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Consider M independent and identically distributed renewal–reward processes with heavy-tailed

renewals and rewards that have either finite variance or heavy tails. Let W�(Ty, M), y 2 [0, 1], denote

the total reward process computed as the sum of all rewards in M renewal–reward processes over the

time interval [0, T]. If T !1 and then M !1, Taqqu and Levy have shown that the properly

normalized total reward process W�(T �, M) converges to the stable Lévy motion, but, if M !1
followed by T !1, the limit depends on whether the tails of the rewards are lighter or heavier than

those of renewals. If they are lighter, then the limit is a self-similar process with stationary and

dependent increments. If the rewards have finite variance, this self-similar process is fractional

Brownian motion, and if they are heavy-tailed rewards, it is a stable non-Gaussian process with

infinite variance. We consider asymmetric rewards and investigate what happens when M and T go to

infinity jointly, that is, when M is a function of T and M ¼ M(T )!1 as T !1. We provide

conditions on the growth of M for the total reward process W�(T �, M(T )) to converge to any of the

limits stated above, as T !1. We also show that when the tails of the rewards are heavier than the

tails of the renewals, the limit is stable Lévy motion as M ¼ M(T)!1, irrespective of the function

M(T).

Keywords: fractional Brownian motion; heavy tails; renewal–reward processes; self-similar processes;

stable processes

1. Introduction

A renewal–reward process can be described by two sequences of random variables. The

sequence of renewals fSngn>0 marks the consecutive renewal times and defines

corresponding inter-renewal intervals. The sequence of rewards fW ngn>1 attaches a

(random) number to each inter-renewal interval. We focus here on renewal–reward
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processes with heavy-tailed inter-renewal intervals and with either finite variance or heavy-

tailed rewards.

Consider a stochastic process, denoted by W� ¼ W�(Ty, M), y 2 [0, 1], which is the

aggregate reward process of M independent and identically distributed (i.i.d.) renewal–

reward processes over a time interval [0, T ]. By a central limit theorem type argument, one

expects the properly normalized processes W�(T �, M) to have a limit as M and T grow to

infinity. Suppose that M tends to infinity first and then T tends to infinity (we write T !1
(second), M !1 (first)). It is well known that if the rewards have finite variance, then the

limit of properly normalized processes W�(T �, M) is fractional Brownian motion (see

Taqqu and Levy 1986). The limit process is stable in the case of heavy-tailed, that is,

infinite-variance rewards. This stable process can have independent or dependent increments.

It has independent increments (and hence is the stable Lévy motion) if the tails of the

rewards are heavier than the tails of the renewals, but it has dependent increments if the

tails of the rewards are lighter than the tails of the renewals (Levy and Taqqu 1987; 2000).

On the other hand, if the limit in M and T is taken in the reverse order, that is, M !1
(second), T !1 (first), then the limit is always stable Lévy motion.

In this paper we study what happens as M and T tend to infinity simultaneously, that is,

we assume that M is a function of T such that M(T )!1 as T !1. This perspective

has relevance in the context of the modelling of computer networks where M represents the

number of computer workstations sending packets to the network and where the renewals

represent changes of regime (see Leland et al. 1994; Willinger et al. 1997). When the limit

is the stable Lévy motion irrespective of the order in which the limits in M and T are

taken, one expects to obtain that limit irrespective of the nature of the function M(T )!1.

The proof of this fact turns out to be quite delicate. When the limit of W�(T �, M) depends

on the order of the limits in M and T, we expect to obtain one or the other limit depending

on the rate at which M(T ) goes to infinity as T !1. We will indicate below what these

rates are. As we will show, there are two regimes governing the growth of M(T ) as

T !1, one regime yielding one limit, the second regime yielding the other limit.

This significantly extends the work of Mikosch et al. (2002) who considered the on–off

version of the model, where the rewards are bounded and alternate between 1 and 0.

We begin by introducing our assumptions and notation in Section 1.1, and by providing

an overview of related work in Section 1.2. In Section 2 we state our results. These results

are proved in Sections 3 and 4.

1.1. Assumptions and other preliminaries

We begin with some assumptions on renewal times. Let fUigi>1 be a sequence of i.i.d.

random variables with range the positive integers, having a common distribution U such

that either

P(U > u) ¼ u�ÆLU (u), u ¼ 1, 2, . . . , Æ 2 (1, 2), (U1)

or
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P(U ¼ u) ¼ Æu�Æ�1 lU (u), u ¼ 1, 2, . . . , Æ 2 (1, 2), (U2)

where LU , lU are slowly varying functions at infinity. Let � ¼ EU . The random variable U0

will be the first arrival time, independent of the sequence fUigi>1 and having the distribution

P(U0 ¼ u) ¼ 1

�
P(U > uþ 1), u ¼ 0, 1, 2, . . . : (1:1)

The random variables Ui will be called inter-renewal times. The sequence of renewal times

fSngn>0 is then defined by Sn ¼
Pn

k¼0U k. The term renewal will be used generically to refer

to the inter-renewal times Ui or the renewal times Sn. The special choice of U0 allows the

counting process
P

n1fSn< tg, t > 0, to have stationary increments. It is well known that

condition (U2) implies (U1) with

lim
u!1

LU (u)

lU (u)
¼ 1, (1:2)

while, for (U1) to imply (U2), the function LU has to satisfy additional assumptions (see, for

example, Bingham et al. 1987).

Turning now to our assumptions on the rewards, let fW ngn>0 be a sequence of i.i.d.

random variables, referred to as rewards, independent of the inter-renewal times sequence

fUngn>0 and having a common distribution W such that either

� 2 ¼ EW 2 ,1 (FVR)

or

P(W < �w) � c�w��LW (w), P(W > w) � cþw��LW (w), as w!1, (IVRL)

where c�, cþ > 0, cþ þ c� . 0 and LW is a slowly varying function at infinity, and either

Æ , � , 2 (IVR)

(the tail of the reward is lighter than the tail of the renewal) or

0 , � , Æ (IVRH)

(the tail of the reward is heavier than the tail of the renewal). If, for example, c� ¼ 0 but

cþ . 0, then the first condition in (IVR) should be interpreted as P(W < �w)=
(w��LW (w))! 0 as w!1. When � ¼ 1, we suppose that rewards are symmetric and,

for centring purposes, we also assume that

EW ¼ 0

either when 1 , � , 2 or when EW 2 ,1. Observe also that condition (IVR) implies that

W has infinite variance EW 2 ¼ 1.

Let us explain some of our assumptions. When � ¼ 1, we suppose that rewards are

symmetric because our proofs rely on the characteristic function representation of W and

this representation is quite involved in general when � ¼ 1 (see Aaronson and Denker

1998). We exclude the case � ¼ Æ from the assumptions on rewards for the following

reason. The aggregated reward process which we will consider, involves a sum of rewards

Wi over renewal intervals of length Ui, that is, products WiUi. Since we wish to apply the
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central limit theorem for these sums, we need to know the tail behaviour of the product

random variable WU . When W and U satisfy the assumptions above and Æ 6¼ � or

EW 2 ,1, we will apply the following well-known result attributed to Breiman (1965).

Lemma 1.1. Let X and Y be two independent random variables such that

P(X < �x) � c1x�ªL(x), P(X > x) � c2x�ªL(x),

as x!1, where ª . 0, c1, c2 > 0, c1 þ c2 . 0 and L is a slowly varying function at

infinity, and EjY j� ,1 for some � . ª. Then, as z!1,

P(XY < �z) � (c1EY
ª
þ þ c2EY ª

�)z�ªL(z), P(XY > z) � (c1EY ª
� þ c2EY

ª
þ)z�ªL(z),

where Yþ ¼ Y 1fY.0g and Y� ¼ (�Y )1fY,0g.

When W and U satisfy the assumptions above and Æ ¼ �, the variable WU still has a

regularly varying tail with exponent Æ but there is no such explicit and simple formula as in

Lemma 1.1 to describe the tail behaviour of WU . See Cline (1986) for additional

information.

To help the reader, we use special labels to distinguish between the various assumptions

on the rewards (finite variance versus infinite variance) and on the heaviness of the tails.

The labels (FVR) and (IVR) stand for ‘finite-variance rewards’ and ‘infinite-variance

rewards’, respectively, and the labels (IVRL) and (IVRH) indicate that, in addition, the tails

of rewards are lighter or heavier than those of the inter-renewal times, respectively. Because

the exponents appear with a negative sign in (IVR) and (U1), (U2), the tails of the rewards

are lighter if their index � is greater than the index Æ of the inter-renewal times. The labels

(U1) and (U2) refer to assumptions on the inter-renewal times U .

The renewal–reward process associated with the sequence of renewal times fSngn>0 and

the sequence of rewards fW ngn>0 is then defined as

W (t) ¼ W01(0,S0](t)þ
X1
n¼1

W n1(Sn�1,Sn](t), t ¼ 0, 1, . . . : (1:3)

The cumulative reward process W�(T ), T ¼ 1, 2, . . . , is defined as

W�(T ) ¼
XT

t¼1

W (t): (1:4)

If L : (0, 1) 7! (0, 1) is a slowly varying function at infinity and ª . 0, we also denote by

L�ª a slowly varying function such that, for all x . 0,

L�ª (u)�ªL(u1=ªL�ª (u)x)! 1, (1:5)

as u!1. We will write L�ª ¼ L�U when ª ¼ Æ and L ¼ LU, and L�ª ¼ L�W when ª ¼ � and

L ¼ LW in (1.5). It is well known that the functions L�U and L�W appear in the normalization term

for the partial sums
Pn

k¼1Uk and
Pn

k¼1Wk to converge to a stable random variable as n!1.

Consider now a sequence of renewal–reward processes fW m(t), t ¼ 0, 1, . . .g, m ¼
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1, 2, . . . , which are i.i.d. copies of W (t), and a sequence of their cumulative reward

processes fW�m(T ), T ¼ 1, 2, . . .g, m ¼ 1, 2, . . . , which are i.i.d. copies of W�(T ). Let

W�(Ty, M) :¼
XM

m¼1

W�m(Ty) :¼
XM

m¼1

W�m([Ty]) ¼
XM

m¼1

X[Ty]

t¼1

W m(t)

:¼
XM

m¼1

X[Ty]

t¼1

X1
n¼0

W m
n 1(S m

n�1,S m
n ](t)

( )
(1:6)

be the total reward process ([ � ] denotes the integer-part function). Here, T ¼
1, 2, . . . , 0 < y < 1, M ¼ 1, 2, . . . (and S m

�1 ¼ 0) and W m
n denotes the reward of index n

in the mth copy.

Remark. The total reward process is often defined in the probability literature as an integral

of the reward processes which are themselves defined in continuous time. There is no

essential difference between working in continuous time and discrete time. We work in

discrete time because our framework nicely illustrates how continuous-time processes arise as

limits of discrete-time ones and because the following results on which we rely were stated in

discrete time.

1.2. Overview of related work

The following known results describe asymptotics of the total reward process W�(T �, M),

as M and T grow to infinity. They can be briefly summarized as follows. Suppose T !1
(second), M !1 (first). If the rewards have a lighter tail than the inter-renewal times, one

obtains in the limit fractional Brownian motion if EW 2 ,1 and a dependent stable

process if EW 2 ¼ 1 (these processes are defined below). If the rewards have a heavier tail

than the inter-renewal times, one obtains the stable Lévy motion in the limit. If M !1
(second), T !1 (first), then the limit is always the stable Lévy motion. Here is a precise

statement of these results.

The first theorem considers T !1 (second) and deals with finite-variance rewards

(� 2 ¼ EW 2 ,1).

Theorem 1.1. (Taqqu and Levy 1986, Theorem 6, (ii)). Under assumptions (U1) on the

renewals and (FVR) on the rewards,

L � lim
T!1

lim
M!1

W�(Ty, M)

T (3�Æ)=2(LU (T ))1=2 M1=2
¼d �0 BH (y), (1:7)

where y 2 [0, 1], BH is a standard fractional Brownian motion with parameter H ¼
(3� Æ)=2 and � 2

0 ¼ 2� 2(�(Æ� 1)(2� Æ)(3� Æ))�1.

Here, L� and ¼d refer, respectively, to convergence and equality of the finite-

dimensional distributions. Recall that a stochastic process fBH (t)g t2R with H 2 (0, 1) is
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called a fractional Brownian motion if it is a Gaussian zero-mean process with covariance

function

EBH (u)BH (v) ¼ EB2
H (1)

2
fjuj2 H þ jvj2 H � ju� vj2 Hg, u, v 2 R: (1:8)

It is called standard if EB2
H (1) ¼ 1. The fractional Brownian motion BH has stationary

dependent (unless H ¼ 1
2
) increments and is self-similar with exponent H , that is, the

processes BH (at) and a H BH (t) have the same finite-dimensional distributions for any a . 0.

The next two theorems characterize the limit when the rewards in Theorem 1.1 have

infinite variance instead.

Theorem 1.2. (Levy and Taqqu 2000, Theorem 2.1; Pipiras and Taqqu 2000, Proposition

2.1). Under assumptions (U2) on the renewals and (IVRL) on the rewards with symmetric

rewards,

L � lim
T!1

lim
M!1

W�(Ty, M)

T (��Æþ1)=�(lU (T ))1=�M1=�L�W (M)
¼d Z�(y), (1:9)

where y 2 [0, 1] and Z� is a symmetric �-stable process described below.

The limit process Z� in Theorem 1.2 is a symmetric �-stable process characterized by

E exp i
Xd

j¼1

Ł j Z�(yj)

( )
¼ expf�� �(Ł, y)g,

where Ł ¼ (Ł1, . . . , Łd) 2 Rd , y ¼ (y1, . . . , yd) 2 [0, 1]d , d 2 N, and

� �(Ł, y) ¼ (�C�)�12c

ð
R

ð
R

����Xd

j¼1

Ł j((yj ^ v� u)þ � (0 ^ v� u)þ)

����
�

Æ(v� u)�Æ�1
þ du dv

(1:10)

with

C�1
� ¼

ˆ(2� �) cos (��=2)

1� �

and c ¼ cþ ¼ c�. (For more information on stable processes, see Samorodnitsky and Taqqu

1994). As shown in Levy and Taqqu (2000), the process Z� has stationary dependent

increments and is self-similar with exponent

H ¼ �� Æþ 1

�
:

Note that, if one sets � ¼ 2 (the case of finite variance), one recovers the self-similarity

exponent H given in Theorem 1.1. In fact, supposing that all slowly varying functions

asymptotically equal 1, by setting � ¼ 2 in the normalization T (��Æþ1)=�M1=� of Theorem

126 V. Pipiras, M.S. Taqqu and J.B. Levy



1.2, one recovers the normalization T (3�Æ)=2 M1=2 used in Theorem 1.1. One may thus view

Theorem 1.1 as the boundary case � ¼ 2 of Theorem 1.2.

Theorem 1.3. (Levy and Taqqu 2000, Theorem 2.1). Under assumptions (U2) on the

renewals and (IVRH) on the rewards with symmetric rewards,

L � lim
T!1

lim
M!1

W�(Ty, M)

T 1=�M1=�L�W (M)
¼d ¸�(y), (1:11)

where y 2 [0, 1] and ¸� is a �-stable Lévy motion satisfying

P(¸�(1) < �x) � c��1EU �x��, P(¸�(1) > x) � c��1EU �x��, as x!1, (1:12)

with c ¼ cþ ¼ c�.

A �-stable Lévy motion with � 2 (0, 2) is a �-stable stochastic process with independent

and stationary increments. It is self-similar with exponent 1=�. While Theorems 1.2 and 1.3

concern symmetric rewards only, in this work we will consider asymmetric rewards as well.

Finally, the fourth result characterizes the asymptotics of W�(T �, M) when the limit in

Theorems 1.1, 1.2 and 1.3 is reversed, that is, M !1 (second), T !1 (first). In this

case, the rewards have either finite variance or heavy tails.

Theorem 1.4. (Taqqu and Levy 1986, Theorem 6, (i); and Levy and Taqqu 1987, Theorem

1). Under assumptions (U1) on the renewals and either (FVR) or (IVR) on the rewards, one

has

L � lim
M!1

lim
T!1

W�(Ty, M)

M1=ÆT 1=ÆL�U (T )
¼d ¸Æ(y), (1:13)

if EW 2 ,1 (assumption (FVR)) or 1 , Æ , � , 2 (assumption (IVRL)), where ¸Æ is an

Æ-stable Lévy motion satisfying

P(¸Æ(1) < �x) � ��1EWÆ
�x�Æ, P(¸Æ(1) > x) � ��1EWÆ

þx�Æ, as x!1; (1:14)

and also

L � lim
M!1

lim
T!1

W�(Ty, M)

M1=ÆT 1=ÆL�U (T )
¼d ¸�(y), (1:15)

if 0 , � , Æ , 2 (assumption (IVRH)), where ¸� is a �-stable Lévy motion satisfying

P(¸�(1) < �x) � c���1EU �x��, P(¸�(1) > x) � cþ��1EU �x��, as x!1:

(1:16)

Remark. When 0 , � , Æ (assumption (IVRH)) and the rewards are symmetric, the limits in

Theorems 1.3 and 1.4 have the same finite-dimensional distributions. That is, one obtains in

the limit the stable Lévy motion with index � whether T !1, M !1 or M !1,
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T !1. This �-stable Lévy motion is described by its tail behaviour in (1.12) and (1.16).

Alternatively, it can be characterized by its characteristic function

E exp i
Xd

j¼1

Ł j¸�(yj)

( )
¼ expf�� �(Ł, y)(1� i�(Ł, y)tan ��=2)g,

where

� �(Ł, y) ¼ (�C�)�1(cþ þ c�)EU �
Xd

j¼1

j� jj�(yj � yj�1), (1:17)

�(Ł, y) ¼ (cþ � c�)

(cþ þ c�)

Xd

j¼1

�h�ij (yj � yj�1)

Xd

j¼1

j� jj�(yj � yj�1)

, (1:18)

with Ł ¼ (Ł1, . . . , Łd) 2 Rd , y ¼ (y1, . . . , yd) 2 (0, 1]d , 0 , y1 , . . . , yd < 1, d > 1,

� j ¼ Ł j þ Ł jþ1 þ . . . þ Łd

and

ah�i ¼ sign(a)jaj�, a 2 R:

The Æ-stable Lévy motion ¸Æ which appears in (1.14) can be described through its

characteristic function in a similar way.

Suppose now that M is a function of T and that M ¼ M(T )!1 as T !1. We want

to know when the total reward process W�(T �, M(T )) converges to any of the above limits

as T !1. As previously mentioned, we have to distinguish between two cases. Since the

limit process in Theorems 1.3 and 1.4 is the same under the assumption (IVRH), we may

expect W�(T �, M(T )) to always converge to this limit as T !1. We will show below that

this is indeed the case. Under the assumptions (FVR) and (IVRL), however, the limit

processes in Theorems 1.1 or 1.2 and in Theorem 1.4 are different. In this case, we will

find conditions on M(T ) for the normalized total reward process W�(T �, M(T )) to converge

to any of the three limits obtained in the above theorems.

This result extends that of Mikosch et al. (2002) who considered the so-called on–off

version of the model. In the on–off model, rewards are constant (say, 1) but renewals,

which have heavy tails as in our model, alternate between busy (or ‘on’) periods, when

there is a reward, and idle (or ‘off’) periods, when there is no reward. One is then

interested in the fluctuations of the total reward process W�(T �, M) around the mean

which, contrary to the case considered here, is no longer zero. One can show (see, for

example, Taqqu et al. 1997) that the asymptotics of W�(T �, M) are similar in this case to

those described in Theorems 1.1 and 1.4, namely, if T !1 (second), M !1 (first), the

properly normalized and centred W�(T �, M) converges to fractional Brownian motion,

whereas, if M !1 (second), T !1 (first), the limit is stable Lévy motion. Mikosch

et al. (2002) assumed that M ¼ M(T )!1 as T !1, and found conditions on the
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growth of M(T ) which distinguish between fractional Brownian motion and stable Lévy

motion in the limit as T !1. We should also mention here a recent paper by Gaigalas

and Kaj (2003). These authors consider a growth regime of M ¼ M(T ) which is

intermediate to those of Mikosch et al. (2002), and find a new process in the limit as

T !1 which is neither fractional Brownian motion nor stable Lévy motion.

A number of models with random heavy-tailed rewards have already appeared in the

telecommunications literature. See, for example, Maulik et al. (2002) and Guerin et al.

(2003) where a reward, called a random transmission time, is defined as a ratio of the size

of a transferred file and the transfer time. Although the model considered by these authors

is the so-called infinite-source Poisson, all these models – the infinite-source Poisson model,

the renewal–reward model and the so-called on–off model – will have the same

asymptotics and the results of our paper show what can happen.

2. Main results

We first consider the convergence of the total reward process under the assumptions (FVR)

and (IVRL). To get an idea about conditions on M(T ) needed for the convergence of

W�(T �, M(T )), suppose for simplicity that all slowly varying functions asymptotically equal

1. In view of Theorem 1.4, when T is large compared to M , we still expect

W�(T �, M(T ))=M1=ÆT 1=Æ to converge to stable Lévy motion. The question is how fast

the parameter M(T ) should grow with T . Observe that, for finite T , the process W�(T �, M)

involves only inter-renewal times that cannot be greater than T , and, in addition,

EjW jÆ ,1 for Æ , �. Therefore the process W�(T , M) has always finite Æth moment and

the convergence (1.9) suggests that

EjW�(T , M)jÆ
� �1=Æ� C T (��Æþ1)=�M1=�

for large T and M . Therefore, if we set

M ¼ M(T )

and expect W�(T �, M(T ))=M1=ÆT 1=Æ to converge, as T !1, to Æ-stable Lévy motion

which has an infinite Æth moment, then the moment of order Æ of W�(T �, M)=M1=ÆT 1=Æ

should diverge. In other words,

(EjW�(T , M)jÆÞ1=Æ

M1=ÆT 1=Æ
� C

T (��Æþ1)=�M1=�

M1=ÆT 1=Æ
� 1

or T (��Æþ1)=�M1=� � T 1=ÆM1=Æ. It is easy to see that this last condition reduces to

T Æ�1 � M

which, interestingly, does not depend on �. When M � T Æ�1, we expect the normalization of

W�(T �, M(T )) to be T (��Æþ1)=�M(T )1=� and the limiting process to be Z� (or fractional

Brownian motion in the case � ¼ 2). While this heuristic argument is suggestive, it provides

neither the limits nor the exact conditions under which convergence holds. To formulate the

results, we introduce the following two regimes: a fast-growth one,
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lim
T!1

M

T Æ�1
(L�U (MT ))Æ ¼ 1; (2:1)

and a slow-growth one,

lim
T!1

M

T Æ�1
(L�U (MT ))Æ ¼ 0: (2:2)

The following theorems are our main results under the assumptions (FVR) and (IVRL).

Theorem 2.1. Under the fast-growth condition (2.1) and assumptions (U1) on the renewals

and (FVR) on the rewards,

L � lim
T!1

W�(Ty, M)

T (3�Æ)=2 M1=2(LU (T ))1=2
¼d �0 BH (y), (2:3)

where y 2 [0, 1] and BH is a standard fractional Brownian motion as in Theorem 1.1.

In the following result, it is assumed that the rewards are heavy-tailed and possibly

asymmetric.

Theorem 2.2. Under the fast-growth condition (2.1) above and assumptions (U2) on the

renewals and (IVRL) on the rewards,

L � lim
T!1

W�(Ty, M)

T (��Æþ1)=�M1=�(lU (T ))1=�L�W (T�Æþ1 M lU (T ))
¼d Z�(y), (2:4)

where y 2 [0, 1] and Z� is the �-stable process characterized by

E exp i
Xd

j¼1

Ł j Z�(yj)

( )
¼ exp �� �(Ł, y) 1� i�(Ł, y)tan

��

2

� �� �
, (2:5)

where Ł ¼ (Ł1, . . . , Łd) 2 Rd, y ¼ (y1, . . . , yd) 2 [0, 1]d, d 2 N,

� �(Ł, y) ¼ (�C�)�1(cþ þ c�)

ð
R

ð
R

����Xd

j¼1

Ł j((yj ^ v� u)þ � (0 ^ v� u)þ)

����
�

Æ(v� u)�Æ�1
þ du dv

(2:6)

and skewness term (with the notation ah�i ¼ jaj� sign(a))

�(Ł, y) ¼ (cþ � c�)

(cþ þ c�)

ð
R

ð
R

Xd

j¼1

Ł j((yj ^ v� u)þ � (0 ^ v� u)þ)

 !h�i
Æ(v� u)�Æ�1

þ du dv

ð
R

ð
R

����Xd

j¼1

Ł j((yj ^ v� u)þ � (0 ^ v� u)þ)

����
�

Æ(v� u)�Æ�1
þ du dv

:

(2:7)
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Theorem 2.3. Under the slow-growth condition (2.2) and assumptions (U1) on the renewals

and either (FVR) or (IVRL) on the rewards,

L � lim
T!1

W�(Ty, M)

T 1=ÆM1=ÆL�U (TM)
¼d ¸Æ(y), (2:8)

where y 2 [0, 1] and ¸Æ is a Æ-stable Lévy motion satisfying (1.14).

Theorems 2.1, 2.2 and 2.3 are proved in Section 3. Observe also that the normalizations

in (2.4) and (2.8) have slightly changed from those in (1.9) and (1.13). We will now provide

a number of equivalent ways to express the slow- and fast-growth conditions stated above.

Let

FU (s) ¼ P(U > s) ¼ s�ÆLU (s), s . 0,

and let

b(t) ¼ (1=FU ) (t)

be the generalized inverse of 1=FU (the generalized inverse f  of a function f is given by

f  (t) ¼ inffs . 0 : f (s) . tg). Then one has

(2:1) , lim
T

M1=ÆT 1=ÆL�U (MT )

T
¼ 1, lim

T

b(MT )

T
¼ 1, lim

T
MT 1�ÆLU (T ) ¼ 1, (2:9)

(2:2) , lim
T

M1=ÆT 1=ÆL�U (MT )

T
¼ 0, lim

T

b(MT )

T
¼ 0, lim

T
MT 1�ÆLU (T ) ¼ 0: (2:10)

The first equivalence relations in (2.9) and (2.10) follow by taking the power 1=Æ. The second

conditions follow from the fact that

n1=ÆL�U (n) � b(n), (2:11)

as n!1. Indeed, by Theorem 1.5.12 in Bingham et al. (1987),

FU (n1=ÆL�U (n)) ¼ (n1=ÆL�U (n))�ÆLU (n1=ÆL�U (n)) ¼ n�1 L�U (n)�ÆLU (n1=ÆL�U (n))

� n�1 � 1

FU

1

FU

 (n)

� �� ��1

¼ FU (b(n)):

Now (2.11) follows by taking F
 
U of both sides and again using Theorem 1.5.12 in Bingham

et al. (1987). As for the third equivalence conditions in (2.9) and (2.10), they are proved in

Mikosch et al. (2002, Lemma 1).

Finally, we consider the (IVRH) assumption, namely 0 , � , Æ, and state a result which

requires no assumptions on the growth of the function M ¼ M(T ).

Theorem 2.4. Suppose that M ¼ M(T )!1 as T !1. Then, under the assumptions (U2)

on the renewals and (IVRH) on the rewards,
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L � lim
T!1

W�(Ty, M)

T 1=�M1=�L�W (TM)
¼d ¸�(y), (2:12)

where y 2 [0, 1] and ¸� is a �-stable Lévy motion satisfying (1.16).

This theorem is proved in Section 4 (the cases 0 , � , 1 , Æ and 1 < � , Æ are treated

separately).

Remark. In some cases one may need a stronger convergence result than convergence in the

sense of the finite-dimensional distributions. We show in Appendix B that (2.3) and (2.4) can

be extended to weak convergence in the space D[0, 1] equipped with the usual Skorokhod J1

topology. (Recall that D[0, 1] is the space of right-continuous functions on [0, 1] which have

left limits.) We can make this extension quite easily because the limit processes BH and Z�

are smooth enough, and their path regularity is easy to establish. For example, since

H ¼ (3� Æ)=2 . 1=2, fractional Brownian motion BH is long-range dependent with

smoother paths as H increases and the well-known Kolmogorov criterion applies to

EjBH (t)� BH (s)j2 (there is no need to consider a power higher than 2). It is more difficult to

extend (2.8) and (2.12) where the limit is Lévy motion. This could perhaps be done, as

indicated in Mikosch et al. (2002), in the space D[0, 1] equipped with the M1 topology by

following the arguments of Resnick and van der Berg (2000).

3. Proofs under the fast and slow growth conditions

In this section we prove Theorems 2.1, 2.2 and 2.3. The proof of Theorem 2.1 (fast-growth,

(FVR), convergence to fractional Brownian motion) is the simplest of the three and uses

ideas of Mikosch et al. (2002). That of Theorem 2.3 (slow-growth, (FVR) or (IVRL),

convergence to stable Lévy motion) also uses ideas and results of Mikosch et al. (2002).

Finally, the proof of Theorem 2.2 (fast-growth, (IVRL), convergence to the stable process

with dependent increments) deals with a totally novel situation.

3.1. Proof of Theorem 2.1

Recall from (1.6) that the total reward process associated with the rewards W m
n and

renewals S m
n is

W�(Ty, M) ¼
XM

m¼1

W�m(Ty) ¼
XM

m¼1

X[Ty]

t¼1

W m
0 1(0,S m

0 ](t)þ
X1
n¼1

W m
n 1(S m

n�1,S m
n ](t)

 !
:

Denote the normalization used in Theorem 2.1 by

N (T ) ¼ T (3�Æ)=2 M1=2(LU (T ))1=2

and let 0 , y1 , . . . , yd < 1. We have to show that, as T !1,
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N (T )�1W�(Ty1, M), . . . , N (T )�1W�(Tyd , M)
� �

!d �0(BH (y1), . . . , BH (yd)), (3:1)

where !d denotes convergence in distribution. We will show the convergence (3.1) only when

W has a continuous distribution function, that is, W is atomless. A general case can be

proved similarly by using the usual ‘perturbation’ trick: take a sequence X m
n , m > 1, n > 0,

of i.i.d. N (0, 1) random variables, independent of W m
n and S m

n , m > 1, n > 0, consider the

total reward process with new rewards W m
n,E ¼ W m

n þ EX m
n which now have a continuous

distribution function, apply the already established result and then show that the variance of

the total reward from variables EX m
n is negligible as E! 0. Now, since EW ¼ 0 and W is

atomless, one can choose ak ! �1 and bk ! þ1 such that EW1fak,W,b kg ¼ 0. Observe

that the random variables W m,k
n ¼ W m

n 1fa k,W m
n ,b kg are bounded. Define

W�m,k(Ty) :¼
X[Ty]

t¼1

W
m,k
0 1[0,S m

0 )(t)þ
X1
n¼1

W m,k
n 1[S m

n�1,S m
n )(t)

 !

and W�k (Ty, M) :¼
PM

m¼1W�m,k(Ty). The proof of the convergence is in three parts.

(a) Convergence for d ¼ 1 at y ¼ y1. By Theorem 4.2 in Billingsley (1968), it is enough

to show the following three steps:

(1) (N (T ))�1W�k (Ty, M)!d �0,k BH (y), where � 2
0,k ¼ 2EW 21fak,W,b kg(�(Æ� 1)(2� Æ)

(3� Æ))�1.

(2) �0,k BH (y)!d �0 BH (y), as k !1
(3) lim supk!1lim supT!1P(jW�(Ty, M)� W�k (Ty, M)j > N (T )E) ¼ 0, for all E . 0.

For step (1), we adapt Mikosch et al. (2002, Lemma 13). We need to show that

(i) M P(jW�1,k(Ty)j > N (T )E)! 0, for all E . 0;

(ii) M(N (T ))�2 var(W�1,k(Ty)1fjW�
1, k

(Ty)j<N (T )�g)! � 2
0,k y3�Æ, for some � . 0; and

(iii) M(N (T ))�1E(W�1,k(Ty)1fjW�
1, k

(Ty)j<N (T)�g)! 0, for some � . 0.

To show (i), use the fact that jW�1,k(Ty)j < maxfjak j, jbk jg[Ty] and that, by the fast-growth

condition, T�1 N (T ) ¼ (MT 1�ÆLU (T ))1=2 !1. Then P(jW�1,k(Ty)j > N (T )E) ¼ 0, for large

enough T . To verify (ii), observe that, for large enough T , as in Taqqu and Levy (1986,

p. 87),

M(N (T ))�2 var(W�1,k(Ty)1fjW�
1, k

(Ty)j<N (T )�g)

¼ M(N (T ))�2 var(W�1,k(Ty))

� M(N (T ))�22EW 21fa k,W,b kg �(Æ� 1)(2� Æ)(3� Æ)ð Þ�1
[Ty]3�ÆL�U (Ty)

¼ M

T 3�ÆM L�U (T )
2EW 21fak,W,bkg(�(Æ� 1)(2� Æ)(3� Æ))�1[Ty]3�ÆL�U (Ty)

� 2EW 21fa k,W,b kg(�(Æ� 1)(2� Æ)(3� Æ))�1 y3�Æ ¼ � 2
0,k y3�Æ:

As for condition (iii), we have, for large enough T ,
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M(N (T ))�1E(W�1,k(Ty)1fjW�
1, k

(Ty)j<N (T)�g) ¼ M(N (T ))�1EW�1,k(Ty) ¼ 0,

since EW1fa k,W,b kg ¼ 0. Step (2) follows since � 2
0,k ! � 2

0, as k !1. For step (3), we

have

P jW�(Ty, M)� W�k (Ty, M)j > N (T )E
� �

< (N (T )E)�2EjW�(Ty, M)� W�k (Ty, M)j2

¼ E�2 M(N (T ))�2E

����X
[Ty]

t¼1

X1
n¼0

W n1fW n.b k or W n,a kg1[Sn�1,Sn)(t)

����
2

:

Then, as in the proof of (ii) in step (1), we obtain

lim sup
T!1

P(jW�(Ty, M)� W�k (Ty, M)j > N (T )E)

< E�22EW 21fW.b k or W,akg(�(Æ� 1)(2� Æ)(3� Æ))�1 y3�Æ:

The conclusion follows since EW 21fW.bk or W,a kg ! 0 as k !1.

(b) Convergence for d ¼ 2 at 0 , y1 , y2 < 1. One needs to verify that, as T !1,

1

N (T )

XM

m¼1

Ł1W�m(Ty1)þ Ł2W�m(Ty2)
� �

�!d �0(Ł1 BH (y1)þ Ł2 BH (y2)),

for all Ł1, Ł2 2 R. Without loss of generality we may assume that the rewards are bounded

(otherwise carry out the three steps in (a)). We then have to show conditions (i)–(iii) of step

(1) in (a), where W�1,k(Ty) is replaced by Ł1W�1 (Ty1)þ Ł2W�1 (Ty2). Conditions (i) and (iii) are

obvious for the same reasons as in (a). To verify (ii), note that, for large enough T ,

M(N (T ))�2 var((Ł1W�1 (Ty1)þ Ł2W�1 (Ty2))1fjŁ1 W�1 (Ty1)þŁ2 W�1 (Ty2)j<N (T )�g)

¼ M(N (T ))�2E(Ł1W�1 (Ty1)þ Ł2W�1 (Ty2))2

¼ M(N (T ))�2 Ł2
1EW�1 (Ty1)2 þ 2Ł1Ł2EW�1 (Ty1)W�1 (Ty2)þ Ł2

2EW�1 (Ty2)2
� �

:

Since, by using stationarity,

2EW�1 (Ty1)W�1 (Ty2) ¼ EW�1 (Ty1)2 þ EW�1 (Ty2)2 � E(W�1 (Ty2)� W�1 (Ty1))2

¼ EW�1 (Ty1)2 þ EW�1 (Ty2)2 � E(W�1 (Ty2 � Ty1))2,

it follows as in (a) that

M(N (T ))�2 var((Ł1W�1 (Ty1)þ Ł2W�1 (Ty2))1fjŁ1 W�1 (Ty1)þŁ2 W�1 (Ty2)j<N (T )�g)

! � 2
0(Ł2

1 y3�Æ
1 þ 2Ł1Ł2

1
2
(y3�Æ

1 þ y3�Æ
2 � (y2 � y1)3�Æ)þ Ł2

2 y3�Æ
2 ):

Finally, observe that, by (1.8), the last expression is equal to � 2
0E(Ł1 B(3�Æ)=2(y1) þ

Ł2 B(3�Æ)=2(y2))2.
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(c) The convergence (3.1) for any d at 0 , y1 , . . . , yd < 1 can be established as in

(b).

3.2. Proof of Theorem 2.2

We will first consider the case of symmetric rewards (Section 3.2.1) and we will assume

without loss of generality that cþ ¼ c� ¼ 1
2
. In this case, the skewness parameters

�(Ł, y) � 0 and the limit process Z� is characterized by the scale parameters � (Ł, y) alone,

which can also be expressed as in (1.10). The case of asymmetric rewards is dealt with in

Section 3.2.2.

3.2.1. Symmetric rewards

Observe first that

W�(T ) ¼
X1
k¼0

(T ^ Sk � Sk�1)þWk : (3:2)

In order to express the finite-dimensional characteristic function, introduce Ł ¼
(Ł1, . . . , Łd) 2 Rd , y ¼ (y1, . . . , yd) 2 (0, 1]d with 0 , y1 , . . . , yd < 1, d > 1, and

T j ¼ [Tyj], j ¼ 1, . . . , d. As in Levy and Taqqu (2000), let

� � :¼ � �(Ł, y) ¼ C�1
� (I(Ł, y)þ J (Ł, y)) ¼: C�1

� (I þ J ), (3:3)

where � � ¼ � �(Ł, y) and C� are defined after Theorem 1.2, and

I ¼ ��1

ð1
0

����Xd

j¼1

Ł j(yj ^ u)

����
�

u�Æ du, (3:4)

J ¼ ��1

ð1
0

ð1
0

����Xd

j¼1

Ł j(yj ^ v� u)þ

����
�

Æ(v� u)�Æ�1
þ du dv: (3:5)

In the proof below we will use the following facts from Levy and Taqqu (2000):

E

����Xd

j¼1

Ł j(T j ^ S0)

����
�

1

T ��Æþ1 lU (T )
¼ ��1

X1
x¼0

����Xd

j¼1

Ł j(T j ^ x)

����
�

P(U . x)

T ��Æþ1 lU (T )
! I , (3:6)

as T !1 (see Proposition 5.1 in Levy and Taqqu 2000), and

E
X1
k¼1

����Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

����
�

1

T ��Æþ1 lU (T )

¼ ��1
X1
y¼0

Xy

x¼0

����Xd

j¼1

Ł j(T j ^ y� x)þ

����
�

P(U ¼ y� x)

T ��Æþ1 lU (T )
! J , (3:7)
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as T !1 (see Propositions 5.2–5.4 in Levy and Taqqu 2000; the equality in (3.7) is shown

on p. 32 of that paper). Let also

N (T ) ¼ T (��Æþ1)=�M1=�(lU (T ))1=�L�W (T�Æþ1 MlU (T )) ¼ T (Q(T ))1=�L�W (Q(T )), (3:8)

where

Q(T ) ¼ T�Æþ1 M lU (T )!1, (3:9)

by the fast-growth condition (see (2.9) and (1.2)).

To prove Theorem 2, it is enough to show the following result.

Lemma 3.1. As T !1,

D :¼
�����E exp i

Xd

j¼1

Ł jW
�(Tyj, M)=N (T )

( )
� E exp i

Xd

j¼1

Ł j Z�(yj)

( )�����! 0: (3:10)

Proof. Using (3.2), independence of the M renewal–reward processes and also the fact that

they are identically distributed, we have

D ¼
�����
YM
m¼1

E exp i
X1
k¼0

Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þWk=N (T )

( )
� E exp i

Xd

j¼1

Ł j Z�(yj)

( )�����:
Using independence of the sequences fWkgk>0 and fSkgk>0 and also that of the Wk , we

obtain

D ¼
�����
YM
m¼1

E E exp i
X1
k¼0

Xd

j¼1

Ł j(T j ^ sk � sk�1)þWk=N (T )

( )�����
(sk )¼(Sk )

0
@

1
A� expf�� �g

�����

¼
�����
YM
m¼1

E
Y1
k¼0

E exp i
Xd

j¼1

Ł j(T j ^ sk � sk�1)þWk=N (T )

( ) !�����
(s k )¼(Sk )

0
@

1
A� expf�� �g

�����:
By Theorem 2.6.5 in Ibragimov and Linnik (1971) (see also Aaronson and Denker 1998,

Theorem 1), for the random variable W in the domain of attraction of a symmetric �-stable

random variable,

E expfiuWg ¼ expf�C�1
� juj�LW (juj�1)h(u)g, u 2 R, (3:11)

where limu!0 h(u) ¼ 1. Then, by applying (3.11), we express the identity above as

D ¼
�����
YM
m¼1

E exp �C�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)

( )
� expf�� �g

�����, (3:12)

where
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Wk ¼
1

N (T )

Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ: (3:13)

Now, using the inequality j
QM

m¼1 am �
QM

m¼1 bmj <
PM

m¼1jam � bmj, valid for jamj, jbmj < 1

(it is enough to prove the inequality when M ¼ 2, and this is done by a simple application of

the triangle inequality to j(a1a2 � a2b1)þ (a2b1 � b1b2)j), we have

D < M

�����E exp �C�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)

( )
� exp � � �

M

� ������
< M

�����E exp
� �

M
� C�1

�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)

( )
� 1

�����: (3:14)

Since, by Taylor’s formula, jex � 1� xj < ex0 x2=2 < ejxjx2=2 for some jx0j < jxj, we have

jEeX � 1j < jEX j þ EejX jX 2=2 and hence

D <

����M EC�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)� � �

����
þ M

2
E exp

� �

M
þ C�1

�

X1
k¼0

jWk j�LW (jWk j�1)jh(Wk)j
( )

3 C�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)� � �

M

 !2

: (3:15)

Focus now on the second term in the bound above. Observe first that, by the fast-growth

condition (2.9),

jWk j ¼
1

N (T )

����Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

���� < C T

N (T )
¼ C

(Q(T )L�W (Q(T ))�)1=�
! 0

(use (3.8), (3.9) and the fact that L�W is a slowly varying function). Consequently,

h(Wk)! 1, (3:16)

as T !1, uniformly in k. Using Lemma 3.2 below, we have

F :¼
X1
k¼0

jWk j�LW (jWk j�1) <
C

Q(T )
! 0, (3:17)

as T !1. Using (3.16) and (3.17), we can now bound the exponential in (3.15) by a

constant to obtain
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D <

����M EC�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)� � �

����

þ CM E C�1
�

X1
k¼0

jWk j�LW (jWk j�1)h(Wk)� � �

M

 !2

:

By the triangle inequality, the relation (aþ b)2 < 2(a2 þ b2) and (3.17), we bound D further

as

D <

����M EC�1
�

X1
k¼0

jWk j�LW (jWk j�1)� � �

����þ sup
k>0

jh(Wk)� 1jM EC�1
�

X1
k¼0

jWk j�LW (jWk j�1)

þ C

Q(T )
M EC�1

�

X1
k¼0

jWk j�LW (jWk j�1)þ M
C

M2
:

Since by (3.9), Q(T )!1 and by (3.16), supk jh(Wk)� 1j ! 0, as T !1, to prove D! 0,

it is enough to show that MEC�1
�

P1
k¼0jWk j�LW (jWk j�1)! � �: By separating the terms k ¼ 0

and k > 1 and using (3.3), it is enough to show that, as T !1,

R1 :¼
����M EjW0j�LW (jW0j�1)� I

����! 0 (3:18)

and

R2 :¼
����M E

X1
k¼1

jWk j�LW (jWk j�1)� J

����! 0: (3:19)

This is established in Lemmas 3.3 and 3.4 below. h

Remark. If lU (u) � 1 and LW (u) � 1, as u!1, then the conditions (3.18) and (3.19) to

prove become

EC�1
�

X1
k¼0

����Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

����
�

1

T ��Æþ1
! � �,

as T !1, which follows immediately from (3.6) and (3.7). We thus need to show that the

slowly varying functions have the correct expression in (2.4).

We next establish three lemmas used in the proof above.

Lemma 3.2. F < C(Q(T ))�1, where Q(T ) and F are defined in (3.9) and (3.17), respectively.

Proof. Set

�k ¼ Q(T )1=�L�W (Q(T ))Wk ¼
����Xd

j¼1

((T j=T ) ^ (Sk=T )� (Sk�1=T ))þ

����,
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where Wk is defined in (3.13). Then

F ¼ 1

Q(T )

X1
k¼0

j�k j�L�W (Q(T ))��LW j�k j�1Q(T )1=�L�W (Q(T ))
� 	

¼ 1

Q(T )

X1
k¼0

j�k j�F 1(T )F2
k(T ),

where

F 1(T ) ¼ L�W (Q(T ))�� LW (Q(T )1=�L�W (Q(T )))
n o

and

F2
k(T ) ¼ LW (Q(T )1=�L�W (Q(T )))

n o�1

LW j�k j�1Q(T )1=�L�W (Q(T ))
� 	

:

By (1.5), F 1(T )! 1 as T !1. Moreover, by fixing � . 0 and using Potter’s bounds

(Bingham et al. 1987, Theorem 1.5.6), we obtain, for large enough T , F2
k(T ) <

2 maxfj�k j��, j�k j�g, since by (3.9), Q(T )1=�L�W (Q(T ))!1 and j�k j�1 is bounded from

below. Therefore, for large enough T ,

F < C(Q(T ))�1
X1
k¼0

j�k j���

(the term with þ� is bounded by that with �� because j�k j is bounded from above). Now

choosing � such that �� � . 1, observe that

X1
k¼0

j�k j��� < C
X1
k¼0

1 ^ Sk

T
� Sk�1

T

� ����

þ
< C

X1
k¼0

1 ^ Sk

T
� Sk�1

T

� �
þ

,

because �� � . 1 and 0 < (1 ^ (Sk=T )� (Sk�1=T ))þ < 1. Since Sk�1 < Sk for all k > 1

and Sk !1 almost surely, the last sum equals 1, and therefore the proof is complete. h

Lemma 3.3. The convergence (3.18) holds as T !1.

Proof. Since by (3.13), W0 ¼
Pd

j¼1Ł j(T j ^ S0)=N (T ) and, by (1.1), P(S0 ¼ x) ¼
P(U0 ¼ x) ¼ ��1 P(U . x), x ¼ 0, 1, . . . , we obtain

M EjW0j�LW (jW0j�1) ¼ M
X1
x¼0

����Xd

j¼1

Ł j(T j ^ x)

����
�

N (T )��LW

N (T )����Xd

j¼1

Ł j(T j ^ x)

����

0
BBBB@

1
CCCCA��1 P(U . x):
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To simplify notation, we set

Ax ¼
Xd

j¼1

Ł j((T j=T ) ^ (x=T )), x ¼ 0, 1, . . . ,

G1(T ) ¼ L�W (Q(T ))�� LW (Q(T )1=�L�W (Q(T )))
n o

, (3:20)

G2
x(T ) ¼ LW (Q(T )1=�L�W (Q(T )))

n o�1

LW jAxj�1Q(T )1=�L�W (Q(T ))
� 	

: (3:21)

Observe that ����Xd

j¼1

Ł j(T j ^ x)

����
�

N (T )�� ¼ jAxj�Q(T )�1 L�W (Q(T ))

 ���

:

Then, by the triangle inequality, we obtain, for E . 0,

R1 ¼
����M��1

Q(T )

X1
x¼0

jAxj�G1(T )G2
x(T )P(U . x)� I

����
<

M��1

Q(T )

X
x:jAxj<E

jAxj�G1(T )G2
x(T )P(U . x)þ M��1

Q(T )

X
x:jAxj.E

jAxj�jG1(T )G2
x(T )� 1jP(U . x)

þ M��1

Q(T )

X
x:jAxj<E

jAxj�P(U . x)þ
����M��1

Q(T )

X1
x¼0

jAxj�P(U . x)� I

����: (3:22)

Denote the four terms in the above bound by R1,1, R1,2, R1,3 and R1,4. We will show that, for

small enough E . 0 and large enough T , R1,1 and R1,3 are arbitrary small, and that, for fixed

E . 0, R1,2 and R1,4 converge to 0. This will prove the convergence of R1.

Observe that G1(T )! 1 as T !1, since Q(T )!1 and (1.5) holds. Using Potter’s

bounds (see Bingham et al. 1987, Theorem 1.5.6, (i)), we obtain, for sufficiently large T

and fixed � . 0, that G2
x(T ) < C maxfjAxj��, jAxj�g (this result applies since Q(T )!1 as

T !1, and jAxj < c ,1, so that jAxj�1 > c�1 . 0). Then, for such T and �,

R1,1 < C
M

Q(T )

X
x:jAxj<E

jAxj� max jAxj��, jAxj�

 �

P(U . x)

< C
X

x:jAxj<E

jAxj��� þ jAxj�þ�
� � P(U . x)

T�Æþ1 lU (T )
: (3:23)

Suppose now that � . 0 is such that Æ , �� � , �þ � , 2. Let us show that (3.6) implies

ST ,E :¼
X

x:jAxj<E

jAxj���
P(U . x)

T�Æþ1 lU (T )
!
ð

u:j
Pd

j¼1
Ł j( y j^u)j<E

����Xd

j¼1

Ł j(yj ^ u)

����
���

u�Æþ du, (3:24)

as T !1. Observe first that ST ,E ¼
Ð1

0
f T ,E(u)du, where
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f T ,E(u) ¼ jA[Tu]j���
P(U . [Tu])

T�Æ lU (T )
1fu:jA[Tu]j<Eg(u):

By (1.2), we obtain

P(U . [Tu])

T�Æ lU (T )
¼ [Tu]

T

� ��Æ
LU T [Tu]=Tð Þ

LU (T )

LU (T )

lU (T )
! u�Æ,

as T !1, for u . 0 (using Theorem 1.2.1 in Bingham et al. 1987). Since also A[Tu] !Pd
j¼1Ł j(yj ^ u), we see that

f T ,E(u)!
����Xd

j¼1

Ł j(yj ^ u)

����
���

u�Æþ 1fu:j
Pd

j¼1
Ł j( y j^u)j<Eg(u): (3:25)

Observe now that

0 < f T ,E(u) < f T (u) :¼ jA[Tu]j���
P(U . [Tu])

T�Æ lU (T )
(3:26)

and that, by (3.6) and (3.4) (where � is replaced by �� �),ð1
0

f T (u)du ¼
X1
x¼0

jAxj���
P(U . x)

T�Æþ1 lU (T )
!
ð1

0

����Xd

j¼1

Ł j(yj ^ u)

����
���

u�Æ du: (3:27)

In view of (3.25), (3.26) and (3.27), the convergence (3.24) is a consequence of the following

result: if f , g, f n, g n, n > 1, are measurable functions on (E, �) such that 0 < f n < g n,

f n ! f , g n ! g (in the almost everywhere sense) and
Ð

gn d�!
Ð

g d� ,1, thenÐ
f n d�!

Ð
f d� (see Proposition 18 in Royden 1988, p. 270). By choosing E . 0 small

enough, the limit in (3.24) can be made arbitrarily small, and hence (3.23) and (3.24) imply

that R1,1 is arbitrarily small for large T .

For R1,2, since 0 , C < jAxj�1 < E�1 is bounded, its presence in the argument of LW can

be ignored, and in view of (1.5) and (3.6), we obtain R1,2 ! 0 as T !1. For R1,3, one can

show as in the case of R1,1 that, by choosing small enough E . 0, R1,3 is arbitrarily small

for large T . For R1,4 we have, by (3.6),

R1,4 ¼
����X1

x¼0

jAxj�
��1 P(U . x)

T�Æþ1 lU (T )
� I

����! 0:

h

Lemma 3.4. The convergence (3.19) holds as T !1.

Proof. Note first that, by stationarity,

X1
k¼1

P(Sk�1 ¼ x) ¼
X1
k¼1

P(Sk�1 ¼ 0) ¼ P(S0 ¼ 0) ¼ ��1:
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Since Sk ¼ Sk�1 þ U k , we obtain

E
X1
k¼1

jWk j�LW (jWk j�1) ¼
X1
k¼1

X1
x¼0

X1
z¼0

����Xd

j¼1

Ł j(T j ^ (xþ z)� x)þ

����
�

� N (T )��LW

N (T )����Xd

j¼1
Ł j(T j ^ (xþ z)� x)þ

����

0
BB@

1
CCAP(Sk�1 ¼ x)P(U ¼ z)

¼ ��1
X1
y¼0

Xy

x¼0

����Xd

j¼1

Ł j(T j ^ y� x)þ

����
�

N (T )��LW

N (T )����Xd

j¼1
Ł j(T j ^ y� x)þ

����

0
BB@

1
CCAP(U ¼ y� x):

We will proceed as in the case of R1 considered in Lemma 3.3. For ease of notation, we set

Bx, y ¼
Pd

j¼1Ł j((T j=T ) ^ (y=T )� (x=T ))þ, and also define H1(T ) and H2
x, y(T ) as in (3.20)

and (3.21), by changing Ax in (3.21) to Bx, y. Then, for some E . 0,

R2 ¼
����M��1

Q(T )

X1
y¼0

Xy

x¼0

jBx, yj� H1(T )H2
x, y(T )P(U ¼ y� x)� J

���� < R2,1 þ R2,2 þ R2,3 þ R2,4,

where the first term R2,1 is

M��1

Q(T )

X
(x, y):jBx, yj<E

jBx, yj� H1(T )H2
x, y(T )P(U ¼ y� x)

and the other terms are defined in a corresponding fashion as in (3.22). For R2,1 we have, as

in the case of R1,1 in Lemma 3.3, that

R2,1 < C
X

(x, y):jBx, yj<E

jBx, yj��� þ jBx, yj�þ�
� � P(U ¼ y� x)

T�Æþ1 lU (T )

! C

ð
(u,v):j

Pd

j¼1
Ł j( y j^v�u)þj<E

����Xd

j¼1

Ł j(yj ^ v� u)þ

����
���
þ
����Xd

j¼1

Ł j(yj ^ v� u)þ

����
�þ�

 !

3 Æ(v� u)�Æ�1
þ du dv,

where � . 0 is such that Æ , �� � , �þ � , 2. (To show the convergence, use (3.7)

instead of (3.6).) Then, by choosing small enough E . 0, we obtain that R2,1 is arbitrarily

small. For the terms R2,2, R2,3 and R2,4, one argues in the same way as for R1,2, R1,3 and R1,4

in Lemma 3.3. h
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3.2.2. Asymmetric rewards

As in the case of symmetric rewards, by using the expression for a characteristic function

of a random variable W in the domain of attraction of a �-stable random variable,

E expfiuWg ¼ exp �C�1
� (cþ þ c�)juj�LW juj�1

� �
1� i

cþ � c�

cþ þ c�
sign(u)tan

��

2

� �
h(u)

� �
,

u 2 R, where limu!0 h(u) ¼ 1 (see Theorem 2.6.5 in Ibragimov and Linnik 1971; or Theorem

1 in Aaronson and Denker 1998), we can write the difference between the characteristic

functions of
Pd

j¼1Ł jW
�(Tyj, M)=N (T ) and

Pd
j¼1Ł j Z�(yj) as (see (3.12) and (3.14))

D ¼
���� YM

m¼1

E exp �C�1
� (cþ þ c�)

X1
k¼0

jWk j�LW (jWk j�1) 1� i
cþ � c�

cþ þ c�
sign(Wk)tan

��

2

� �
h(Wk)

( )

� exp �� � 1� i� tan
��

2

� �� ����� < M

����Ee Z � 1

����,
where � � ¼ � �(Ł, y), � ¼ �(Ł, y) and

Z ¼ � �

M
1� i� tan

��

2

� �
� C�1

� (cþ þ c�)E
X1
k¼0

jWk j�LW (jWk j�1)

3 1� i
cþ � c�

cþ þ c�
sign(Wk)tan

��

2

� �
h(Wk):

We now use the inequality jEe Z � 1j < jEZj þ EejZjjZj2=2, where Z is a complex random

variable, and proceed as in the case of symmetric rewards. Since the term M EejZjjZj2=2

tends to zero as T !1, as in the case of symmetric rewards, we are left with M jEZj. Thus

we have D! 0 as long as M EZ ! 0 or

C�1
� (cþ þ c�)M E

X1
k¼0

jWk j�LW (jWk j�1)! � � (3:28)

and

C�1
� (cþ � c�)M E

X1
k¼0

(Wk)h�iLW (jWk j�1)! � ��: (3:29)
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The convergence (3.28) has been established in the case of symmetric rewards. The

convergence (3.29) can be proved in a similar way by writing

M E
X1
k¼0

(Wk)h�iLW (jWk j�1)

¼ 1

T ��Æþ1 lU (T )
E
X1
k¼0

Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

 !h�i

� (L�W (T�Æþ1 MlU (T )))��LW

(T�Æþ1 MlU (T ))1=�L�W (T�Æþ1 MlU (T ))����T�1
Xd

j¼1
Ł j(T j ^ Sk � Sk�1)þ

����

0
BB@

1
CCA,

by arguing that the last two multiplicative terms in the above sum can be disregarded and by

showing that

1

T ��Æþ1 lU (T )
E
X1
k¼0

Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

 !h�i

! ��1

ð
R

ð
R

Xd

j¼1

Ł j((yj ^ v� u)þ � (0 ^ v� u)þ)

 !h�i
Æ(v� u)�Æ�1

þ du dv:

3.3. Proof of Theorem 2.3

We will adapt the proof of Theorem 1 in Mikosch et al. (2002) to our context. Consider,

first, a single time y ¼ 1 and let 	m
T ¼

P1
n¼01[0,T ](S

m
n ) be the total number of renewals in

[0, T ] in the mth sample. Since S m
0 is the first renewal, S m

	m
T �1 is the last renewal before

or at time T and S m
	m

T
is the first renewal after T. To show the convergence, we will use the

following decomposition of (1.6):

W�(T , M) ¼
XM

m¼1

W m
0 min(T , S m

0 )þ
XM

m¼1

X	m
T

k¼1

W m
k U m

k �
XM

m¼1

S m
	m

T �1 þ U m
	m

T
� T

� 	
1f	m

T >1gW
m
	m

T

¼: A1(T )þ A2(T )� A3(T ): (3:30)

The term S m
	m

T �1 þ U m
	m

T
� T is the time between T and the first renewal after T. Let

N (T ) ¼ T 1=ÆM1=ÆL�U (TM)(� b(MT )). We will show that

1. (N (T ))�1 A1(T )! 0 in probability,

2. (N (T ))�1 A2(T )! d¸Æ(1), and

3. (N (T ))�1 A3(T )! 0 in probability,
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so that, by Theorem 4.1 in Billingsley (1968), (N (T ))�1W�(T , M)! d¸Æ(1) as T !1.

1. This step follows from

EjA1(T )j
N (T )

<
M EjW j

N (T )
E min(T , S0) ¼ M EjW j

N (T )

XT

u¼0

uP(S0 ¼ u)þ TP(S0 . T )

 !

¼ M EjW j
�N (T )

XT

u¼0

u(1þ u)�ÆLU (1þ u)þ T
X1

u¼Tþ1

(1þ u)�ÆLU (1þ u)

 !

< C
MT 2�ÆLU (T )

N (T )
, (3:31)

where we have used Karamata’s theorem (see Bingham et al. 1987), and

MT 2�ÆLU (T )

M1=ÆT 1=ÆL�U (MT )

¼ M (Æ�1)=ÆT ((2�Æ)Æ�1)=Æ LU (T )

L�U (MT )
¼ M (Æ�1)=ÆT�(Æ�1)2=Æ LU (T )

L�U (MT )

¼ (M1=ÆT 1=Æ�1 L�U (MT ))Æ�1 L�U (MT )�ÆLU (M1=ÆT 1=ÆL�U (MT ))
LU (T )

LU (M1=ÆT 1=ÆL�U (MT ))
:

Using Potter’s bounds, the slow-growth condition and (1.5), we obtain

MT 2�ÆLU (T )

M1=ÆT 1=ÆL�U (T )
< (M1=ÆT 1=Æ�1 L�U (MT ))Æ�1 L�U (MT )�ÆLU (M1=ÆT 1=ÆL�U (MT ))

� 2 maxf(M1=ÆT 1=Æ�1 L�U (MT ))�, (M1=ÆT 1=Æ�1 L�U (MT ))��g ! 0,

where � is such that Æ� 1� � . 0. (To prove this step, one may also use Lemma 3 in

Mikosch et al. 2002.)

2. We start by introducing the notation

A2(T ) ¼
XM

m¼1

X	m
T

k¼1

W m
k U m

k ¼:
XM

m¼1

X	m
T

k¼1

Y m
k ¼:

XM

m¼1

Sm(T ):

We want to show that b(MT )�1 A2(T )! d¸Æ(1). The necessary and sufficient conditions for

this convergence are (see Petrov 1975, Theorem 8, p. 81):

(i) M P(S1(T ) . xb(MT ))! ��1EWÆ
þx�Æ, for all x . 0, as T !1;

(ii) M P(S1(T ) , �xb(MT ))! ��1EWÆ
�x�Æ, for all x . 0, as T !1;

(iii) limE#0lim supT!1M(b(MT ))�2var(S1(T )1fjS1(T )j,Eb(MT )g) ¼ 0.

The proof of (i) is similar to that of Lemma 10 in Mikosch et al. (2002). The idea is to

replace 	m
T by its mean, which is, by stationarity, E	T ¼ (T þ 1)=� ¼: �T . Consider
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S(	T ) ¼
P	T

k¼1Yk and S([�T ]) ¼
P[ �T ]

k¼1 Yk, where (	T , (Yk)k>1) ¼ d(	1
T , (Y 1

k)k>1). Then, for

some ET . 0,

MP(S(	T ) . xb(MT )) ¼ MP(S(	T ) . xb(MT ), j	T � �T j < ET �T )

þ MP(S(	T ) . xb(MT ), j	T � �T j . ET �T ):

Following Mikosch et al. (2002), by virtue of the slow-growth condition, we can take ET ! 0

such that

b(MT ) ¼ o(ET T ),
1

log T
¼ o(ET ), (3:32)

as T !1. By Lemma 4 in Mikosch et al. (2002), for ET satisfying (3.32), we have

MP(j	T � �T j . ET �T )! 0 as T !1. Therefore, it is enough to show that

MP(S(	T ) . xb(MT ), j	T � �T j < ET �T )! ��1EWÆ
þx�Æ: (3:33)

This convergence will follow by finding proper bounds. For the upper bound, observe that, for

� 2 (0, 1),

MP(S(	T ) . xb(MT ), j	T � �T j < ET �T )

< MP(S(	T )� S([�T ]) . �xb(MT ), j	T � �T j < ET �T )þ MP(S([�T ]) . (1� �)xb(MT )):

By Lemma 8 in Mikosch et al. (2002), MP(S(	T )� S([�T ]) . �xb(MT ), j	T � �T j <
ET �T )! 0 as T !1. As for the second term,

MP(S([�T ]) . (1� �)xb(MT )) ¼ MP
X[ �T ]

k¼1

Yk . (1� �)xb(MT )

 !
,

observe that both �T and b(MT ) tend to infinity as T !1, and that, by Lemma 1.1,

P(Yk > x) � EWÆ
þLU (x)x�Æ as x!1. Applying Corollary A.1 in Appendix A, we obtain

MP
X[ �T ]

k¼1

Yk . (1� �)xb(MT )

 !
� M[�T ]EWÆ

þFU (b(MT ))(1� �)�Æx�Æ: (3:34)

(To apply the corollary, suppose first that EWÆ
þ 6¼ 0. Then set aT ¼ b(�T EWÆ

þ), so that

[�T ]FY (aT ) � [�T ]EWÆ
þFU (b(�T EWÆ

þ)) � 1, and observe that h(T ) ¼ (1� �)xb(MT )=
b(�T EWÆ

þ)!1. This last condition follows from the fact that b(MT )=b(T )!1, which

is a consequence of (2.11). The case EWÆ
þ ¼ 0 can be considered in a similar way.) Finally,

since

MT FU (b(MT )) ¼ MT
1

FU

1

FU

 (MT )

� �� ��1

� MT (MT )�1 ¼ 1,

one obtains

MP(S([�T ]) . (1� �)xb(MT )) � ��1EWÆ
þ(1� �)�Æx�Æ, as T !1:
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To obtain the lower bound of (3.33), observe that

MP S(	T ) . xb(MT ), j	T � �T j < ET �Tð Þ

> MP S(	T )� S([�T ]) . ��xb(MT ), S([�T ]) . (1þ �)xb(MT ), j	T � �T j < ET �Tð Þ

> MP S([�T ]) . (1þ �)xb(MT )ð Þ � MP S(	T )� S([�T ]) < ��xb(MT ), j	T � �T j < ET �Tð Þ

� MP j	T � �T j . ET �Tð Þ:

Again, Lemmas 4 and 8 in Mikosch et al. (2002) imply that MP(j	T � �T j . ET �T )! 0,

MP(S(	T )� S([�T ]) , ��xb(MT ), j	T � �T j < ET �T )! 0. Moreover, as for the upper

bound, we have that MP(S([�T ]) . (1þ �)xb(MT )) � ��1EWÆ
þ(1þ �)�Æx�Æ as T !1.

Finally, by letting �! 0 in the upper and the lower bounds, we obtain (i).

The proof of (ii) is similar to that of (i). To prove (iii), we will proceed as in the proof of

Lemma 10 in Mikosch et al. (2002). Observe that

var(S(	T )1fjS(	T )j,Eb(MT )g) < ES(	T )21fjS(	T )j2,(Eb(MT ))2g ¼
ðE2 b(MT )2

0

P(jS(	T )j2 . x)dx

¼
ðE2 b(MT )2

0

P(S(	T ) .
ffiffiffi
x
p

)dxþ
ðE2 b(MT )2

0

P(S(	T ) , �
ffiffiffi
x
p

)dx:

We will deal with the first term only, since the arguments for the second are analogous. We

have

M

(b(MT ))2

ðE2 b(MT )2

0

P(S(	T ) .
ffiffiffi
x
p

)dx

¼ M

(b(MT ))2

ðE2 b(MT )2=M

0

P(S(	T ) .
ffiffiffi
x
p

)dxþ M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S(	T ) .
ffiffiffi
x
p

)dx:

Since the first term is bounded by E2, it is enough to consider the second term, for which

M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S(	T ) .
ffiffiffi
x
p

)dx <
M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(j	T � �T j . ET �T )dx

þ M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S(	T ) .
ffiffiffi
x
p

, j	T � �T j < ET �T )dx:

The first term equals E2 M(1� M�1)P(j	T � �T j . ET �T )! 0 as T !1, by Mikosch et al.

(2002). Therefore, we need to deal with the second term only. We have
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M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S(	T ) .
ffiffiffi
x
p

, j	T � �T j < ET �T )dx

<
M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S(	T )� S([�T ]) .
ffiffiffi
x
p

=2, j	T � �T j < ET �T )dx

þ M

(b(MT ))2

ðE2 b(MT )2

E2 b(MT )2=M

P(S([�T ]) .
ffiffiffi
x
p

=2)dx:

Now use

P S(	T )� S([�T ]) .
ffiffiffi
x
p

=2, j	T � �T j < ET �T

� �
< P max

j j��T j<ET �T

jS( j)� S([�T ])j .
ffiffiffi
x
p

=2

� �

¼ P max
1< k<ET �T

jS(k)j .
ffiffiffi
x
p

=2

� �
< CP jS([ET �T ])j .

ffiffiffi
x
p

=2
� �

(see Petrov 1995, Theorem 2.2 or 2.3, in the asymmetric case) and conclude the proof of (ii)

as at the end of the proof of Lemma 10 in Mikosch et al. (2002).

3. By decomposing A3(T ) into

A3(T ) ¼
XM

m¼1

S m
	m

T �1 þ U m
	m

T
� T

� 	
1f	m

T >1gW
m
	m

T
1fjU m

	m
T

W m
	m

T

j.b(MT )g

þ
XM

m¼1

S m
	m

T �1 þ U m
	m

T
� T

� 	
1f	m

T >1gW
m
	m

T
1fjU m

	m
T

W m
	m

T

j<b(MT )g ¼: A3,1(T )þ A3,2(T ), (3:35)

it is enough to show that (b(MT ))�1EjA3,1(T )j ! 0 and (b(MT ))�2EjA3,2(T )j2 ! 0, as

T !1. For A3,1(T ) observe that, since S m
	m

T �1 þ U m
	m

T
� T measures the time between the

terminal time T and the renewal time which immediately follows it, one has

(b(MT ))�1EjA3,1(T )j < M(b(MT ))�1EjU	T
W	T
j1fjU	T

W	T
j.b(MT )g1f	T>1g: (3:36)

Since, by Lemma 1.1, the random variables jU k W k j, k > 1, are independent and have heavy

tails, one obtains, as in Lemma 5 in Mikosch et al. (2002), that

M(b(MT ))�1EjU	T
W	T
j1fjU	T

W	T
j.b(MT )g1f	T>1g ! 0,

and hence (b(MT ))�1EjA3,1(T )j ! 0, as T !1. The term 1f	T>1g must be included in the

preceding relation because if 	T ¼ 0, the ‘first’ renewal time has infinite mean (see (1.1)). As

for A3,2(T ), we have
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(b(MT ))�2EjA3,2(T )j2

< M(b(MT ))�2EjU	T
W	T
j21fjU	T

W	T
j<b(MT )g1f	T>1g

¼ M(b(MT ))�2

ðb(MT )2

0

P(jU	T
W	T
j .

ffiffiffi
x
p

, 	T > 1)dx

< M P(j	T � �T j . �T ET )þ M(b(MT ))�2

ðb(MT )2

0

P(jU	T
W	T
j .

ffiffiffi
x
p

, j	T � �T j < �T ET )dx:

The first term in the bound tends to 0 by Lemma 4 in Mikosch et al. (2002). For the second

term, bound the probability by

P max
j k��T j<�T ET

jU k W k j .
ffiffiffi
x
p� �

<
X

jk��T j<�T ET

P(jU k W k j .
ffiffiffi
x
p

) ¼ [2�T ET ]P(jU W j .
ffiffiffi
x
p

),

so that, by Karamata’s theorem and Lemma 1.1,

M(b(MT ))�2

ðb(MT )2

0

P(jU	T
W	T
j .

ffiffiffi
x
p

, j	T � �T j < �T ET )dx

< C [2�T ET ] M(b(MT ))�2b(MT )2 P(jU W j . b(MT ))

� C ET MT FU (b(MT )) � C ET ! 0:

The convergence of the finite-dimensional distributions in Theorem 2 can be shown as in

Lemmas 11 and 12 in Mikosch et al. (2002). More specifically, consider for example the

case of convergence of two-dimensional distributions. It is then enough to show that

b1(N (T ))�1 A2(Tt1)þ b2(N (T ))�1(A2(Tt2)� A2(Tt1))! d b1¸Æ(t1)þ b2(¸Æ(t2)�¸Æ(t1)) as

T !1, for b1, b2 2 R, t2 . t1 > 0, where A2(�) is defined in (3.30). Expressing the latter

sequence as a normalized partial sum of i.i.d. random variables

Sm(T , t1, t2) ¼ b1Sm(Tt1)þ b2(Sm(Tt2)� Sm(Tt1)),

we need to prove the three conditions (i), (ii) and (iii) analogous to those in step 2.3 above.

For example, in condition (i), we need to show that the sequence

MP(S1(T , t1, t2) . xb(MT )) converges to

��1(EWÆ
þ1fb1.0g þ EWÆ

�1fb1,0g)jb1jÆx�Æ t1 þ ��1(EWÆ
þ1fb2.0g þ EWÆ

�1fb2,0g)jb2jÆx�Æ(t2 � t1),

(3:37)

for all x . 0, as T !1. By introducing the set ¨ ¼ fj	Tt j
� �Tt j

j < ET �Tt j
, j ¼ 1, 2g,

where ET ! 0 satisfies (3.32), and using Lemma 4 in Mikosch et al. (2002), we have

MP(S1(T , t1, t2) . xb(MT )) � MP(S1(T , t1, t2) . xb(MT ), ¨), as T !1. Following the

idea and the notation of step 2 above, we can then show that

MP S1(T , t1, t2) . xb(MT ), ¨ð Þ � M P b1S([�Tt1
])þ b2(S([�Tt2

])� S([�Tt1
])) . xb(MT )ð Þ,

as T !1. Arguing as in Lemma 12 of Mikosch et al. (2002), the last expression is
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asymptotically equal to MP(b1S([�Tt1
]) . xb(MT ))þ MP(b2(S([�Tt2

])� S([�Tt1
])) .

xb(MT )) ¼ M P(b1S([�Tt1
]) . xb(MT ))þ MP(b2S([�Tt2

]� [�Tt1
]) . xb(MT )). The limit

(3.37) follows by arguing as in step 2. Condition (ii) concerning the left tail can be proved

in a similar way, and condition (iii) follows as in step 2.

4. Proof under arbitrary growth condition

The proof of Theorem 2.4 is given separately for the cases 0 , � , 1 , Æ and 1 < � , Æ.

The case 0 , � , 1 , Æ is proved by using the ideas of Section 3.2. In the case

1 < � , Æ, by using in addition the arguments of Section 3.3, we prove the convergence

(2.12) under two complementary regimes.

4.1. The case 0 , � , 1 , Æ

The proof in this case is structured like that of Theorem 2.2. Consider, first, symmetric

rewards with cþ ¼ c� ¼ 1
2
. Let

N (T ) ¼ T 1=�M1=�L�W (MT ) (4:1)

be the normalization used in Theorem 2.4. Then we need to show (3.10), where Z� is

replaced by ¸�, that is, the �-stable Lévy motion satisfying (1.16) with cþ ¼ c� ¼ 1
2
. Such

Lévy motion is characterized by E expfi
Pd

j¼1Ł j¸�(yj)g ¼ expf�� �(Ł, y)g, where Ł ¼
(Ł1, . . . , Łd) 2 Rd , y ¼ (y1, . . . , yd) 2 (0, 1]d with 0 , y1 , . . . , yd < 1, d > 1, and

� �(Ł, y) ¼ � � is given by (1.17). In the notation of Section 3.2 (see, in particular, (3.13)),

observe first that, as T !1,

jWk j <
CT

T 1=�M1=�L�W (MT )
¼ C

T 1=��1 M1=�L�W (MT )
! 0, (4:2)

since 1=�� 1 . 0 and hence supk jh(Wk)� 1j ! 0 (see (3.11)). We will show next that

F ! 0 as T !1, where F is defined in (3.17). Then, as in Section 3.2.1, we will only need

to prove that, as T !1,

M EC�1
�

X1
k¼0

jWk j�LW (jWk j�1)! � �, (4:3)

where � � is now defined by (1.17). Using (3.13), we can express F in (3.17) as

F ¼ 1

TM

X1
k¼0

����Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

����
�

F 1(T )F2
k(T ),

where
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F 1(T ) ¼ L�W (TM)��LW (T 1=�M1=�L�W (TM)),

F2
k(T ) ¼ fLW (T 1=�M1=�L�W (TM))g�1 LW

T 1=�M1=�L�W (TM)����Xd

j¼1
Ł j(T j ^ Sk � Sk�1)þ

����

0
BB@

1
CCA:

By (1.5), F 1(T )! 1 as T !1, and by Potter’s bounds, for � . 0, F2
k(T ) <

2j
Pd

j¼1Ł j(T j ^ Sk � Sk�1)þj�� for large enough T , where a�� ¼ maxfa�, a��g for a . 0.

Then, for large enough T ,

F <
C

MT

X1
k¼0

����Xd

j¼1

Ł j(T j ^ Sk � Sk�1)þ

����
���

<
C

MT

X1
k¼0

(T ^ Sk � Sk�1)
���
þ : (4:4)

Fix � . 0 such that �� � 2 (0, 1). Then, since (T ^ Sk � Sk�1)þ is a positive integer, we

have (T ^ Sk � Sk�1)
���
þ < (T ^ Sk � Sk�1)þ and hence

F <
C

MT

X1
k¼0

(T ^ Sk � Sk�1)þ ¼
C

MT
T ¼ C

M
:

Since M ¼ M(T )!1 as T !1, we obtain the convergence F ! 0.

To show the convergence (4.3), we study the sum over k ¼ 0 and k > 1 separately. We

first show that as T !1, M EjW0j�LW (jW0j�1)! 0, which is the term with k ¼ 0. Arguing

as above, we can bound it by

M
C

MT
E

����Xd

j¼1

Ł j(T j ^ S0)

����
���

< CT �þ��1,

for large enough T . The last bound then tends to 0 if we take � . 0 such that �þ � , 1. We

now turn to the sum over k > 1. As in Section 3.2 (see (3.6) and (3.7)), this sum equals

M��1
X1
y¼0

X1
x¼0

����Xd

j¼1

Ł j(T j ^ y� x)þ

����
�

N (T )��LW

N (T )����Xd

j¼1
Ł j(T j ^ y� x)þ

����

0
BB@

1
CCAP(U ¼ y� x):

(4:5)

The idea now, following Levy and Taqqu (2000), is to introduce four sets of indices and show

that the sum over only one of them contributes to the limit as T !1. Let

A1 ¼ f(i1, i1) : i1 ¼ i2 ¼ i, 1 < i < d þ 1g,

A2 ¼ f(i1, i2) : i1 , i2 � 1 ¼ i, 1 < i < dg,

A3 ¼ f(i1, i2) : i1 ¼ i2 � 1 ¼ i, 1 < i < dg
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and split the sum (4.5) into four terms summing over

X
A l

XTi2

y¼Ti2�1þ1

XTi1

x¼Ti1�1þ1

with l ¼ 1, 2, 3, and
P1

y¼01fx¼0g, denoted by Jl, l ¼ 1, 2, 3, 4 (we let T0 ¼ 0 and Tdþ1

¼ 1). In view of the identity (3.7), the indices x and y correspond to variables Sk�1 and Sk,

respectively. Hence, the terms J1, J2 and J3 concern the cases when Sk�1 and Sk belong to

the same interval (Ti�1, Ti], two non-adjacent intervals (Ti�1, Ti] and (T j�1, T j], and two

consecutive intervals (Ti�1, Ti] and (Ti, Tiþ1], respectively. Since, as Ti increases with T ,

Sk�1 and Sk are more likely to fall in the same interval (Ti�1, Ti], we expect that only the

term J1 contributes to the limit.

Consider, first, Jl with l ¼ 2, 3. As in the case k ¼ 0, for �� � 2 (0, 1) and large

enough T ,

Jl < M
C

MT

X
A l

XTi2

y¼Ti2�1þ1

XTi1

x¼Ti1�1þ1

����Xd

j¼1

Ł j(T j ^ y� x)þ

����
���

P(U ¼ y� x):

The convergence of the bound to 0 follows from Propositions 5.3 and 5.4 in Levy and Taqqu

(2000). For J4, we similarly have that

J4 <
C

T

X1
y¼0

����Xd

j¼1

Ł j(T j ^ y)

����
���

P(U ¼ y) < CT �þ��1 ! 0,

as T !1, as long as �þ � , 1.

To conclude the proof, we still need to show that the difference between J1 and C�� �

tends to 0. By the definition of A1, J1 equals

M��1
Xd

i¼1

XTi

y¼Ti�1þ1

XTi

x¼Ti�1þ1

����Xd

j¼1

Ł j(T j ^ y� x)þ

����
�

N (T )��

3 LW

N (T )����Xd

j¼1
Ł j(T j ^ y� x)þ

����

0
BB@

1
CCAP(U ¼ y� x):

Observe now that, for Ti�1 þ 1 < x, y < Ti, i ¼ 1, . . . , d,

Xd

j¼1

Ł j(T j ^ y� x)þ ¼
Xd

j¼i

Ł j(T j ^ y� x)þ ¼
Xd

j¼i

Ł j(y� x)þ ¼ �i(y� x)þ,

and hence J1 becomes
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M��1
Xd

i¼1

XTi

y¼Ti�1þ1

XTi

x¼Ti�1þ1

j�ij�(y� x)
�
þN (T )��LW

N (T )

j�ij(y� x)þ

� �
P(U ¼ y� x),

or, by making a simple change of variables,

M��1
Xd

i¼1

XTi�Ti�1�1

x¼1

Xx

u¼1

j�ij�u�N (T )��LW

N (T )

j�iju

� �
P(U ¼ u):

By fixing u0 . 0, we can then bound jJ1 � C�� �j by the sum

��1

T

Xd

i¼1

j�ij�
XTi�Ti�1�1

x¼1

Xx

u¼1

u�Fi,u(T )P(U ¼ u)1fu.u0g

þ ��1

T

Xd

i¼1

j�ij�
XTi�Ti�1�1

x¼1

Xx

u¼1

u�jFi,u(T )� 1jP(U ¼ u)1fu<u0g

þ ��1

T

Xd

i¼1

j�ij�
XTi�Ti�1�1

x¼1

Xx

u¼1

u�P(U ¼ u)1fu.u0g

þ
���� ��1

T

Xd

i¼1

j�ij�
XTi�Ti�1�1

x¼1

Xx

u¼1

u�P(U ¼ u)� C��
�

����,
where

Fi,u(T ) ¼ (L�W (MT ))��LW

M1=�T 1=�L�W (MT )

j�iju

� �
:

Denote the four terms in the bound by J1,1, J1,2, J1,3 and J1,4, respectively. Then, using (1.5)

and Potter’s bounds as before,

J1,1 <
C

T

Xd

i¼1

j�ij���
XTi�Ti�1�1

x¼1

X1
u¼u0þ1

u���P(U ¼ u) < C EU ���1fU.u0g:

By taking � . 0 such that �� � , Æ, J1,1 can be made arbitrarily small for big enough u0.

The same conclusion is true for J1,3. As for J1,2, its convergence to 0 will follow from that of

J1,4 because, assuming a fixed u0, Fi,u(T )! 1 uniformly for u < u0 and i ¼ 1, . . . , d (see

(1.5)). Finally, the convergence J1,4 ! 0 is established in Levy and Taqqu (2000) or can be

obtained directly.

Turning to the case of asymmetric rewards, observe first that the �-stable Lévy motion

¸� in (1.16) is now characterized by its characteristic function with (1.17) and (1.18).

Using the ideas of the proof of Theorem 2.2 in the case of asymmetric rewards and also the

proof in the case of symmetric rewards above, it is enough to show (3.28) and (3.29),

where � � ¼ � �(Ł, y) and � ¼ �(Ł, y) are now defined by (1.17) and (1.18), respectively.

The convergence (3.28) has been established in the case of symmetric rewards above. The

proof of (3.29) is similar to that of (3.28).
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4.2. The case 1 < � , Æ

We cannot take advantage here of the relation (4.2) since 1 < �. We will prove the

convergence (2.12) by considering two cases: for large enough T ,

M1=�T 1=��1 L�W (MT ) > T r (4:6)

and

M1=�T 1=��1 L�W (MT ) < T r, (4:7)

where r . 0 is small and will be chosen below. This will establish the convergence (2.12) in

general as T !1.

Suppose that r . 0 in (4.6) is fixed. Then the proof is analogous to the case

0 , � , 1 , Æ. Suppose, for simplicity, that the rewards are symmetric. Observe that, with

Wk defined in (3.13), we still have, by (4.6),

jWk j < C(M1=�T 1=��1 L�W (MT ))�1 < CT�r ! 0,

as T !1. Moreover, with F defined in (3.17), we have, by (4.4),

F <
C

MT

X1
k¼0

(T ^ Sk � Sk�1)
�þ�
þ ,

where � . 0 can be taken arbitrarily small, and by writing (T ^ Sk � Sk�1)
�þ�
þ <

(T ^ Sk � Sk�1)þT �þ��1 and using
P

k(T ^ Sk � Sk�1)þ ¼ T we conclude that

F < CM�1T �þ��1. It follows from (4.6) that, for any E . 0 and large enough T ,

M1=�T 1=��1(MT )E > M1=�T 1=��1 L�W (MT ) > T r or, after elementary calculations,

MT 1�� > T �(r�E�)=(1þE�). Then F < CT ���(r�E�)=(1þE�) and, by taking small enough

�, E . 0, we obtain F ! 0 as T !1. Therefore it is enough to show the convergence

(4.3). This can be done as in the case 0 , � , 1 , Æ by using results of Levy and Taqqu

(2000).

We turn now to the situation in which (4.7) holds; r . 0 will be chosen below. The proof

uses ideas from Section 3.3. Set N (T ) ¼ T 1=�M1=�L�W (MT ) as in (4.1). Let a(t) ¼
(1=GW ) (t), where GW (w) ¼ w��LW (w). Then, as in (2.11),

a(MT ) � T 1=�M1=�L�W (MT ), (4:8)

as T !1. The function a should not be confused with the function b defined in Section 2,

which satisfies b(MT ) � T 1=ÆM1=ÆL�U (MT ).

We first prove the convergence (2.12) at time y ¼ 1. Using (3.30), we need to show the

three steps of Section 3.3, where ¸Æ(1) is replaced by ¸�(1).

1. To show N (T )�1 A1(T )! 0 in probability, it is enough to prove that, for some

p 2 (0, 1), N (T )� pEjA1(T )j p ! 0. Using the inequality (
P

mcm) p <
P

mc p
m valid for

p 2 (0, 1), cm . 0, and E min(T , S0) p < CT p�Æþ1 LU (T ) (argue as in (3.31)), we have
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EjA1(T )j p
N (T ) p

<
1

N (T ) p
E
XM

m¼1

jW m
0 jmin(T , S m

0 )

 ! p

<
1

N (T ) p
E
XM

m¼1

jW m
0 j p min(T , S m

0 ) p

¼ M E min(T , S0) pEjW j p
M p=�T p=�L�W (MT ) p

< C
M T p�Æþ1 LU (T )

M p=�T p=�L�W (MT ) p
< CM1� p=�þ�1 T p�Æþ1� p=�þ�2 ,

where �1, �2 . 0 can be taken arbitrarily small. (One cannot take p ¼ 1 above because,

when � ¼ 1, it may happen that EjW j ¼ 1.) By assumption (4.7), there exists E . 0 such

that M < T E for large enough T . Then N (T )� pEjA1(T )j p ! 0 as long as

E(1� p=�þ �1)þ ( p� Æþ 1� p=�þ �2) , 0. This last condition is clearly satisfied by

taking small enough �1, �2 . 0 and p close to 1.

2. As in step 2 of Section 3.3, we need to verify conditions (i), (ii) and (iii) of Petrov

(1975), where EWÆ
þ and EWÆ

� are now replaced by cþEU � and c�EU �, respectively. The

key observation in proving (i) is as follows: using (2.11) and (4.7), for large enough T ,

b(MT )

T
� M1=ÆT 1=Æ�1 L�U (MT ) ¼ M1=�T 1=��1 L�W (MT )(MT )1=Æ�1=� L�U (MT )

L�W (MT )

< T r(MT )1=Æ�1=� L�U (MT )

L�W (MT )
< (MT )rþ1=Æ�1=� L�U (MT )

L�W (MT )
! 0, (4:9)

as long as r , (Æ� �)=Æ�. This means that the slow-growth condition (2.2) is satisfied.

Consequently, by Lemma 4 in Mikosch et al. (2002), there exists ET ! 0 satisfying (3.32)

such that MP(j	T � �T j . ET �T ) ¼ o(1) as T !1, where 	T is the total number of

renewals in [0, T ] and �T ¼ E	T, as in Section 3.3. Then, arguing as in Section 3.3, one can

show that, as T !1,

MP(S(	T ) . xa(MT )) ¼ MP
X	T

k¼1

Yk . xa(MT )

 !
� MP

X[ �T ]

k¼1

Yk . xa(MT )

 !
,

that is, 	T can be replaced by its mean �T in the limit. Recall that the Yk above are

independent and have the same distribution as Y ¼ W U . By Lemma 1.1, we have

FY (y) ¼ P(Y . y) � cþEU � y��LW (y) ¼ cþEU �GW (y), (4:10)

and similarly 1� FY (�y) ¼ P(Y < �y) � c�EU �GW (y), as y!1. Then, by applying

Corollary A.1 in Appendix A, we obtain that, as T !1,

MP
X[ �T ]

k¼1

Yk . xa(MT )

 !
� M[�T ]FY (xa(MT )) � cþ��1EU �x��MT GW (a(MT )): (4:11)

The part (i) then follows because, by Theorem 1.5.12 in Bingham et al. (1987),

MT GW (a(MT )) � 1: (4:12)

The proof of (ii) is similar to that of (i). Part (iii) can be proved similarly to part (iii) in

Section 3.3 by using arguments of type (4.11).

3. We will show that A3(T ) in (3.30) tends to zero in probability. Using (3.35), it is
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enough to show that a(MT )� pEjA3,1(T )j p ! 0 for some p 2 (0, 1) and a(MT )�2EjA3,2(T )j2
! 0, as T !1. It follows from (3.35) that

a(MT )� pEjA3,1(T )j p < M a(MT )� pEjY	T
j p1fjY	T

j.a(MT )g1f	T>1g,

where Y	T
¼ U	T

W	T
. To show that the bound tends to 0, we again modify the arguments of

the proof of Lemma 5 in Mikosch et al. (2002). First, using Karamata’s theorem,

M

a(MT ) p

ð1
a(MT )

x p�1 P(jY	T
j . x, j	T � �T j < ET �T , 	T > 1)dx

<
2MET �T

a(MT ) p

ð1
a(MT )

x p�1 P(jY j . x)dx <
CM TET

a(MT ) p
a(MT )(a(MT )) p�1 FjY j(a(MT )),

where FjY j(y) ¼ P(jY j . y) is a regularly varying function at infinity. Then, using

FjY j � CGW (see (4.10)) and (4.12), the bound above behaves (up to a constant) like ET

and hence tends to 0, as T !1. One then needs to show that

M

a(MT ) p
I :¼ M

a(MT ) p

ð1
a(MT )

x p�1 P(jY	T
j . x, j	T � �T j . ET �T , 	T > 1)dx! 0: (4:13)

Since the slow-growth condition (4.9) holds, one may choose (see the proofs of Lemmas 4

and 5 in Mikosch et al. 2002) cT !1 such that b(MT )=c�1
T ET T ! 0 and

MP(j	T � �T j . ET �T ) ¼ o(c�ÆT ). Then there also exists a big enough K . 0 such that

T K . cT a(MT ) for large T . This can be seen from

cT a(MT ) ¼ b(MT )

c�1
T ET T

a(MT )

b(MT )
ET T < C

a(MT )

b(MT )
T < C (MT )�1 T < CT �2

for some �1, �2 . 0 (the last inequality here follows from MT < T p for some p . 0, which

is a consequence of assumption (4.7)). Then one can bound the integral I in (4.13) as in

Lemma 5 in Mikosch et al. (2002), by

I <

ðcT a(MT )

a(MT )

P(j	T � �T j . ET �T )dxþ
ð1

cT a(MT )

x p�1 P(jY	T
j . x, 1 < 	T , (1� ET )�T )dx

þ
ðT K

cT a(MT )

P(	T . (1þ ET )�T )dxþ
ð1

T K

x p�1 P(jY	T
j . x, 	T > 1)dx ¼: I1 þ I2 þ I3 þ I4:

The convergence M a(MT )� p I k , k ¼ 1, 3, can be shown as in Mikosch et al. (2002). For I2,

by Karamata’s theorem, the relation MT � GW (a(MT )) � CFjY j(a(MT )) and Potter’s bounds,

we have
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M

a(MT ) p
I2 ¼

M

a(MT ) p

ð1
cT a(MT )

x p�1 P(jY	T
j . x, 	T , (1� ET )�T , 	T > 1)dx

<
C MT

a(MT ) p

ð1
cT a(MT )

x p�1 P(jY j . x)dx <
C MT

a(MT ) p
(cT a(MT )) p FjY j(cT a(MT ))

< C c
p
T

FjY j(cT a(MT ))

FjY j(a(MT ))
< C c

p
T c
��þE
T ! 0,

for small E . 0, since p , 1 (taking p ¼ 1 would not be enough when � ¼ 1). As for I4, we

obtain, for small enough E . 0,

M

a(MT ) p
I4 ¼

M

a(MT ) p

ð1
T K

x p�1 P(jY	T
j��E . x��E, 	T > 1)dx

<
M

a(MT ) p

ð1
T K

x p�1 P( ~SS	T
. x��E)dx <

M

a(MT ) p
E ~SS	T

ð1
T K

x p�1xE�� dx,

where ~SS0 ¼ 0, ~SSn ¼ jY1j��E þ . . . þ jYnj��E, n > 1, by Markov’s inequality. The last integral

is finite since p , 1. Since f ~SSn � nEjY1j��Egn>0 is a martingale and 	T is a stopping time

with respect to the filtration F0 ¼ f˘, �g, F n ¼ �fU0, U1, W1, . . . , U n, W ng, n > 1, it

follows from the optional sampling theorem (apply, for example, Theorem 8 and Proposition

10 in Section 24.5 of Fristedt and Gray 1997) that

E ~SS	T
¼ E	T EjY1j��E ¼ (T þ 1)��1EjY1j��E:

Then, for some � . 0,

M

a(MT ) p
I4 < C

MT

a(MT ) p
T�K(�� p�E) < C (MT )�T�K(�� p�E) < CT (�0þ1)��K(�� p�E)

since, by assumption (4.6), there exists �0 . 0 such that M < T �0 for large enough T . Since

p , 1, by taking K large enough, we obtain Ma(MT )� p I4 ! 0. The convergence

a(MT )�2EjA3,2(T )j2 ! 0 can be proved as in Section 3.3.

Finally, to prove the convergence of the finite-dimensional distributions, proceed as in

Lemmas 11 and 12 in Mikosch et al. (2002) (see also the end of Section 3.3).

Appendix A. Large deviations of heavy-tailed sums

We provide here the result on large deviations of heavy-tailed sums which was used earlier

in this work. The presentation below expands on that of Appendix A in Mikosch et al.

(2002). Consider a sequence of i.i.d. random variables Z, Z n, n > 1, such that, as z!1,

F(�z) ¼ P(Z < �z) � c1z�ÆL(z), F(z) ¼ P(Z . z) � c2z�ÆL(z), (A:1)

with c1 þ c2 . 0 (c1, c2 > 0), Æ 2 (0, 2) and a slowly varying (at infinity) function L.

Observe that in (A.1) the left and right tails involve the same value of Æ. We will treat the

cases c2 ¼ 0 and c2 6¼ 0. Set
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Sn ¼ Z1 þ . . . þ Z n, n > 1,

and

�2(z) ¼ z�2EZ21fjZj<zg ¼ z�2

ð
juj<z

u2 dF(u):

The following large-deviation result is proved in Theorem 2.1 of Cline and Hsing (1989).

Theorem A.1. Let �n !1 be such that Sn=�n ! P0. Suppose Bn 	 [�n, 1). If c2 6¼ 0 in

(A.1) and the condition

lim
n!1

sup
z2Bn

����n�2(z)ln(nF(z))

���� ¼ 0 (A:2)

holds, then

lim
n!1

sup
z2Bn

���� P(Sn . z)

nF(z)
� 1

���� ¼ 0: (A:3)

Corollary A.1 below is first used in (3.34).

Corollary A.1. Let Æ 2 (0, 2) and Z n, n > 1, be a sequence of i.i.d. random variables with a

common distribution satisfying (A.1). When Æ ¼ 1 assume that Z is symmetric, and when

Æ 2 (1, 2) suppose that EZ ¼ 0. Then:

(i) if c2 6¼ 0, relation (A.2) holds with �n ¼ an hn, where hn !1 and a sequence (an)

satisfies nF(an) � 1;

(ii) if c2 ¼ 0,

lim
n!1

sup
z2Bn

P(Sn . z)

nz�ÆL(z)
¼ 0 (A:4)

with �n ¼ an hn, where hn !1 and the sequence an satisfies na�Æn L(an) � 1.

Proof. (i) c2 6¼ 0. Since a�1
n Sn converges to an Æ-stable random variable and hn !1, we

have Sn=�n ¼ (Sn=an) h�1
n ! P0. Now, by writing �2(z) ¼ 2z�2

Ð z

0
uP(jZj . u)du and using

Karamata’s theorem, we have

�2(z) < CP(jZj . z), z . 0:

Moreover, using Potter’s bounds and nF(an) � 1, we have, for small enough E . 0,

nP(jZj . �n) < Cn��Æn L(�n) � CnF(an)h�Æn

L(an hn)

L(an)
< Ch�ÆþEn ! 0:

It follows that (A.2) is satisfied because, for z 2 Bn,

n�2(z)ln(nF(z)) < CnP(jZj . �n)ln(nP(jZj . �n))! 0:

158 V. Pipiras, M.S. Taqqu and J.B. Levy



(ii) c2 ¼ 0. Since limz!1F(z)=(z�ÆL(z)) ¼ 0, there is a sequence of i.i.d. random

variables ~ZZ, ~ZZ n, n > 1, such that

P(Z . z) < P( ~ZZ . z), for all z 2 R,

and P( ~ZZ < �z) � c1z�ÆL(z), P( ~ZZ . z) � ~cc2z�ÆL(z), as z!1, where ~cc2 . 0 is arbitrary

small. In the case Æ 2 (1, 2), we may also choose ~ZZ such that E ~ZZ ¼ 0. Setting
~SSn ¼ ~ZZ1 þ . . . þ ~ZZ n, n > 1, and using stochastic domination (see, for example, Corollary

3.1 of Chapter 1 in Thorisson 2000), we obtain P(Sn . z) < P( ~SSn . z) for all n 2 N, z 2 R,

and hence

P(Sn . z)

nz�ÆL(z)
<

P( ~SSn . z)

nz�ÆL(z)
� ~cc2

P( ~SSn . z)

nP( ~ZZ . z)
: (A:5)

Applying the proof in the case c2 6¼ 0, we conclude that the right-hand side of (A.5) tends

(uniformly for z 2 Bn) to ~cc2. Since ~cc2 can be taken arbitrarily small, we obtain (A.4). h

Appendix B. Weak convergence

We show here the weak convergence of the total reward process in the space of functions

D[0, 1] when the limit process is either fractional Brownian motion BH (Theorem 2.1) or

the stable self-similar process with stationary dependent increments Z� (Theorem 2.2).

Recall that D[0, 1] is the space of right-continuous functions defined on [0, 1] which have

limits from the left. We will suppose that D[0, 1] is equipped with the usual Skorokhod J1

topology. See Billingsley (1968) for more information on this function space and the J1

topology.

Theorem B.1. The convergence (2.3) and (2.4) of the normalized total reward process

W�(T �, M) in Theorems 2.1 and 2.2, respectively, extends to the weak convergence in the

space D[0, 1] equipped with the J1 topology.

Remark. Since the limiting processes in Theorem B.1 are almost surely continuous, the

convergence in the Skorokhod J1 topology topology can be replaced by convergence in the

uniform topology generated by the uniform metric r( f , g) ¼ sup y2[0,1]j f (y)� g(y)j (see

Billingsley 1968, p. 151).

Proof. We first give a proof of the weak convergence in (2.4), which is slightly more

involved.

Weak convergence for (2.4). Let N (T ) be the normalization (3.8) used in Theorem 2.2.

Since P(Z�(1) 6¼ Z�(1�)) ¼ 0 (the process Z� has continuous paths; see Pipiras and Taqqu

2000) and since one already has the convergence (2.4) of W�(T �, M)=N (T ) to Z� in the

sense of the finite-dimensional distributions, by Theorem 15.6 in Billingsley (1968), it is

enough to show that there exist c, E, ª . 0 and T0 > 1 such that
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P

����W�(Ty, M)

N (T )
� W�(Ty1, M)

N (T )

���� > º,

����W�(Ty2, M)

N (T )
� W�(Ty, M)

N (T )

���� > º

� �
<

c

ºª
jy2 � y1j1þE,

(B:1)

for all T > T0 and 0 < y1 , y < y2 < 1. Using the inequality P(A \ B) < P(A)1=2 P(B)1=2,

the stationarity of the increments of W�(T �, M) and the inequality 4ab < (aþ b)2, one can

see that (B.1) follows from

P

����W�(Ty, M)

N (T )

���� > º

� �
<

c

ºª
[Ty]

T

� �1þE
, (B:2)

for all T > T0, 0 < y < 1. Observe next that, by (7.15) in Billingsley (1968, p. 47),

P

����W�(Ty, M)

N (T )

���� > º

� �
<

º

2

ð2=º

�2=º
j1� E expfiŁW�(Ty, M)=N (T )gjdŁ: (B:3)

As in the proof of Theorem 2, one can bound the integrand in (B.3) by

j1� E expfiŁW�(Ty, M)=N (T )gj < M
X1
k¼0

E

����1� �W

Ł([Ty] ^ Sk � Sk�1)þ
N (T )

� �����, (B:4)

where �W (u) ¼ E expfiuWg is the characteristic function of W . Since W is in the domain of

attraction of a �-stable random variable, one can show that, for all u 2 R and some constant

c . 0,

j1� �W (u)j < cjuj�LW (juj�1): (B:5)

By applying (B.5), one can bound (B.4) by

cjŁj�M
X1
k¼0

E
([Ty] ^ Sk � Sk�1)

�
þ

N (T )�
LW

N (T )

jŁj([Ty] ^ Sk � Sk�1)þ

� � !
: (B:6)

With the notation of (3.9) and in view of (3.8), the term in the expectation in (B.6) becomes

([Ty] ^ Sk � Sk�1)
�
þ

T �Q(T )
L�W (Q(T ))��LW Q(T )1=�L�W (Q(T ))

T

jŁj([Ty] ^ Sk � Sk�1)þ

� �
: (B:7)

Since, by (3.9), Q(T )!1 as T !1, we obtain from (1.5), for large enough T ,

L�W (Q(T ))��LW (Q(T )1=�L�W (Q(T ))) < 2: (B:8)

Since 0 < y < 1 and jŁj < 2=º in (B.3), we obtain

T

jŁj([Ty] ^ Sk � Sk�1)þ
>

T

jŁj[Ty]
>

º

2
:

Then, since Q(T )!1, by applying Potter’s bounds, we obtain, for large enough T ,
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LW (Q(T )1=�L�W (Q(T )))
n o�1

LW Q(T )1=�L�W (Q(T ))
T

jŁj([Ty] ^ Sk � Sk�1)þ

� �

< 2
jŁj([Ty] ^ Sk � Sk�1)þ

T

� ���
, (B:9)

where � . 0 is fixed. Using (B.6)–(B.9) to bound (B.4), we obtain that there exists T0 > 1

such that, for all T > T0,

j1� E expfiŁW�(Ty, M)=N (T )gj < const:jŁj���
X1
k¼0

E([Ty] ^ Sk � Sk�1)
���
þ

T ����Æþ1 lU (T )
: (B:10)

Now let � . 0 be such that Æ , �� �. By (3.6) and (3.7), the function f (u)

¼
P1

k¼0E(u ^ Sk � Sk�1)
���
þ , u . 0, is regularly varying with index �� �� Æþ 1 and the

slowly varying function lU . Hence, using Potter’s bounds again, there exists u0 such that, for

u, v > u0,

f (u)

f (v)
< 2 max

u

v

� 	����Æþ1�E
,

u

v

� 	����Æþ1þE
� �

,

where E . 0 is fixed. It follows that, if [Ty] > u0 (and T > [Ty] > u0 as well), then

X1
k¼0

E([Ty] ^ Sk � Sk�1)
���
þ

T ����Æþ1 lU (T )
< const:

f ([Ty])

f (T )
< const:

[Ty]

T

� �����Æþ1�E
: (B:11)

If [Ty] < u0 and E . 0 is such that �� �� Æ� E . 0, then, since one can have at most [Ty]

renewals in the time interval [0, [Ty]],

X1
k¼0

E([Ty] ^ Sk � Sk�1)
���
þ

T ����Æþ1 lU (T )
<

[Ty][Ty]���

T ����Æþ1 lU (T )
¼ T 1þE[Ty]����E

T ����Æþ1 lU (T )

[Ty]

T

� �1þE

<
u
����E
0

T ����Æ�E lU (T )

[Ty]

T

� �1þE
< const:

[Ty]

T

� �1þE
: (B:12)

By taking E . 0 such that 1þ E , �� �� Æþ 1� E (or 0 , �� �� Æ� 2E) and bounding

(B.10) by (B.11) and (B.12), we obtain, for T > T0 and all 0 < y < 1,

j1� E expfiŁW�(Ty, M)=N (T )gj < const:jŁj��� [Ty]

T

� �1þE
: (B:13)

By substituting (B.13) into (B.3), we obtain (B.2) with ª ¼ �� � . 0.

Weak convergence for (2.3). Let N (T ) ¼ T (3�Æ)=2 M1=2(LU (T ))1=2 be the normalization

used in Theorem 2.1. By the same arguments as above, it is enough to show that, for all

T > 1 and 0 < y < 1,

º2 P

����W�(Ty, M)

N (T )

���� > º

� �
< E

����W�(Ty, M)

N (T )

����
2

¼ EjW�([Ty])j2
T 3�ÆLU (T )

< c
[Ty]

T

� �1þE
: (B:14)
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Since the function f (u) ¼ EjW�([u])j2, u . 0, is regularly varying with index 3� Æ and the

slowly varying function LU (see Taqqu and Levy 1986, p. 87), the last bound in (B.14) can

be obtained as in the proof of weak convergence for (2.4) above. h
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