� (ĜGn � G)ĜG�

n v





 . �

( )
! 0:

Hence, II is asymptotically negligible as well, and the proof is complete. h
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