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We consider the parabolic stochastic partial differential equation

t

u(t, x) = ®(x) + J Lu(s, x) + f(s, x, u(s, x), Du(s, x))ds
0

t
+J gi(sa X, M(S, .X), DM(S, x)) dB;,
0

where f and g are supposed to be Lipschitzian and L is a self-adjoint operator associated with a
Dirichlet form defined on a finite- or infinite-dimensional space. We prove that it admits a unique
solution which is a Dirichlet process and, thanks to Ito6 formula for Dirichlet processes, we prove a
comparison theorem.
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1. Introduction

To illustrate the results which are proved in this paper, consider first the standard case. Let
O C R* be a bounded domain with boundary JO. We consider the nonlinear stochastic
partial differential equation (SPDE)

%u(r, X) = aixl (a,j(x)aixju(t, x)) + f(t, x, u(t, x), Au(t, x)o(x))
+ gi(t, x, u(t, x), Vu(t, x)o(x)) dcﬁl’ , (1.1)

with Dirichlet boundary conditions u(¢, x) = 0 for all £ > 0, x € QO — as will be explained
later, one can consider any other boundary conditions (von Neumann, mixed, etc.). The initial
condition is

u(0, x) = ®(x) € L*(0).

B is a d-dimensional Brownian motion, @ = 00 ™ is a symmetric measurable matrix such that
the bilinear form
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Yu, v € C;(0), e(u, v) = J a,j(x) 0 u(x)—u(x)dx
o

is closable, where C3°(O) denotes the set of infinitely derivable functions with compact
support in O. This is the case if, for example, a is assumed to be strictly elliptic or if,

(“)a,J
ox;

see Fukushima et al. (1994). The coefficients f (¢, x, y, z), gi(t, x, y, z) are assumed to be
Lipschitz in y and z  moreover, we  suppose that g(t, x, y,z)=
(gi1(t, x, y, z), ..., ga(t, x, ¥, z)) is a contraction with respect to the variable z.

We prove existence and uniqueness in the weak sense of equation (1.1) and we prove that
the solution ¢ — wu(¢, -), considered as an L?(O)-valued process, is a (continuous) Dirichlet
process, i.e. it may be decomposed as

Vi, j, le {1’ T k}z’ Ioc(O)

:Mt+Ata

where M is a martingale and 4 a zero quadratic variation process. Thus as is now well
known (see Bertoin 1986; 1987; Follmer 1981a), the process u satisfies an Itd6 formula that
we use to establish a comparison theorem. In this particular case, we have the following
theorem:

Theorem 1.1. Let f~ be a coefficient which satisfies the same hypotheses as f, and
® c 1%(0). Let ii be the solution of

gu(t X) = 4 ( ,,(x) u(t x)) —|—f(t, x, u(t, x), Au(t, x)o(x))

i

dB
+ gi(t, x, u(t, x), Vi(t, x)o (x)) 3 t’,

with initial condition iy = ®. Assume that ® < ® almost everywhere, and that
(1, x, u(x), Vu(t, x)o(x)) < f(1, x, u,(x), Vu(t, x)o(x)) dt ® dx ® dP-a.e;
then
V=0, u;<u; dx®dP-a.e.

Since we use analytical methods, especially the theory of semigroups, we deal in fact
with a much more general class of SPDEs. More precisely, we solve

u(t, x) = d(x) + JtLu(s, xX)+ f(s, x, u(s, x), Du(s, x))ds
0

t
+ J 2:(s. x, u(s, x), Du(s, x))dB,
0

where L is a non-positive (i.e. for all /€ Dom(L), (Lf, f) =< 0) self-adjoint sub-Markovian
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operator associated with a symmetric Dirichlet form defined on some space L*(W, m(dx))
and which admits a gradient D. The previous standard case corresponds to the case where
W =0, m(dx) = dx

0
Lu(x) = ( ay(x) 5 — u(X))

and Du(x) = Vu(x)o (x).

Note that there are many other examples: for instance, one can consider the same second-
order differential operator with von Neumann conditions. For simplicity, one can assume
that a is strictly elliptic; then it is well known that it defines a Dirichlet form (see
Fukushima et al. 1994), and so all our results are valid in this case.

If instead of the Lebesgue measure we consider a measure m which admits a density m(dx) =
p(x) dx, this allows us to consider the case of second-order differential operators of the form

Lu(x) = 0 (au(x) M(X)) b(X) u(X)

We only have to assume that L is a self-adjoint operator on L?(O, m). For example, the
Omnstein—Uhlenbeck operator on RF corresponds to the case where W = RK,
m(dx) = e — |x|*/2dx, Du = Vu and

1
quAu—x-Vu.

One can also consider the infinite-dimensional Ornstein—Uhlenbeck structure: W =
Co([0, +oo[; R¥) is the Wiener space endowed with the Wiener measure m, L is the
infinite-dimensional Ornstein—Uhlenbeck operator and D is the Malliavin operator.

SPDEs have been intensively studied in the recent past, and the literature is extensive.
Semigroup methods are developed in Da Prato (1998), Da Prato and Zabczyk (1992) and
Rozovski (1990). Comparison theorems for SPDEs driven by white noise may be found in
Donati-Martin and Pardoux (1993); in Berge (2001), a comparison theorem is established in
the case where L is a second-order operator with von Neumann-type conditions; and
Gyongy and Rovira (2000) obtained comparison theorems for SPDEs whose coefficients
have polynomial growth. We emphasize the fact that in all these works, the coefficient in
front of the noise does not depend on the term Du. We must also mention that some
comparison theorems can be established in relation to the theory of backward stochastic
differential equations (see Pardoux 1998, for example). Denis and Stoica (2003) obtain the
existence and uniqueness of solutions of SPDEs in a more general context.

2. Preliminaries

2.1. Hypotheses and definitions

Let (W, G, m) be a measurable space. We assume that a (symmetric) Dirichlet form (F, e)
is defined on LZ(W, G, m). For the notion and definition of Dirichlet forms, we refer to
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Fukushima et al. (1994) or Bouleau and Hirsch (1991). Moreover, we assume that this
Dirichlet form admits a carré du champ operator, I', and a gradient operator, D. This means
that I" is a symmetric bilinear map from F X F into Ll(W, G, m) such that,

W)€ FXF, e v)= | T owm(an,
w
and that there exists a Hilbert space, K, such that D is a map from F into L*(W, G, m; K)
with,
Y(u, v) € F X F, I'(u, v)(x) = (Du(x), Dv(x))x m-a.e.,

where (-, -)x denotes the inner product in K.
We recall that, by definition, F is a Hilbert space with respect to the norm,

2 2
Vu € F, lulle = eCu, u) + [[ull 720 mys

where in a natural way, we set,
2 2 2
Yu e L (W, m), ||uHL2(W’m) = (u, W) 2w my = J u”(x), m(dx).
w

In the example we gave in Section 1, it is clear that F is the closure of C;°(O) with respect
to || - ||, so F = H}(O) if L is strictly elliptic,

Ou, Ov
H) — .
Vi, v € HYO),  e(w 0) §l_j;j0a,,,<x) (e (),
K = R”, where n’ is the number of rows of the matrix ¢, Du = Vuo and,
0 0
Vi, o€ F, T, 0)(x) = a0 5o () oo (1),
’ axl- 8)Cj
We denote by (L2, (F;)=0, P) a filtered probability space (satisfying the usual conditions)

.....

Finally, a time 7 > 0 is fixed.

2.2. Associated operators

Still following Fukushima et al. (1994) or Bouleau and Hirsch (1991), we know that (F, e)
is associated with an m-symmetric sub-Markovian semigroup denoted by (P;)=o; L is its
generator with domain Dom(L), it is a non-positive sub-Markovian operator, and (E;);>¢ is
the resolution of identity associated with L. All these (bounded or unbounded) operators are
defined on L*(W, m) and are self-adjoint. We have

—+00
—L= J AdE;,
0

and
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—+00
VfeF  ef. f)=JO AAELS s Do

We also have
F = Dom((—L)"/?).
We recall that Dom(L) C F and that,

Yu € Dom(L), Vv € F, e(u, v) = —JWLu(x)U(x)m(dx) = (—=Lu, V) 2w -

2.3. Stochastic integral for Hilbert space-valued processes

In the sections to follow, we will consider stochastic integrals for L>(W, m)-valued
processes, so we need to define these precisely. A general theory of stochastic integration
for Banach space-valued processes is developed in Da Prato and Zabczyk (1992) and in our
setting in Berge (2001). Nevertheless, we briefly recall some results and proofs in order to
set the notation.

Let H be a separable Hilbert space equipped with the norm || - ||z. We continue to
consider the filtered probability space (R, (F¢)sco,r;, P) on which a d-dimensional
Brownian motion B is defined up to time 7. Naturally, the norm on the product space
HY that we will consider is

d
Vx = (x1, ..., xq) € HY, x5 =D il
i=1

Let X and Y be two H-valued processes. We shall say that X is a modification of Y if,
vVt € [0, T1, X, =Y, P-ae.
We shall say that X and Y are equivalent if
X (w) =Y (w) for dz ® P-almost all (¢, w).

These two notions define equivalence relations and, as usual, we will not worry about the
distinction between equivalence classes and processes which are members of these classes.
We remark that the first notion is stronger than the second but that they coincide if the
trajectories of X and Y are almost surely H-continuous.

Definition 2.1. An H-valued process (X,);co,r] is said to be progressively measurable if, for
each t € [0, T], the map

([0, 1] X €, B([0, 1]) ® F;) — (H, B(H))
(s, w) = Xy(w)
is measurable; here B([0, t]) is the Borel o-field on [0, t] and B(H) the Borel o-field on H.
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We denote by P(H) the class (with respect to the notion of equivalent processes) of H-
valued progressively measurable processes X such that

T
2 2
X = E(J ||Xt||Hdt)

is finite.
To construct the stochastic integral, we start with simple processes and then go on to
consider square-integrable progressively measurable processes.

Definition 2.2. An H-valued process (X;).cpo,r) is said to be simple if there exist n € N,
0=t <t <...<t,=T and n square-integrable H-valued variables Xy, X, ..., X _
such that, for all i € {0, ..., n— 1}, X; is F-measurable and,

n—1
Vie[0,T],  Xi=Xoljy()+ > Xily,., (D).
i=0
We denote by Po(H) the class (with respect to the notion of equivalent processes) of simple
processes.

Following Karatzas and Shreve (1991, Chapter 3), by adapting the proofs of their Lemma
2.2 and Proposition 2.6, we have:

Proposition 2.1. (P(H), || - ||p(m)) is a Banach space and Py(H) is dense in it.

We can now construct stochastic integrals in an easy way: assume first that X =
(X', ..., X9) belongs to (Py(H)). Thus, there exist n € N*, 1y =0 < 1, < . <t,=T
and, for all (i, j)) € {0, ..., n—1} X {1, ..., d}, a square-integrable variable (X7) which is
F,-measurable, such that

n—1
Vie{l,...,dpL Ve[0T, X|=X{lo(D+ Y X000
i=0
We set,
t d n—1 ) ) )
Yt e [0, T, = J XodBy =" XU(Bj .\ — Bl ).
0 j=1 i=0
We have:

Propostion 2.2. In our previous notation, if X € (PO(H))d, the process I satisfies the
following properties:

() I¥ is a square-integrable H-valued martingale.
L 2 1 2
(ii) For all t € [0, T1, E[||I{]I%]1 = ELJ; [|Xs]%a ds].
(iii) For P-almost all w, the map
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[0, T] — H
t I} (w)
is continuous.

(iv) IY satisfies Doob’s inequality:

T
E( sup |1X||H> <4E(J X115 dt).
tE[ 0

Proof. Assertions (i) and (iii) are obvious, and the proof of (ii) is straightforward. Let us
prove Doob’s inequality.

To this end, consider (e),cn+ an orthonormal basis in H (we consider the case where
the dimension of A is infinite). Then, as X is simple, straightforward calculations yield

+o00 /ot 2
E( sup ||]X|H> = E( sup {Z(J X, dB;, ek) })
te[0. t€[0,7] 0 H
2
< sup {(J X dBy, €k> })
=1 t<l0.7] 0 H
+00 d t ) 2
{Z ek)dB;}

i=1

E

mw

k:lf[ ]

+ d T
4E( (ZJ (X', ek)ng)
1 \\i=1 J0
+00 T
4E< ZJ (X, ek)2ds>
k=1 i=1

4E J 1 X ][5 ds>.
0

2

I
3

=~
Il

~

Then, thanks to the density of Py(H) in P(H) and Doob’s inequality, we obtain:

Propostion 2.3. Let X be in (P(H))?. There exists a unique H-valued square-integrable
martingale that we denote as before I X fo XydBy for all t e [0 T, such that, for any
sequence (X ,),cn+ in (Po(H))? which converges to X in (P(H))
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lim E{ sup ||[1X — 153, | =o0.
n—+00 (ze[O,T] ' '
Moreover, I" satisfies the same properties as in Proposition 2.2.

More precisely, we have that /¥ admits an H-continuous modification and satisfies Doob’s
inequality.

We end this subsection with the case we are interested in: H = L*(W, m). In this case, a
third variable, x € W, appears.

Definition 2.3. Let X be an L*(W, m)-valued process and Y : [0, TI| X Q X W — R be in
L*([0, T] X Q X W). Y is said to be a version of X if

vt e [0, T, Xi(w, x) = Yi(w, x) for PR m-all (w, x).

It is clear that in this case, ¥ may be viewed as an L>*(W, m)-valued process and is a
modification of X.
Propostion 2.4. Let X € (P(L>(W, m)))?. Then, the process 1% defined by,
t
vt € [0, T, If:JXm&,
0

admits a version that we denote as before by IY such that, for P ® m-almost all
(w, x) € Q X W, the map

t €10, T] v+ I (w, x)

is continuous. Moreover,

T
E(J sup |ff<x>|2m<dx>> < 4E(J A ds)-
W t€[0,T] 0

Proof. Assume first that X is simple. Then, the proposition is clear and a density argument
allows us to complete the proof. U]

Remark. By the same proof, we also have that for m-almost all x € W, t — Jg Xs(x)dB; is a
continuous martingale.
2.4. Dirichlet processes

We now introduce the notion of Dirichlet processes. For this purpose, we consider
O = (Ay)yen+> @ sequence of subdivisions of [0, T'] such that

lim |Ay| =0,
N—+o0
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where |A| denotes the mesh of any subdivision A of [0, T]. As previously, we consider a
separable Hilbert space (H, || - || #), and, for any H-valued process (4,)cqo,7], We put

VA € O, VA, A = > A, — Al
HEA{T}

Definition 2.4. Let (A,)c0,r be an adapted and continuous H-valued stochastic process
such that, for all t € [0, T], A, € L*(Q, P; H). We say that A is of zero quadratic variation
throughout © if

lim E(V(4, Ay)) = 0.
N—+o0

Definition 2.5. Let (X,)cj0,r) be an adapted H-valued stochastic process. We say that X is a
continuous Dirichlet process throughout © if and only if there exist

® a square-integrable continuous martingale (M )cjo,r) with values in H and satisfying
My =0, and
e an H-valued process (A;):cio,r) of zero quadratic variation throughout ©

such that
vVt € [0, T], X, =M,+ A,

Remarks.

1. Thus X is a continuous process.

2. There are many (non-equivalent) definitions for Dirichlet processes: one can consider
all subdivisions, or stochastic subdivisions, etc.

3. The Dirichlet processes have been well studied, for example, by Bertoin (1986; 1987).

4. We refer to Follmer (1981a; 1981b) who developed a stochastic calculus for Dirichlet
processes, and to Fukushima ef al. (1994) who proved that Dirichlet processes are
naturally associated with Dirichlet forms.

We now construct a space of Dirichlet processes in which we are going to work.

Definition 2.6. We denote by D(})(H), the set of H-valued continuous Dirichlet processes,
te[0, Tl — X, € H, such that

< +00.

2
E[ sup [|X[[
1€[0,7]
For all X € [D(})(H), we set

1/2
+ sup E[V (X, A)]) .
Ac®

1 Xlle.r.n = (E[ sup [|X,7,
1€[0,T]
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The following proposition is inspired by Bertoin (1986) and Denis (1994).
Propostion 2.5. (D(H), || - ||.e.r.u) is @ Banach space.

Proof. First of all, we observe that if X = M + A belongs to ID(})(H), then as M is a square-
integrable martingale,

E[ sup || M5 | < +oo,
t<[0,71]
SO
E[ sup ||A,||2H < 400,
t€[0,7]

and as limaece,a|—0E[V (4, A)] = 0, we have
supE[V (4, A)] < +oo,

Ac®
which ensures that || X||e.r,z is finite. Moreover, it is easy to verify that || - ||@,r,# is a norm.
Now consider (X"),.n* @ Cauchy sequence in ID(})(H). For each n € N*, we write
X" = M"+ 4",

where M" is a continuous square-integrable martingale which satisfies Mj§ = 0 and 4" is an
adapted process of zero quadratic variation throughout ©.

Thanks to Doob’s inequality, and since, for all k € N*, lim|zo,ac0 B[V (4 kK A)] =0, we
have, for all n, m € N*,

E| sup |[M"— M™|[5,| <4 lim E[V(M" —M", A)]
t€[0,7] |A]—0,AcO®

= lim E[V(X"—X" A

|A|—0,Ac® (e )]
< X"~ X" 7
O,7,H

Thanks to the classical theory of martingales, we know that there exists a continuous square-
integrable martingale M with My = 0 such that

n—-+o00

lim E| sup ||M,— M"||3| = 0.
1€[0,T7]
Then we deduce that there exists a continuous adapted process 4 such that

lim E| sup ||4,— 4"|]% | = 0.
n——+00 t€[0,T]

Let us prove now that 4 is of zero quadratic variation throughtout ©.
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Let A€ O, pe N*; then, for all n, m € N*, if we set
Ly = E[[V/2(A" — 4P, A) — V24™ — 4P, A2,
we have
In,m = E[V(An - Am’ A)]
<E[[V'2X" = X" A+ V2(M" — M™, A
<2|X" = X"|[& 7.4 + 2Bl M§ — MF|[,].

From this, it is clear that
E[V(4— A7, A)] = lirJP E[V (A" — A7, A)|,

uniformly with respect to A € ©. This yields
lim sup E[V(4 — 4", A)] =0.
C)

n=Fo0 Ae
Finally, as for each A € ® and n € N*,
E[V (4, A)] < 2E[V (A", N]+E[V(4 — A", N)]),
it easy to conclude that A4 is of zero quadratic variation and that
nEIIlOOHX -~ X"e.r.u =0,

where X = M + A, and the proof is complete. Ul

Note, finally, that if H = R, we suppress it.

3. A stochastic partial differential equation

We consider the following SPDE:

t

u(t, x) = O(x) + J Lu(s, x) + f(s, x, u(s, x), Du(s, x))ds
0

+ J[g(s, x, u(s, x), Du(s, x)) dBs. 3.1
0

3.1. Hypotheses and notation
Hypothesis 3.1. ® € L>(W, m).

Hypothesis 3.2. [ maps QX [0, T] X W XR X K to R and
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(a) fis P X GXB(R) X B(K)-measurable, where P is the predictable o-
field on Q X [0, T];

() £, 0,0)€ X(QX[0, T]X W, P® dt @ m);

(c) there exists C >0 such that, for all w, t, x, v,z y,z € QX
[0, T]X WXRXKXRXK,

fw, t,x, 3, 2) — fw, £, x, ¥, 2N < Cly — v+ ||z = 2'[[%).

Hypothesis 3.3. g maps Q X [0, T] X W X RX K to R? and

(a) g is Pr X GX B(R) X B(K)-measurable where Pr is the progressive
o-field on Q X [0, T];

() g(-, - - 0,0) € LXH(QX[0, T] X W; RY);

(c) there exist C >0 and a € [0, 2] such that, for all w, t, x, y, z, ¥/,
ZeEQX[0, TIXWXRXKXRXK,

ror ’ 72
8w, 1, x, y,2) = g(w, £, x, ', 2N < Cly = V'[P +allz = 2'|[,
where | - | denotes the Euclidean norm in RY.

We observe that Hypothesis 3.3 is fulfilled if there exist C' > 0 and a’ € [0, 1[ such that,
for all w, t, x, y, z, ', 2/,

|g(W> Z, x, Vs Z)_ g(W, Z, X, y,r Z’)l = Crly_y,| +a,HZ_Z’HK-

We will work in P(F). We recall that an F-valued process u belongs to P(F) if it is
progressively measurable and

T
e, = |, Bl 1 9 < +ox,

and that P(F) is a Banach space.

3.2. Notion of weak solutions

Let u € P(F). Following Bouleau and Hirsch (1991), the gradient of u,
(t, w, x) € [0, T X Q X W — D(u(t, )(w))(x),

admits a version in L*([0, T] X Q X W; K) which is progressively measurable and so
belongs to P(L*(W; K)) (it is easy to prove this if u € Py(F), and then using a density
argument).

If f and g denote the coefficients of equation (3.1) which satisfy Hypotheses 3.1-3.3,
the following lemma is easily proved:

Lemma 3.1. Let u € P(F). Then processes

tel0, T] — th(s, -, u(s, +), Du(s, -))ds
0
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and
te [0, T1 — g(t, -, u(t, ), Du(t, -))

admit a version in P(L*(W)) and (P(L*(W)))?, respectively.

We denote by D the set of test functions, which is the tensor product of the two Dirichlet
structures: H'([0, T]), the standard Sobolev space on [0, 7], and F (for general settings on
this notion, see Bouleau and Hirsch 1991). We recall that ¢ belongs to D if and only if:

@ € L*([0, T X W);

for almost all x € W, ¢(-, x) € H'([0, T]);

for almost all ¢ € [0, T, ¢(¢, -) € F;

Iy Jw 1Do(t, 0|15 + 19:0(t, x)Pm(dx)d < +oo.

We observe that as a consequence, for m-almost all x € W, t — ¢(t, x) is continuous, so that
we can set

Dy={p €D, o(T,)=0 as.}.

Definition 3.1. A function u € 'P(F) is said to be a weak solution of (3.1) if, for all ¢ € D,

T
JO (u(t’ ')’ at@(ts '))LZ(W,m) - €(Ll(t, ')’ q)(ts )) + (f(ts ) u(ta ')> Du(tv ))s q)(t’ '))LZ(W,m)dt

T
+J0 (g(t: ) u(t, ), Du(t, ))7 QD(I‘, '))LZ(W,m) dB; + (q)a ([)(0, '))LZ(W,m) =0as.

In an abuse of notation, albeit a natural one,

t€[0, T1— g(t, - u(t, -), Du(t, ) = (g}(), ..., g/C)).

the process € [0, T+ (g(t, -, u(t, -), Du(t, -)), @(t, -)) 12w, m) is nothing but the R7-valued
process

re [0: T] = ((g}()a (P(ta '))LZ(W,m)a R (g;{()’ (/)(t, '))LZ(W,m))

and so

T d T )
L (g(t, - u(t, -), Du(t, ), (4, N 2wamy dBr =Y JO (&1C)s @(t, ) 2wy B1.
j=1
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4. Study of (3.1): existence, uniqueness and probabilistic
behaviour
4.1. The ‘mild’ equation

We wish to study (3.1) in terms of mild solution. This means that, formally for the moment,
we will prove that the solution of (3.1) satisfies,

t t
Ve e [0, T, u, = P,® +J P f(s, -, ug, Duy)ds +J P,_sg(s, -, ug, Duy)dBs.
0 0

To make sense of this equation, we first study each term on the right, paying particular
attention to its probabilistic behaviour.

Propostion 4.1. Let ® be in L*(W, m). Then:

(1) the process
y:tel0, T] — PD

admits a version in L*([0, T]; F);
(i) for all ¢ € Dy
T T
|| (P 010000t = =@ 00, Vi + | P g
0 0

(i) forall 0 = s <t<T, Ltyu du belongs to Dom(L) and

t
y,—yS:L<J yudu>.

Proof. 1t is well known that for all 7 €]0, 7], P,® € F. Moreover,

400
Vi e[o, T, P® :J e MdE;,®D,
0

so that

+00
Vt € [O, T], HPtq)Hi— = J (1 “v‘l)e_zltd(Eiq), (D)LZ(W,W)S
0

which yields
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+00 1 — e—ZlT

T
| 1pear= [ s n i a0,

—+00 1 — 67217'

= . Y d(E; D@, @) 2w, m) + L 5

400

—+00 1— 672/1T
d(E£; D, D) 12, m)

+00

I

Td(E;®, ®) + J

1
~ d(E; @, )
. 2

0

1
(74 3) 12l0rm

which proves (i).

For assertions (ii) and (iii), assume first that @ € Dom(L). Then, it is clear that for all
te|0, 7], fot P,® du belongs to Dom(L), that the map ¢ € [0, T] — P,® is L*(W, m)-
differentiable, OP,®/0t = L(P,P), and so

t t
Vie[o, 7], Pd—®= J L(P,®)du = L(J P,® du>,
0 0

which is assertion (iii).
Moreover, for all ¢ € D,

PP, @) 2w m = (LPD, ) 20w, my + (PP, 0190 20w,m)
= —e(PD, o)) + (PP, 0190 2w, m)>

by integrating this relation, we get (ii).

Consider now ® € L*(W, m) and (®"),cn* a sequence in Dom(L) which converges to ®
in L>(W, m). Thanks to the proof of (i), we know that (P,®") tends to P,® in
L?([0, T]; F), which yields (ii) by density.

Moreover, if 7 € [0, T], we have, for all n, m € N*,

t t
L(J P.®" du — J P,®" du) = P(®" — D™) — (D" — D™).
0 0

As P, is continuous on L*(W, m), it is clear that (L(fot P, ®"du), ) is a Cauchy sequence
in L>(W, m) and so converges. As L is a closed operator, we conclude that f()t P, ®du
belongs to Dom(L) and that

t t
L(J P,® du) = lim L<J PuCID”du).
0 n—-+00 0

The proof is complete. O

Remark. The same proof gives that the (deterministic) process y belongs to P(F). One has to
note that yo = @ does not necessarily belong to F but, for all >0, y, € F and it is also
well known that the map ¢ €]0, 7] — y, € F is continuous.
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Proposition 4.2. Let © = (Ay) ycn+ be a sequence of subdivisions of [0, T] such that
NllrﬂwlAN| - 0’
and let ® be in L>(W, m). Then the process
y:tel0, T] — PD

is a (deterministic) process of zero quadratic variation and hence belongs to DC})(LZ(W, m)).
As a consequence, there exists a subsequence in ©, vy, such that for m-almost all x € W, the
map t € [0, T] — P,®(x) belongs to D). and is of zero quadratic variation throughout y.

Proof. Let A be in ©. We have

N—-1 rtc0
VA =3 Jo (et — e M A(E, @, D) 12w, m)
=0

+00 N—1
S D S R O U Xy
0 =0
Then, if A =0, since for all i € {0, ..., N — 1}, [e*#1 —e™*i| < 1,
0 < (ef/nt#] _ ef/‘Lt,-)Z < (eflt,- _ e*j-fiJrl) -1 eflT < 1’
i=0 i=0

and since

N-1 N—-1

Z(e—it,,l _ e—/lt,)z < Su‘p|ef'“"“ _ e—it,- X Z(e—lt, _ e—irm)’
1

i=0 i=0

< A|A|,
we have that, for all A = 0,

lim > (e —e M) =0,
N—+o0
tieAN\{T}

and we conclude by the dominated convergence theorem with respect to the measure
d(E,®, @) that

li Ay) =0.
m V(y, Ay) =0
But it is well known that t+ — P,® is L>(W, m)-continuous, so we have the first part of the
proposition.
Then as,

UNEN, Py, Ay = jw V), Ax)ym(d),

there exists a subsequence (V;);cn+ such that, for m-almost all x € W,
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lim V(y(x), A) = 0.

Moreover, thanks to results due to Stein (1970), we know that there exists a version of y such
that, for m-almost all x € W,

te [0, T] — P,®(x)

is continuous and there exists a constant, C, such that

J sup P[0 (x)Pm(dv) < Cl |2y < +00,
w t€[0,T]

ensuring that, for almost all x € W,

sup v(x) < +o0,
1€[0,7]

which concludes the proof. O

Propostion 4.3. Let h be in L*([0, T] X Q X W) and adapted. Then:

(1) the process a : t € [0, T] — jol P, _shgds admits a version in P(F),
(i1) for all ¢ € Dy,

T T

(ht, (Pt)LZ(W,m) dt +J e(at, ([)t)df P-a.e.

T
J (as, 8t(pt)L2(W,m)df = —J
0

0 0

(1) forall 0 =ss<t<T, Lt o, du belongs to Dom(L) P-a.e. and

t t
a; — Oy = L(J ay du) —|—J h, du P-a.e.

Proof. Assume first that % belongs to the algebraic tensor product C'([0, T]) ®
L*(Q, P) ® Dom(L) and is adapted. Then, by the same kinds of arguments as in Proposition
4.1, it is clear that o belongs to P(F), that if we fix w € Q, then for all ¢ € [0, T], a,(w)
belongs to Dom(L), and that ¢ — a,(w) is L*(W, m)-differientiable and satisfies

Vi e [0, T], %(w) = h(w) + La,(w).

Henceforth, we suppress w from the notation.
So, integrating by parts, we obtain that, for all ¢ € D,

T T

(hS’ QDS)LZ(W,m) ds + JO e(as: QDS)dS,

T
J (GSa as(ps)Lz(W,m) ds = —J

0 0

which is relation (ii).
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Still integrating by parts, we have that, for all 7 € [0, T],

t
2
oy my = 2] (Dutt 03) 29y s
0

t
= 2J (hs + Las, a.,,)Lz(W,m) ds
0

2 (Jr(hs, as) 2w, m ds — Jte(as)ds>

0 0
This yields

t t
||at||2LZ(W,m) + 2J e(ay)ds = ZJ (hs, O5) 2w, my ds
0 0

t
2 2
= JO[”hSHLZ(W,m) + llotsll 20 myds- (4.1)
Thanks to Gronwall’s lemma, we conclude that

T
sup ||| <el| |3 d 4.2
p ladlzorm <e | 1Al mdt (4.2)

1€[0,T] 0

Then, using equation (4.1), we obtain
T T (T
14+ Te
J e(a)dr < ——— J 1726112y A2
0 0

By a density argument, we obtain (i) and (ii).

Consider now 0<s<t<7T, he L*([0, T] X Q X W) and a sequence (Ah"),en of
elements in C'([0, T]) ® L*(Q, P) ® Dom(L) which converges to 4 in L*([0, T] X Q X W).
We put,

vn e N*, v, € [0, T], al = J P, h" dv.
0
It is clear that, for all n € N* and P-almost all w € Q, [/ a”du € Dom(L) and

t t
L<J aﬁdu) :a;’—a;'—J hy, du.

Thanks to the relations we have established at the beginning of this proof, we conclude that
["ardu converges to ['a,du in L*(W, m) and that, moreover, L([ a”du) converges in
s u St . S u t

L*(W, m) to a, — ay — [! h,du, for P-almost all w € W. This ensures that [ a, du belongs

to Dom(L) and that
t t
a; — oy = L(J ay, du) +J h, du.
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We now wish to prove that a is a zero quadratic variation process. We start with:
Lemma 4.4. Let A be a subdivision of [0, T]. In the notation of Proposition 4.3,

T
(e &) < 208+ D 1l mdr Pae
0

Proof. As previously, we prove the inequality for each w e Q. We have, for all 0 <
s<t=T,

t S
Ay — Oy = J Ptfuhu du — J Psfuhu du
0 0

t N
= J Pi_yh, du + J (Pf—uhu - Ps—uhu)du-
0

N

Clearly,

t
J P,_,h,du

s

t
< j 1Pl 0 dt

s

L2(W,m)

t
< j all 0y
S

t 1/2
1/2 2
< (=5 (j - du) |

We now fix A={tp=0<t <...<ty=T} with N=2. Using the trivial inequality
(a+ b)* < 2(a® + b*), we have that

2 2

N—-1

Vi A <2

tit1
J Pt‘+17uhu du
i=0

ti

J PtH] why Pt,‘fuhu)du

Xl

L2(W,m) L2(W,m)

i=1

N-1 ti
2
(Z |A|J ||hll||L2(W m) du + Z J ||P7i+1*uhll - Pli*uhUHLZ(W,m) du)

N-1

2
< 2|A\J (|24 ||L2(W my dut +2TZ Jo 1 Prii—uhu — Pri—uhul| 720 my dut.
i=1
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We now estimate

—1
A= J ||Pt,»+1—uhu - Pt,—uhuHZLZ(W,m) du;
i=1 70

for this we use the spectral representation of the semigroup (P;)=o.

N—=1 pt; p+o0
A=Y [ ] e b ) d
i=1 J0J0

=2 ptgey oo N=1 . .
= 3] I R S O Y DT

k=0 Jte JOji=p

Let us fix &k and u € [#, t5.1], and set

N—1
B— Z (e—l(t[+1—u) _ e—l(t[—u))2.
i=k+1

Since, for all i € {k+1,..., N =1},

0= (e M _ g Aty < |

N—1
B Y (e — At
i=k+1

— e*/.{(fkﬂfu) _ e*l(T*u) < 1.

This yields

N=2 ptpsr (+o0
A< ZJ J d(E Py hu) 2w my dut
k=01 JO

T
2
< [ Wl dt,
0
and we are done.
We are now able to prove:

Propostion 4.5. Let © = (Ay)ycn+ a sequence of subdivisions of [0, T] such that

lim |Ay| =0,
N—+o0
and h be in L*([0, T] X Q X W) and adapted. Define

t
a:telo, T]—>JP,,ShSds.
0

L. Denis
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Then, the process a admits a version in D?(Lz(W, m)) which is of zero quadratic variation.
Moreover, there exists a subsequence in O, y, such that, for m-almost all x € W, the map
t € [0, T] — a(x) belongs to DY, and is of zero quadratic variation throughout vy.

Proof. Consider a sequence (£"), .+ in C'([0, T]) ® L*(w, P) @ Dom(L) which converges to
hin L*([0, T] X Q X W), and define

t
vn e N*, vt € [0, T1, al = J P, h"ds.
0
For all n € N*, the process a” belongs to D(})(LZ(W, m)), because one has the decomposition
t t
vt e [0, T7, ay = J h? ds —I—J L(a))ds. 4.3)
0 0

Moreover, relation (4.2) obtained in the proof of Proposition 4.3 and Lemma 4.4 yield that
there exists a constant C > 0 such that

T
Un meN*, & — a"orrm < CE (j Ihr - h:mz(w,m)dt).
0

We deduce from this that (a"),.n+ is a Cauchy sequence in [D)c})(Lz(W, m)) and so converges.
It is obvious that a is the limit.
To prove the second part, we remark that, for all N € N*,

2
E(V(a, Ay)) =E [Z llezey, — atyIILz(W,m)]

| ¥ [Z () - at;v(x>|2] m(d)

= JWE[ V(a(x), Ay)lm(dx),

and as limy_.E(V(a, Ay)) =0 and m is o-finite, we conclude that there exists a
subsequence y = (Ay,);cn+ such that, for m-almost all x € W,

Aim E[V(a(x), Ay)] = 0.

All that remains is to prove that for m-almost all x € W, t — a,(x) is continuous P-a.e.
and that E[sup,cfo.r7|a,(x)’] is finite. We have

sup |a,(x)| = sup
t€[0,71] t€[0,7]

t
J Pt—uhu(x) du
0

T
sJ sup |Psh,(x)| du.
0 5€[0,7]

Results due to Stein (1970) ensure that there exists a constant C such that, for all
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f € LX(W, m), the map ¢ € [0, T] — P,f admits a version such that, for m-almost all x € W,

t — P,f(x) is continuous and, moreover,

sup |Pif || zow.m =< ClISf N 2ow,m-
1€[0,T]
This yields
T
J E| sup |a,(x)*| m(dx) < TJ E J sup |Pyh,(x)|* du | m(dx)
w t€[0,7] w 0 s€[0,7]

T
- UJ sup Pshu(x)|2m(dx)du]
]

0 J wsel0,T

T
= CZTE |:J0 Hhu”iz(W,m) du:| :

Since, if /# belongs to C'([0, T]) ® L*(w, P) ® Dom(L), we have decomposition (4.3), it is
easy to conclude, using a density argument, that for m-almost all x € W, the process
t € [0, T] — a,(x) is continuous and that, moreover, E[sup,cjo.rj|e/(x)*] is finite, and so

belongs to D% and is of zero-quadratic variation throughout y.
We now study the stochastic part in the mild equation.

Propostion 4.6. Let h be in (P(L*(W, m)))?. Then:

(i) the process t € [0, T] — ;= J"Ot P, hydB; admits a version in P(F);
(1) for all @ € Dy,
T

(hes @) 120w, my dBy +J e(Br, ¢,)dt P-a.e.;
0

T

T
J (B 00 1) 2w, my dt = —J

0 0

(iil) forall 0 =s<t=<T, Ltﬂu du belongs to Dom(L) and

Bi—Bs= L(Jtﬁ du) + J:hudBu P-ae.

Remark. Here again, if h = (h', ..., h?), then we take
e P, . h, to mean (Pt_Shi,, e, Pt_shf), and
o (hey @) 2w.my to mean (7}, @) 2gwmy -« » (B3 @) 2w m)-

Proof. We denote by S the set of processes % such that:

n—1

(t, x, w) € [0, T] X W X Q, h(t, x, w) =Yy (Dhix, w),
i=0

O
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where n e N*, 0<fy<t <...<t,<Tand forall ic{0,1,...,n—1},
Vo w) €W X Q. i w) =) 1y (W),
i—1 4

where n; € N* and, for all j € {1, ..., ni}, A,’ € F, and h{ € Dom(L).

As Dom(L) is dense in L?>(W, m), we can easily prove that S is a dense subspace in
Po(LX(W, m)), hence in P(LX(W, m)).

Assume first that 4 € S?. It is clear that the process

t
Vit € [O, T], ﬁt = J Pi_shgdB
0

admits a version both in L?([0; T] X Q; Dom(L)) and P(F). A direct calculation or a
generalized Itd formula (see, for example, Protter 1985, Theorem 3.2) yields

B = J;hs dB; + LJ;ﬁu du (4.4)

t t
= J hydB, +J LB, du.
0 0

Let ¢ € Dy; thanks to the Itd’s formula, we have

T

T T
= L (Bt 010 120w, my dt + L (he, @) 2w, my dB: + Jo (LBt @) 2w, my At

T

T T
= J (Bt 0190 120w, my dt +J (hes @) 20w, mydB; — J e(Br, o)dt,
0 0 0

which corresponds to assertion (ii).
To conclude using a density argument, we estimate E[sup.cfo,nlB: I3 or.m] and
E[j0 e(f, f,)dt]. Once again we apply It6’s formula, which yields that, for all ¢ € [0, T1,

t t t
1B % w.my + ZJOe(ﬂu, Bu)ds = 2L(ﬂu, ha) 2. my A Bu + LHhquLZ(WJn) du (4.5

so that

< 2E| sup

1€[0,T]

t T
E[ sup 18 | B mdim s | +28 U Vil du].

Using the Burkholder—Davies—Gundy inequality, we obtain that there exists a constant C
such that
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T 1/2
(e

0

T
<2CE +2E UO |2 my du]

2
E[ sup [|B:ll 2 w.m)
t€[0,T]

= 2CE

r 12
2

sup |84l 2w my X (J 227,y d”) 1

1€[0,T] 0

rel
L 2F L Vg du},

and so, for any ¢ > 0, we have that

2 2
E[ sup ||ﬂr|L2(W,n1)] < C¢E sup ”ﬁt”LZ(W,m)
te[0,7] _IE[O,T]

el Rl d
+ ;"' . | uHL2(W,m) uj.
For this inequality, we have used the trivial inequality
1 2
ab <—(a—+eb2>.
2\ ¢

Then, taking & small enough, we obtain that there exists another constant, still denoted by C,
such that

T
< CE UO ||hu||2Lz(W,m) du]-

2
E[ sup (1Bl 2w m
1€[0,7]
Then, relation (4.5) yields

T T 1 t
E UO e(ﬁus ﬁu)ds} <E {J (ﬁu: hu)Lz(W,m) dBu} + EE UOHhuHiZ(W,m) du] >

0

and so we have

T 1 T
E [JO e(Bu, ﬂu)dsj| =< EE |:J0 ”huHiz(W,m) du:| .

By density, we get assertions (i) and (ii).
For (iii), we remark that if 2 € S, it is given by relation (4.4). The general case is
obtained by density as in the proof of Proposition 4.3. O

We now turn our attention to the probabilistic behaviour of the process . This is given
by the following propostion.

Propostion 4.7. Let ©® = (Ay)ycn+ be a sequence of subdivisions of [0, T] such that

NLIToolAN| - 0’

and h be in (P(L>(W, m)))?. Then the process t € [0, T] — B, = Jg P, _shsdB admits a
version in D(})(Lz(W, m)) whose martingale part is
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t
L e [0, 7] HJ hydB,,
0

and whose zero quadratic variation part is

tel0, T] — L<Jtﬂs ds).
0

Proof. Let NeN* and A={0=1<1t <...<ty=T} bein ©. Then

2

N—1 t

tiv1 i
E[V(S, A)] = E szﬂmm+jmwwraﬂmws

ti 0

i=0 LX(W,m)

lit1 2
| P ha.

t;

L2(W,m)

2

ti
J (Pt,-H—shs - Pt,-—shs)st
0

L2(W,m)

-1 tiv1
2
> EU 1Pus sl ds]

N—1 ti
+2 Z E |:J HPtHI_ShS - Pti—ShS”zLZ(W,m) ds:|
i=1 0

T N—-1 t;
<2E U 1B ds] 2YE U 1 Prresh = Prpechs gy ds .
i=1

So, the same quantity 4 appears as in the proof of Lemma 4.4; this yields
T
EW@A»sm(ﬂmﬁwmw)

Moreover, as & € S, we have the decomposition,
T T

Vvt € [0, T, B.=| hydB; +J LB ds,
0 0

which ensures that § € ID(;)(LZ(W, m)). Thanks to the previous inequalities, we have

T
2
18l 20nm = CE || 1l 5]

where C is a constant.
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Consider now the general case. Let & € P(L*(W, m)) and (h"),en+ @ sequence in S
which converges to 4 in P(L*(W, m)). We put

t
vn e N* vt e o, T], B = J P, h" dB.
0
We have that

T
* 2 2
Vn, me N7, 8" _ﬁmHGJ,LZ(W,m) < CE (Jo |y — h:/n”LZ(W,m) d”)'

So (B"),en is a Cauchy sequence in ID(})(LZ(W, m)) which converges to . Moreover, it is
clear that the martingale part of 3" converges to that of 3, which allows us to conclude using
Proposition 4.1. U]

The question which now arises, is whether or not the process ¢ — f,(x) is a Dirichlet
process for m-almost all x. Unfortunately, we do not know how to prove this. Nevertheless,
we have the following propostion.

Propostion 4.8. Let ©® = (Ay)ycn+ be a sequence of subdivisions of [0, T] such that
Jim 810,
and h be in (P(F)¢. Then for m-almost all x € W, the process t¢€ [0, T]

— fi(x) = fot P,_hy(x)dBy is a semi-martingale which satisfies

< 400,
te[0,T

E[ sup]|ﬁ,(x)\2

so it admits a version in DC}).
Proof. Assume first that % belongs to &; this clearly ensures that [ is in

L*([0, T] X Q; Dom(L)) and we estimate E(fOT ||LB,||*> dt), for which purpose we use the
spectral representation. For all ¢ € [0, T'], one has

t
1B, = J LP,_ ., dB,
0

t p+oo
= J J e M= dE; h, dB,,
0J0

SO

t p+oo
E(”Lﬁf”iz(W,m)) =E (JOJO /‘{2672/1(175)((1E;L hs, hS)LZ(W,m) dS> ,

this yields
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E(jjnwfnzcu) —E

T ¢+oo ¢T
— E( J 2e M9 d(dE; hy, hs) 20w, m) ds)
0J0 K

T rt

+0o0
J 22e 2 MIAE, hy, hy) 20w m) dsdt)
0J0JO

T p+o0

I
tr

y)
E(dE/1 hs, hs) 12w m) ds)
0Jo

1 T
< 2E<J ||hs||§,ds).
0

As S is dense in P(F), we conclude that if 42 € P(F) then B € L*([0, T] X Q; Dom(L)).
Moreover, thanks to the previous proposition, we know that  admits the decomposition

Bi= J;h dB,+ L (J;ﬁ ds)

t t
= J hydB; + J LB ds
0 0
for all ¢ € [0, T]; it is now easy to conclude using the remark at the end of Section 2.3.
O
4.2. Equivalence between weak and mild solutions
We now consider the mild equation
t
(1, 3) = PO+ | Preuf 5. (s, ). Duts, D) ds
0
t
| Pt s ). Duts. ) a8, (4.6)
0

Let us remark that thanks to previous results and Lemma 3.1, this equation makes sense in
‘P(F). Moreover, we have:

Propostion 4.9. u € P(F) is a weak solution of (3.1) if and only if it satisfies (4.6).
Proof. Let u be in P(F). We put:
t
VECIOTL = | Prof(s o as. ). Duts. ) ds
0

and
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ﬁf = J;Ptsg(s» K u(s, ')5 DM(S, ))(X) dB;.

Let ¢ be in Dy. Then, thanks to Proposition 4.1,

T

T
J (P@, 0:0) 20w, my dt = —(@, ©(0, ) 2w, m) + Jo e(P®, ¢;).
0

Proposition 4.3 gives

T T T
L @)y DNz i = —L (F(t, - ut, =), Dut, ), @2)20rmy di + JO e(ar, o)1,

and from proposition 4.6,

T T

(g(t - u(t, ), Du(t, N, 91)iz.m ABy + L (B, @)1,

r
J (B> 001) 2w my dt = —J

0 0

From this, we deduce easily that if u € P(F) satisfies (4.6), then u satisfies (3.1).
Conversely, if u € P(F) is a solution of (3.1), then we define the process

u(t, x) = P, ®d(x) + JtPtSf(s, -, u(s, ), Du(s, -))(x)ds
0

+ JtPtsg(sa ‘s Ll(S, ')3 DM(S, ))(x) st
0

Using the previous calculus and notation, we have

T

r
Jo (#(t, ), 010(t, ) 2w, my dt = —(@, @0, ) 2w, m) + L e(P;®, o(t, -))dt

T
- 0 (f([’ K u(t’ ')’ Du(ta ))’ @(f, '))LZ(W,m) dt

T
=+ e(a(ta ')7 (P(l, ))dt
0

T
- 0 (g(ta Kl u(ta ')9 Du(ta ))n (/)(ta '))LZ(W,m) dBt

T
+ | e(B(t, -), (1, -))dt as.
0

So, we have that, for all ¢ € D,
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T

T
L (@t, ), Dup(t, Nz m A = —(®, 90, N i2p.my + L (i, ), (1, N1

T
- jo (g(t, - u(t, =), Dult, ). ¢(t, ) zr.m B,

T
- L (f(t, - ut, =), Dut, ), @t N izrm d as.

But, as u is a solution of (3.1), for all ¢ € Dy,

T

T
L Wlt, ), Byt N A1 = —( @, (0, N wm + L e(u(t, ), o1, N1

T
- jo (g(t, - u(t, =), Dult, ). ¢(t, ) zr.m B,

T
- L (f(t, - ut, =), Dut, ), @t N orm di as.

We now put v(t, x) = u(t, x) — u(t, x); it is clear that v belongs to P(F) and that, for all
¢ € Dy,

T T
L (L, ), Du(t, Nz m i = L el ), o1, dr as.

So, v is solution in the weak sense of the equation 0,u, — Lv, = 0 with initial condition
v(0, -) = 0. Thanks to Lemma 4.10, the proposition is proved. (|

Lemma 4.10. 0 is the unique weak solution in P(F) of the equation:
o, — Lv; =0,

with initial condition vy = 0.

Proof. We remark that this equation is deterministic. Let v € P(F) be a solution in the weak
sense of this equation.
Consider 1, an element of L*([0, T]) ® Dom(L), and define

T
Ve, Tl ¢i— J Py, ds.

t

It is now standard to prove that ¢ € Dy and
0191 =~y — L.

As v is a solution in the weak sense, we have
T

T
j (1, ), Bept, N iz di = J ew(t, ), (1, Ndr;

0 0
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this yields

T
j Ot ) 9t N 20rmy di = 0,

0

because
(U(ta ')3 —L(P(t, '))LZ(W,m) = e(U(ta '): (P(ta ))
We now conclude by density that for any v € L*([0, T] X W, dt ® m(dx)),

T
j j o(t, (. Dym(dvds = 0,
oJw

and so v = 0dz ® m(dx)-everywhere.

4.3. Existence and uniqueness of the solution of (3.1)

4.3.1. Preliminaries on Dirichlet forms

In this short section, we recall a few properties satisfied by Dirichlet forms. All the proofs
of the following properties may be found in Bouleau and Hirsch (1991). We denote by E?
the set of normal contraction from R into R. More precisely, a function G : R — R belongs
to Z) if and only if G(0) =0 and

V(x, y) € R, |G(x) = G| = [x —yl.

One fundamental property of Dirichlet forms is the following:

Propostion 4.11. Let u € F; then for all G € E?, G(u) belongs to F and
e(G(u), G(u)) < e(u, u).

Corollary 4.12. For all u € F, u™ belongs to F and

e(u”, ut) < e(u, u).

Definition 4.1. (F, e) is said to be local if and only if, for all u, v € F, for all a € R,
(u+a)=0= e(u, v)=0.

We remark that if (F, e) is local then, for all u € F, e(u™, u) = e(u™, u™).

Moreover, if 4 denotes the Lebesgue measure on R, it is well known that any function
G c E? is A-everywhere differentiable and so G’ is defined (1-a.e.). Still following Bouleau
and Hirsch (1991, Section 1.5.2), we have:

Propostion 4.13. Assume that (F, e) is local. Let u € F and (G,),.n+ be a sequence in =9
and G € E(l). Assume that
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lim G, =G’ A-a.e.

n—-+00

Then
1ir+n G,(u) = G(u) in F.

Proposition 4.14. Assume that (F, e) is local. Let u € F and G € E?, Then
L(G(u), G(u) = G'(u)’T(u, u).
We remark that as G’ is defined A-a.e., G'(u)’I'(u, u) is defined m-a.c. because we have

the following fundamental property, which Bouleau and Hirsch (1991, Section 1.7) refer to
as the ‘absolute continuity property of image measure’:

Theorem 4.15. Assume (F, e) is local. Let u be in F, then

ux (L(u, u)- m) < L.

Corollary 4.16. For all u € F,
L™, u®) = 10T (u, u), m-a.e.
In other words,

IDut |3 = 1m0y | Dully,  m-ace.

4.3.2. An It6 formula for Dirichlet processes

An It formula for (R¥-valued) Dirichlet processes was first proved in Follmer (1981a) and

also studied by Bertoin (1986; 1987). Our goal here is to establish an Ito formula for

L*(W, m)-valued Dirichlet processes. For this purpose, we restrict ourselves to a subset of

DLW, m)).

Definition 4.2. Let © = (Ay) v+ be a sequence of subdivisions of [0, T] such that
NEIEwlAN| =0

We denote by D(?(LZ(W, m)) the set of processes X € D(?(LZ(W, m)) such that there exist
h € (P(L*(W, m)))? and a zero-quadratic variation process A which satisfy

t
VtE[O,T], Xt:Jhdeé—FA,
0

Definition 4.3. Let k € N* and X = (X', ..., X*) be in (D(})(Lz(W, m)))*; then for all
i, j€{l, ..., k} the L"\(W, m)-valued finite variation process (X', X/} is well defined:
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(X', X7) = J hih!ds,
0
where [, h%dBy(J, hldBy) is the martingale part of X' (X/).
It is easy to verify that in this case,
<Xi’ Xj>T - \iilrilo Z(Xim o Xi[) ’ (X{I+1 - X{/)’

tiEA

in LI(Q X W).
We remark also that if « is an adapted process in L>°([0, T'] X Q X W), then the process

t

tE[O,T]HJ

t
a, (X', X7\ = J ashih/ds
0 0

is well defined and may be viewed as a continuous L'(#)-valued process.
Theorem 4.17. Let k € N*, @ = (An) yent be a sequence of subdivisions of [0, T] such that
NLIToolAN| - 0’

and (X )ejo,r) be in ([ITD(})(LZ(W, m))) . Let f: R¥ — R a C? function such that f(Xr) is in
LYQ X W) and, for all i, j€ {1, ..., k}, 0*f/0x;0x; is bounded-continuous. Then

k T Ty
0 1 0 S
= - L _ - i J
SO = S0+ 3 |, goreroaxi+3 > J, g rCcaer
where, for all i € {1, ..., k},

T : 9 . .
—f(X)HdX' = i ZoAX (XD — X!
JO 8Xi f( t) t Aee)l"rgl‘_)() t/eg\:{T} axi f( tl)( Lt fz)

in L'(QX W, P® m).

Proof. For simplicity, we only give the proof in the case k = 1. Let N be in N*. By Taylor’s
formula we have, for m-almost all x € W,

> (X, () = f(X ()]

t<TeAy

J(Xr(x)) = f(Xo(x))

S LXK, () - X, ()

t<TeAy

1
+ /XX, () — X 1)) + RO, (%), Xy, (3)),

where, for all a, h € R,
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1

R(a, a+ h) = hzj [f"(a+ thy — f"(a)](1 — t)dt.

0

So
1
> RX L@, X, )< > {J[f"(Xt,<x)+r(Xt,+](x>—X,,(x>)>
t<TeAy t<TeAy 0
— (X, (eDI(1 — 1yde } X X, () = X
1<TeAy
We put
1
WNEN',  Ry= sup j[f”(X,,H(X,M C ) — £ — 0di
11 <TeAN|Jo

and we now prove that Ry X Y, _rca [X1,, — X, goes to 0 as N tends to +oo in
LY(Q X W). For this purpose, we decompose X as

t
Vvt e [0, T1, X,:JhsdBS—i—At,
0

where A is a zero quadratic variation process.
Consider (Ay,,),,en* @ subsequence of (Ay)yepns- Then as

sup (Afl+1 _Af/)2 = Z (A11+1_Af1)2’

t1<T€ANm t1<T€ANm
we have that sup, _;cn (4., — A4;,)* goes to 0 as m goes to +oo in L'(Q X W). One can
therefore extract another subsequence (N, ) geN* such that, for m-almost all x € W,

lim sup |4, (x) —A4,(x)| =0 P-ae.

g—+00 1<T€AN,,
As the martingale part of X admits a continuous version for almost all (w, x) € Q X W, we
have that, for almost all x € W,

lim sup | X, (x) — X, (x)|=0 P-ae.

470 1 <TeAy,,

By the dominated convergence theorem one deduces that, for m-almost all x € W,

lim R =0 P-a.e.
qJToo Nq(x) a.e

m

AS 33, —rea, | X1 — X1, converges in L'(Q X W) and (Ry) yen+ is uniformly bounded, we
obtain that

lim Ry, X > |[X,,—X, =0,

q—+00
ti<T€AN,,

in L'(Q X W). From this, we deduce that (Ry X >, _rca, [ X1, — X)) yen goes to 0 in
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L' (Q X W). To see this, assume that it is not true, then by the dominated convergence
theorem we easily get a contradiction.

This yields
Iim E U
|A|—0,Ac® w

Moreover, standard arguments allow us to conclude that

> R, (), Xiy,, (1))

1, <Te®

m(dx)] =

tis1 2
Jim Y X)X = X = lim Y f”(X,,><L hsst)
11<TeAy 1y<TeAy 1

T
= JO f”(Xs)d<Xa X>s:

in L'(Q X W, P® m).
Now it is clear that Zt1<TeAf,(sz)(Xf1+1 — X)), converges in L'(Q X W, P® m), and
we put

T
[, rrecax, = tim S K, = X,

IAI=0.A€0 , TrEA
which ends the proof. O
Remark. We note that fOT f'(X,)dX, is not a true stochastic integral (see Bertoin 1987).
Corollary 4.18. Let X € I]j)(})(LZ(W, m)), @ a C* function defined from [0, T] to R and G a

C? function defined from R to R with bounded second derivative and such that G(Xr)
belongs to L'(Q2 X W). Then

T T
o(DG(X1) = p(0)G(Xo) + L ¢'(5)GOX,) ds + JO 0(5)G'(X,)dX,

1 T
+5 ], ewareeadt x).
0
P ® m-a.e., where

T
G'(X)dX, = i NG (X )(Xe — X,
[RECIZES g 2 RGN = X0)

in L'(Q X W).

Proof. 1f m(W) < 400, this is a special case of the previous theorem. Otherwise, it is easy to
verify that the same proof works. ]
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So, this weak stochastic integration gives a sense to the term ‘du’ in the equation. More
precisely, we have

Propostion 4.19. Let [ be in L*([0, T] X Q X W) adapted and g be in (P(L*(W, m)))?. We
define

t t
Vel T, = j P, ds +j P, g, dB,
0 0

Let ¢ be a C? function defined from [0, T]to R, G : R — R be a C? function with bounded
second-order derivative such that G(0) = 0. Then,

T T
EU j w(r)G'(u,)duxx)dx] - —EU o(De(G' (1), u»dt}

wJo 0

T
+E U @G (), [1)2(w.m) dt] .

0

Proof. Assume first that f belongs to C'([0, 7T]) ® Dom(L) ® L*(Q) and g to
(C'([0, T]) ® Dom(L) ® L*(Q))?. We have already shown that u is a semi-martingale and
that one has the decomposition,

t t t
vt e [0, T1, u,:J Lusds—i—Jf_sds—l—J g,dB;,
0 0 0
see Propositions 4.3 and 4.6. Then the result is easy to prove.

One has to note that in all cases, the quantity J"OT o(t)e(G'(uy), u,)dt is well defined (P-
a.e.) because G" is bounded and so, using the properties of Dirichlet forms recalled in
Section 4.3.1, there exists a constant C such that,

Viel0, TLYvEF, oG (v), G'(v) < Ce(v, v).

For the general case, consider a sequence (f Mnen in CY([0, T]) ® Dom(L) ® L*(R2) which
converges to f in L*([0, T] X QX W) and a sequence (g"),en in (C'([0, T]) ®
Dom(L) ® L*(Q))¢ which converges to g in (P(L>(W, m)))?. We define, for all n € N,

t t
vt e [0, T, "= J P f.ds +J P,_g"dB;.
0 0

As G(0)=0 and G" is bounded, it is clear that quantities G(u}) and G(ur) are in
LY(Q X W), so thanks to It6’s formula (see Corollary 4.18), we have that, for all n € N,

T T
L o(NG'(u)du? = G(u) — jo ' (NG(uMdr

1 ! ” n SN
-3, ewoanigar
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In the proofs of Propositions 4.3 and 4.6, we established that u” converges to u in
L*([0, T] X Q; F) and that

n—=+00\ 1e[0,7]

lim E( sup |luf — u,||2Lz(W,m)> =0.

So G(u%) converges to G(ur) in L'(Q X W) and J"OT @' (HG(u})dt to jOT @' (1)G(u,)dt.
Moreover, as G” is bounded and continuous, we obtain that ¢@(/)G"(u")|g"|* tends to
o()G"(u,)|g|* in L([0, T] X Q X W) (once again, to see this, assume it is not true and use
a double extraction procedure to yield a contradiction). As a consequence,

T
| oo
converges to
T
|, o6,
0

in L'(Q X W). Since, for all n € N,

T

T
EU | <p<r)G'<u7>du;’<x)dx] —-E U P(0e(G'(u), u?)dr]

wJo 0

T
+E U (G (uy), f_:l)LZ(W,nﬂdt:l ;

0

we just have to let n tend to +oo to obtain the desired equality. Once again, we use the fact
that as (F, e) is a Dirichlet form, there exists a positive constant C such that

VneNVEE[0, T),  e(G'(u)), G'(ul) < Ce(ul, ul),
which ensures, for example, that

T
E|| o(H)e(G'(u}), u;’)dt}
LJo

converges to

rel
El| o()e(G'(u)), ut)df]~
LJo

Remark. The hypothesis G(0) = 0 is not necessary if m(W) < +oo.

4.3.3. The theorem of existence and uniqueness

Theorem 4.20. Under Hypotheses 3.1-3.3, equation (3.1) admits a unique solution in P(F).
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Proof. We will prove existence and uniqueness of the solution of the mild equation. For this
purpose, let y, O be positive constants. We consider the following norm on P(F):

T
Yu € P(F), llullys = E(J e_Vf((SHu,HiZ(W’m) + e(u;, u,))dt).
0

It is clear that || - ||, ¢ is equivalent to || - |lps). We consider the map, A, from P(F) into
P(F) defined, for all u € P(F), for all (¢, x) € [0, T[XW, by

Au(t, x) = P,®(x) + JZPI_Sf(s, - u(s, +), Du(s, -))(x)ds
0

+ JIPt—sg(Ss K u(s, ')v DM(S, ))(x) st-
0

Let u and v be in P(F). We put:
Vs S [09 T]a fs :f(S, 5 U, Dus) _f(Sa 5 Us, DUS):
Vs € [0, T, gs = g(s, -, us, Duy) — g(s, -, v, Dvy),

t

t
Vel T, = A, — AW), = j Py Jods+ j P, .g.dB,
0 0

Henceforth, we fix ©, a sequence of subdivisions of [0, 7] whose mesh tends to 0. By Ito’s
formula, we obtain

T T T
e ik = —yL e it ds + 2L e "1, ditg(x) + JO e 7 d(a, i),

T T T
= —yJ e i ds—i—ZJ e iy ditg +J e 7’| g ds.
0 0 0

Now, thanks to Proposition 4.19, we have that

T T
E(J J Ty (x) das<x)m(dx>) - E (J e e(ay, mds)
wJo 0

T
+ E <J eiys(ﬂh f")Lz(va) dS) :

0
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This yields

T
B s (12
B ar g, = <78 [ &7 10 0
T
J e e(uy, L_ls)ds>

e iy, f3)20w,m) ds)

T
_ _ 2
+ E(Jo € y5|||gs|HL2(W,m) dS)'

Then, using the hypotheses satisfied by g, we have

T T T
vE <L e |17 my ds) +2E (L e (i, ﬁs)ds> <2E (L e " (i, f3) 2ow.m) ds>

T T
+ CE <J ein””s - USHZLZ(W,m) ds) +aE (J e e(us — vy, ug — Us)ds) 5
0 0

~

where C and a € [0, 2[ are the constants which appear in Hypotheses 3.1-3.3. Moreover,
using hypotheses on f, we have, for all ¢ > 0,

T T
- 1 ‘
2E (J eiys(]js’ ifS)LZ(W,m) dS) = gE(J 673’3”125”%2([4,’”1) dS)
0

0

T
+ ¢E <J e_ystS”sz(W,m) dS)
0
1 r i 112
<-E(| el 2 mds
& 0 ’
T
+ CeE (J e_wHus - USHZLZ(W,m) ds)
0

T
+ CeE (J e e(uy — vy, u; — Us)ds>.
0

Finally, we have that

T T
= 108 ([ &N gy 05) + 2 | e e mpas)

0
T

T
< C(1 + ¢)E (J e luy — US||2LZ(W’m) ds) +(Ce+a)E (J
0

e e(uy — vy, Uy, — Us)ds).
0

Now, we choose ¢ small enough and then y such that
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Cera<2 ad 7= MEx (Cotay=cl+o)
If we set 0 = (y — 1/¢)/2, then
o e PER. AW~ A0 = D ol
We conclude thanks to the fixed point theorem. ]

Theorem 4.21. Assume Hypotheses 3.1-3.3. Let u be the unique solution of (3.1) in P(F)
and © = (Ay)yens a sequence of subdivisions of [0, T] such that

NlirfmlAN| =0

Then u admits a version that we still denote by u, which belongs to I]j)(;)(Lz(W, m)).
Moreover, its martingale part is

t
t— J g(s, 5 Us, Dus) sta
0

and the zero quadratic variation part is

t t
t— O+ L(J Uy ds) + J f(s, -, us, Dug)ds.
0

0

Proof. As u satisfies the mild equation, this is a simple consequence of Propositions 4.2, 4.5
and 4.7. (I

Remark. As a consequence, we have that t — u, is L2(W, m)-continuous P-a.e.
Theorem 4.22. Let © = (Ay)yen+ a sequence of subdivisions of [0, T] such that
NEIEwlAN| =0

Assume that f and ® satisfy hypotheses 3.1-3.3 and that g is defined from [0, T] X R with
values in R?, measurable and satisfies:

(i) g, 0) € L*([0, T]; RY);
(i) there exists C > 0 such that, for all t, y, y',

g(t, y) — g(t, Y| < Cly — ¥'|.
Let u be the unique solution in P(F) of the SPDE

u(t, x) = O(x) + JtLu(s, x) + f(s, x, u(s, x), Du(s, x))ds
0

+ J g(s, u(s, x))dB;. 4.7)
0
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Then there exists a subsequence, y, in © such that, for m-almost all x € W, the map
1[0, T] — uix)
belongs to D).

Proof. First of all, we know that equation (4.7) admits a unique solution in P(F). Then, as g
is uniformly Lipschitz, this yields that the map 7 € [0, T] — g(¢, u,) belongs to P(F) (see
Section 4.3.1). So the result is a consequence of Propositions 4.5, 4.8 and 4.2.

The fact that we can choose the same subsequence, y, which appears in those
propositions is easy to prove, either by a double extraction argument or by extracting an m-

almost everywhere subsequence simultaneously in the proofs of Propostions 4.5 and 4.8.
O

Remark. As a consequence we have that, in this case, for m-almost all x € W, t — u,(x) is
continuous P-a.e.

5. Application: a comparison theorem for parabolic SPDEs

One way to prove comparison theorems for partial differential equations is to use the
probabilistic interpretation and thus the Ito calculus; for example, for PDEs with terminal
condition, one can use the theory of backward differential equations (see Pardoux 1998) and
for SPDEs one can use the doubly stochastic interpretation (see Bally and Matoussi 2001).
We give here a direct proof based on stochastic calculus associated with Dirichlet processes
which allows us to deal with a more general case and with SPDEs whose coefficient in
front of the noise depends on the gradient of u.
We continue to consider equation (3.1), now rewritten as

ou dB
aTt = Lu; + f(t, -, us, Du))+ g(t, -, uy, Du,)d—;,
Ugp = CI),

with unique solution u.
Consider ® € L>(W, m) and

F:QX[0, TIXWXRXK—R

which satisfies the same hypotheses as f (see Section 3.1). We denote by u the unique
solution of

ou - ~ N ~ - -
En Lu, + f(¢t, -, 4y, Duy) + g(t, -, u;, Diiy)

Uuo = (i)

as,
de’
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Finally, we define, for all ¢ € [0, T7,
U= Uy — Uy,
fl - f(t’ 5 Uy, Dut) _f(ta Yy ﬁt: Ddl)’
gt - g(t5 sy Ugy Dut) - g(ta y at; Dﬁt)

As in the case of (forward or backward) stochastic differential equations, the main idea is to
evaluate E(Hﬁﬂﬁuw,m)) using It6s formula and then to apply Gronwall’s lemma.

Lemma 5.1. Assume (F, e) is local. Then, for all t € [0, T,

B |2y m) = E((@ — B)7)2) — 2E(Le(ﬁi, i)ds)
1 2E (J @y F) o m ds)
0

t
~ 2
+E <J0||1{12:>0} ¥ ”LZ(W,m) ds) .

Proof. First of all, we fix ® a sequence of subdivisions of [0, 7] whose mesh tends to 0.
Thanks to the previous results, we know that # belongs to ID(;)(Lz(W, m)). To prove the
lemma, we approximate the function ¥ : y € R — (y™)? by a sequence (¥n) e+ of regular
functions. Throughout this proof, the constant C may change from line to line.

Let @ be a C* increasing function such that

Vy€l—oo, 1], ¢(y)=0, Vy €2, +oof, o(y)=1.
We set, for all n € N*,
VyeR,  ya(») = yo(ny).

It is easy to verify that (y,),.n+ converges uniformly to the function 3 and that, moreover,
we have the estimates

Vye RN, VneN", 0=y, =91, 0=y, =Cy [p»l=C
Thanks to Ités formula, for all n € N* and ¢ € [0, T], we have m ® P-almost everywhere
~ £ ! e ~ 1 ! " A
Yault) = (P — @) + J Y(tis)ditg + EJ Yo (is)d(a, 1)s.
0 0

As the martingale part of i is [ g, dB;,

t t
j W Ia)A(d, 8, = J i) 8 ds.

0 0
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Proposition 4.19 yields

E U J w;,ms(x))dﬁs(x)m(dx)} - E U o)), as)ds}
wJo 0

LE Uow;ms), Form ds] .

Thanks to the properties of Dirichlet forms we recalled in Section 4.3.1 and as v, is
differientiable with (uniformly) bounded derivative, we know that, for all v € F, y,(v)
belongs to F' and, moreover,

e(Yu(v), Yu(v)) < Ce(v, v),
and so, for all s € [0, ¢] and n € N*,
le(ynidy), is)| < Ce(ds, 1s).
At this stage, we have proved that, for all » € N* and all ¢ € [0, T],

E (j wn(m»m(dx)) — By (@ — &)~ E (J i), aods)
w 0

+E (L(w;(m Fearm ds)

l ' "o 2
+ 2 E (JWJOI/)}'I(“)(X))|g|s(x)dsm(dx)) .

The dominated convergence theorem yields that 1 ,’{(li_g(x))|g|§ converges to 21y, ~o}|&,[* in
L' (Q X W X [0, T], P® m ®df) as n tends to +oo and it is clear that

Jim By (® — @) = E(® — )")?).

Let s € [0, T]; as (¥ ;). converges A-a.s. to the function (¢ € R — 21y,~¢,)), Proposition 4.13
ensures that v;(i,) converges to 2:i! in F. So, for all s € [0, T7,

i e (i), ) = 2y i) = 2e(iif, i),
because we assume that (F, e) is local. This easily yields
nETwE (J;e(w;,(zis), ﬁs)ds> =2E (J;e(zij, ﬁj)ds).
In the same way, one has
i B[ @i Foormas) =28 ([ @ Fovmas).
and the proof is complete. U

We are now able to prove the comparison theorem:
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Theorem 5.2. Assume (F, ¢) is local, ® < ® m-a.e. and
F(t, x, ui(x), Duy(x)) < f(t, x, us(x), Du,(x)) dt® m® P-a.e.
Then
Vvt e [0, T], u;<u, mq P-a.e.,

Proof. Thanks to our hypotheses on g, we have that, for dz ® m-almost all (s, x),
&P < ClisP + a| D)k P-ae.,

where a is a constant in [0, 2[.
Using Corollary 4.16, we obtain that, for dz ® m-almost all (s, x),

14,0203 &P < Clig =0y ()P + ol (a0 | Dits(0) %
= Claf () +a|Dij @) P-ae,

and so

1 t
([ o0 20 ) = CE(| 10,01

t
+ aE (J e(ul, zij)ds).
0
This yields, thanks to the previous lemma,

t t
B (187 r) + 200 - @B | etat s ) = B ([ 18700 05

t
+2E (J @, £ eowm dS> .
0
We now decompose f in the following way

fs = {f(ss 5 Us, Dus) —f(S, 5 U, Dua)} + {f(S, 5 Us, Dus) —i(s, -, U, Dﬂs)}

As we assumed that f < f,
Ul fo =l - {f (s, - ug, Dug) — f(s, - g, Dug)} + il - {f(s, -, ug, Duy) — f(s, - ily, Diiy)
<l - {f(s, -, uy, Duy)— f(s, -, i, Dil)}
and so, thanks to our assumptions on f , for m-almost all x € W,
[ () - £ = Citf () - (|a(0)] + (| Dits()] [ )
= Claf @ + Ca (x) X 1y o201 [ Dids()|

= Cla; ) + Ciif (0| Dit ()] &-
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Once again, we use the inequality 2ab < ea® + % to conclude that, for any & > 0, there exists
a constant C > 0 such that, for almost all s € [0, T'] and almost all x € IV,

i} (0)fs(0)] < CQi; () + &]| Ditg(x)| -
This yields

t t
E(Ia () ) + Q2 — @ — ©)E (j( aads) < CE(JO||ar<x>|iz<W,m) ds).

Taking & small enough, we obtain that, for all ¢ € [0, T7],

t
~ 2 ~ 2
E(”uj—(x)”LZ(W,m)) < CE (JO||u;(x)||L2(W,m) dS),

and we conclude thanks to Gronwall’s lemma.
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